1
|
Liu H, Wang L. MicroRNA-34a negatively regulates Netrin1 and mediates MEK/ERK pathway to regulate chemosensitivity of gastric cancer cells. Discov Oncol 2024; 15:563. [PMID: 39404782 PMCID: PMC11480279 DOI: 10.1007/s12672-024-01451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE To explore the mechanism of action of MicroRNAs-34a (miR-34a) and Eurite growth guiding factor 1 (Netrin1) in cisplatin resistance in gastric cancer (GC), providing new clues for overcoming tumor resistance and optimizing anti-tumor therapy for GC. METHODS The Cancer Genome Atlas (TCGA), Differentially Expressed MicroRNAs (miRNAs) in human cancers (dbDEMC), and Starbase online databases were used to analyze the correlation between miR-34a and Netrin-1 and prognosis in GC, and to predict and verify the targeted binding of miR-34a to Netrin-1. The experimental methods including Cell transfection, real-time polymerase chain reaction (RT-PCR), Cell-Counting-Kit-8 (CCK8) assay, flow cytometry, wound scratch assay, transwell assay, and western blotting were used to investigate the effects of miR-34a and Netrin1 on chemotherapy resistance and biological characteristics in cisplatin-resistant GC cells (HGC27/DDP), and to analyze the molecular mechanism of cisplatin resistance. RESULTS miR-34a expression was downregulated in gastric cancer clinical samples and cisplatin-resistant cells, while Netrin1 was upregulated, and was related to overall survival (OS). Upregulation of miR-34a can significantly reduce the IC50 value of cisplatin(0.65 vs 1.6 ng/mL) and Multidrug Resistance 1 (MDR-1) protein level, inhibit the proliferation activity, reduce the expression levels of proliferating cell nuclear antigen (PCNA) and ki-67 protein, and induce the increase of apoptosis rate and the enhancement of cycle arrest. Upregulation of miR-34a can also significantly reduce the expression level of Matrix metalloproteinase 9 (MMP9) protein, promote the expression of E-cadherin protein, reduce the wound healing rate and invasion number to inhibit migration and invasion ability in drug-resistant gastric cancer cells. Moreover, overexpression of Netrin1 on the basis of upregulation of miR-34a can weaken the above changes caused by upregulation of miR-34a. In addition, upregulation of miR-34a can significantly inhibit the Mitogen-activated protein kinase kinase (MEK) / Extracellular regulated protein kinases (ERK) pathway, while overexpression of Netrin1 can activate the MEK/ERK pathway, and inhibition of MEK/ERK pathway can effectively counteract the protein expression of Netrin1, and reverse changes in the expression of cisplatin IC50 and MDR-1 proteins caused by co-upregulation of miR-34a/Netrin1 in HGC27/DDP, as well as changes in proliferation, apoptosis, migration and invasion. In addition, upregulation of miR-34a can significantly inhibit the MEK/ERK pathway, while overexpression of Netrin1 can activate the MEK/ERK pathway. If the MEK/ERK pathway was inhibited, it can effectively counteract the protein overexpression of Netrin1, and reverse the changes in the expression of cisplatin IC50 and MDR-1 proteins in HGC27/DDP induced by co-upregulation of miR-34a / Netrin1, as well as changes in proliferation, apoptosis, migration and invasion. CONCLUSION miR-34a targets and negatively regulates Netrin1 to mediate the proliferation, apoptosis, apoptosis, migration, and invasion of drug-resistant gastric cancer cells via the MEK/ERK pathway, and change the chemosensitivity in GC cells. miR-34a/Netrin1/MEK/ERK axis may serve as a novel therapeutic target for chemoresistance in GC, it is of great significance for overcoming drug resistance and developing new therapeutic strategies for GC.
Collapse
Affiliation(s)
- Haiping Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 348 Dexiang Street, Xiangyang District, Jiamusi City, 154000, Heilongjiang Province, People's Republic of China
| | - Limin Wang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 348 Dexiang Street, Xiangyang District, Jiamusi City, 154000, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
2
|
Jiang YK, Li W, Qiu YY, Yue M. Advances in targeted therapy for human epidermal growth factor receptor 2 positive in advanced gastric cancer. World J Gastrointest Oncol 2024; 16:2318-2334. [PMID: 38994153 PMCID: PMC11236256 DOI: 10.4251/wjgo.v16.i6.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Emerging therapeutic methods represented by targeted therapy are effective supplements to traditional first-line chemoradiotherapy resistance. Human epidermal growth factor receptor 2 (HER2) is one of the most important targets in targeted therapy for gastric cancer. Trastuzumab combined with chemotherapy has been used as the first-line treatment for advanced gastric cancer. The safety and efficacy of pertuzumab and margetuximab in the treatment of gastric cancer have been verified. However, monoclonal antibodies, due to their large molecular weight, inability to penetrate the blood-brain barrier, and drug resistance, lead to decreased therapeutic efficacy, so it is necessary to explore the efficacy of other HER2-targeting therapies in gastric cancer. Small-molecule tyrosine kinase inhibitors, such as lapatinib and pyrrotinib, have the advantages of small molecular weight, penetrating the blood-brain barrier and high oral bioavailability, and are expected to become the drugs of choice for perioperative treatment and neoadjuvant therapy of gastric cancer after validation by large-scale clinical trials in the future. Antibo-drug conjugate, such as T-DM1 and T-DXd, can overcome the resistance of monoclonal antibodies despite their different mechanisms of tumor killing, and are a supplement for the treatment of patients who have failed the treatment of monoclonal antibodies such as trastuzumab. Therefore, after more detailed stratification of gastric cancer patients, various gastric cancer drugs targeting HER2 are expected to play a more significant role.
Collapse
Affiliation(s)
- Ya-Kun Jiang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Wei Li
- Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Meng Yue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
3
|
Li J, Xia C, Song Y, Zhang L, Shang W, Xu N, Lu Q, Liang D. Disulfidptosis-related lncRNA signature reveals immune microenvironment and novel molecular subtyping of stomach adenocarcinoma. Heliyon 2024; 10:e29005. [PMID: 38628708 PMCID: PMC11019176 DOI: 10.1016/j.heliyon.2024.e29005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The main challenge in treating stomach adenocarcinoma (STAD) is chemotherapy resistance, which is characterized by changes in the immune microenvironment. Disulfidptosis, a novel form of programmed cell death, is involved in STAD but its mechanism is not fully understood. Long non-coding RNAs (LncRNAs) may play a role in regulating disulfidptosis and influencing the immune microenvironment and chemotherapy resistance in STAD. This study aims to establish disulfidptosis-related lncRNA (DRL) features and explore their significance in the immune microenvironment and chemotherapy resistance in STAD patients. By analyzing RNA sequencing and clinical data from STAD patients and extracting disulfidptosis-related genes, we identified DRLs through co-expression, single-factor and multi-factor Cox regression, and Lasso regression analyses. We also investigated differences in the immune microenvironment, immune function, immune checkpoint gene expression, and chemotherapy resistance between different risk groups using various algorithms. A prognostic risk model consisting of 2 DRLs was constructed, with a strong predictive value for patient survival, outperforming other clinical-pathological factors in predicting 3-year and 5-year survival. Immune-related analysis revealed a strong positive correlation between T cell CD4+ cells and risk score across all algorithms, and higher expression of immune checkpoint genes in the high-risk group. In addition, high-risk patients showed better sensitivity to Erlotinib, Oxaliplatin, and Gefitinib. Furthermore, three novel molecular subtypes of STAD were identified based on the 2-DRLs features, with evaluation of the immune microenvironment and chemotherapy drug sensitivity for each subgroup, which holds significant implications for achieving precise treatment in STAD. Overall, our 2-DRLs prognostic model demonstrates high predictive value for patient survival in STAD, potentially providing new targets for individualized immune and chemical therapy.
Collapse
Affiliation(s)
- Jinze Li
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
- Department of Gastrointestinal surgery, The Third People's Hospital of Hubei Province, Wuhan, 430071, PR China
| | - Chuqi Xia
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| | - Yilin Song
- Shantou university medical college, 22 xinling Road, Shantou, Guangdong Province, 515041, PR China
| | - Lu Zhang
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| | - Wei Shang
- Shiyan People's Hospital of Hubei Medical College, Shi Yan, Hubei Province, 442000, PR China
| | - Ning Xu
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| | - Qiyu Lu
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| | - Daoming Liang
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| |
Collapse
|
4
|
Liu J, Yuan Q, Guo H, Guan H, Hong Z, Shang D. Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives. Biomed Pharmacother 2024; 173:116310. [PMID: 38394851 DOI: 10.1016/j.biopha.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa. The latest global cancer statistics show that GC ranks fifth in incidence and fourth in mortality among all cancers, posing a serious threat to public health. While early-stage GC is primarily treated through surgery, chemotherapy is the frontline option for advanced cases. Currently, commonly used chemotherapy regimens include FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) and XELOX (oxaliplatin + capecitabine). However, with the widespread use of chemotherapy, an increasing number of cases of drug resistance have emerged. This article primarily explores the potential mechanisms of chemotherapy resistance in GC patients from five perspectives: cell death, tumor microenvironment, non-coding RNA, epigenetics, and epithelial-mesenchymal transition. Additionally, it proposes feasibility strategies to overcome drug resistance from four angles: cancer stem cells, tumor microenvironment, natural products, and combined therapy. The hope is that this article will provide guidance for researchers in the field and bring hope to more GC patients.
Collapse
Affiliation(s)
- Jiahua Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hewen Guan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhijun Hong
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Dong Shang
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Li R, Wang J, Xie Z, Tian X, Hou J, Wang D, Qian H, Shen H, Xu W. CircUSP1 as a novel marker promotes gastric cancer progression via stabilizing HuR to upregulate USP1 and Vimentin. Oncogene 2024; 43:1033-1049. [PMID: 38366146 PMCID: PMC10978489 DOI: 10.1038/s41388-024-02968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Circular RNAs (circRNAs) play a crucial role in regulating various tumors. However, their biological functions and mechanisms in gastric cancer (GC) have not been well understood. Here, we discovered a stable cytoplasmic circRNA named circUSP1 (hsa_circ_000613) in GC. CircUSP1 upregulation in GC tissues was correlated with tumor size and differentiation. We observed that circUSP1 promoted GC growth and metastasis. Mechanistically, circUSP1 mainly interacted with the RRM1 domain of an RNA-binding protein (RBP) called HuR, stabilizing its protein level by inhibiting β-TrCP-mediated ubiquitination degradation. The oncogenic properties of HuR mediated promotive effects of circUSP1 in GC progression. Moreover, we identified USP1 and Vimentin as downstream targets of HuR in post-transcriptional regulation, mediating the effects of circUSP1. The parent gene USP1 also enhanced the viability and mobility of GC cells. Additionally, tissue-derived circUSP1 could serve as an independent prognostic factor for GC, while plasma-derived circUSP1 showed promise as a diagnostic biomarker, outperforming conventional markers including serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA19-9). Our study highlights that circUSP1 promotes GC progression by binding to and stabilizing oncogenic HuR, thereby facilitating the upregulation of USP1 and Vimentin at the post-transcriptional level. These findings suggest that circUSP1 could be a potential therapeutic target and a diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Rong Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Junyi Wang
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, China
| | - Zhenfan Xie
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Xinyu Tian
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Jie Hou
- Department of Clinical Laboratory, People's Hospital of Yangzhong City, 235 Yangzi Middle Road, Zhenjiang, Jiangsu, 212200, China
| | - Dongli Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
6
|
Yu S, Chen C, Chen M, Liang J, Jiang K, Lou B, Lu J, Zhu X, Zhou D. MAGOH promotes gastric cancer progression via hnRNPA1 expression inhibition-mediated RONΔ160/PI3K/AKT signaling pathway activation. J Exp Clin Cancer Res 2024; 43:32. [PMID: 38268030 PMCID: PMC10809607 DOI: 10.1186/s13046-024-02946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is associated with high mortality and heterogeneity and poses a great threat to humans. Gene therapies for the receptor tyrosine kinase RON and its spliceosomes are attracting increasing amounts of attention due to their unique characteristics. However, little is known about the mechanism involved in the formation of the RON mRNA alternative spliceosome RONΔ160. METHODS Fourteen human GC tissue samples and six normal gastric tissue samples were subjected to label-free relative quantitative proteomics analysis, and MAGOH was identified as a candidate protein for subsequent studies. The expression of MAGOH in clinical specimens was verified by quantitative real-time PCR and western blotting. We then determined the biological function of MAGOH in GC through in vitro and in vivo experiments. RNA pulldown, RNA sequencing and RNA immunoprecipitation (RIP) were subsequently conducted to uncover the underlying mechanism by which MAGOH regulated the formation of RONΔ160. RESULTS Proteomic analysis revealed that MAGOH, which is located at key nodes and participates in RNA processing and mRNA splicing, was upregulated in GC tissue and GC cell lines and was associated with poor prognosis. Functional analysis showed that MAGOH promoted the proliferation, migration and invasion of GC cells in vitro and in vivo. Mechanistically, MAGOH inhibited the expression of hnRNPA1 and reduced the binding of hnRNPA1 to RON mRNA, thereby promoting the formation of RONΔ160 to activate the PI3K/AKT signaling pathway and consequently facilitating GC progression. CONCLUSIONS Our study revealed that MAGOH could promote the formation of RONΔ160 and activate the PI3K/AKT signaling pathway through the inhibition of hnRNPA1 expression. We elucidate a novel mechanism and potential therapeutic targets for the growth and metastasis of GC based on the MAGOH-RONΔ160 axis, and these findings have important guiding significance and clinical value for the future development of effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kecheng Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohua Zhu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Meo C, de Nigris F. Clinical Potential of YY1-Hypoxia Axis for Vascular Normalization and to Improve Immunotherapy. Cancers (Basel) 2024; 16:491. [PMID: 38339244 PMCID: PMC10854702 DOI: 10.3390/cancers16030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal vasculature in solid tumors causes poor blood perfusion, hypoxia, low pH, and immune evasion. It also shapes the tumor microenvironment and affects response to immunotherapy. The combination of antiangiogenic therapy and immunotherapy has emerged as a promising approach to normalize vasculature and unlock the full potential of immunotherapy. However, the unpredictable and redundant mechanisms of vascularization and immune suppression triggered by tumor-specific hypoxic microenvironments indicate that such combination therapies need to be further evaluated to improve patient outcomes. Here, we provide an overview of the interplay between tumor angiogenesis and immune modulation and review the function and mechanism of the YY1-HIF axis that regulates the vascular and immune tumor microenvironment. Furthermore, we discuss the potential of targeting YY1 and other strategies, such as nanocarrier delivery systems and engineered immune cells (CAR-T), to normalize tumor vascularization and re-establish an immune-permissive microenvironment to enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
8
|
Gan LH, Yao L, Yan JH, Huang YQ, Zheng L, Liu P, Lei L. Differential Expression of KIF18B in Gastric Cancer and Its Role in Chemotherapy Sensitivity. Crit Rev Eukaryot Gene Expr 2024; 34:37-48. [PMID: 38305287 DOI: 10.1615/critreveukaryotgeneexpr.2023049523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Gastric cancer (GC) is a main cause of cancer death in the world, and improving the chemotherapy sensitivity can enhance the chemotherapy efficacy of GC. The study objective is to explore the differential KIF18B expression in GC and its effect on GC chemotherapy sensitivity. The KIF18B expression in GC tissues and adjacent normal tissues was analyzed by real-time quantitative polymerase chain reaction. The relationship between differential KIF18B expression and different clinicopathological features was detected. It was found that KIF18B was highly expressed in GC tissues, and KIF18B expression was differential in patients with different clinicopathological features. The upregulation of KIF18B has a positive correlation with the poor therapeutic effect and high KIF18 was associated with lower 3-year overall survival and disease-free survival. The KIF18B-downregulated NCI-N87 cells were constructed and tested by cell counting kit-8 assay and colony formation. Cell migration and invasion were detected by Transwell assay. The xenograft tumor model was established to observe the effect of KIF18B on the efficacy of chemotherapy. The upregulation of KIF18B reduced the chemotherapy sensitivity of GC cells and enhanced their proliferation, migration, and invasion. Silencing KIF18B inhibited tumor growth and promoted chemotherapy efficacy in vivo. In summary, KIF18B inhibitor may have a potential function for improving the efficacy of chemotherapy in GC.
Collapse
Affiliation(s)
- Li-Hong Gan
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ling Yao
- The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University)
| | - Jin-Hua Yan
- Department of Hematology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ya-Qin Huang
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Li Zheng
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Peng Liu
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ling Lei
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| |
Collapse
|
9
|
Wang T, Chen S, Wang Z, Li S, Fei X, Wang T, Zhang M. KIRREL promotes the proliferation of gastric cancer cells and angiogenesis through the PI3K/AKT/mTOR pathway. J Cell Mol Med 2024; 28:e18020. [PMID: 37909722 PMCID: PMC10805501 DOI: 10.1111/jcmm.18020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Anti-angiogenesis is a promising therapeutic strategy for delaying tumour progression that offers, new hope for gastric cancer targeted therapy. The purpose of this study was to investigate the precise mechanism by which Kin of IRRE-like protein 1 (KIRREL) contributes to the development of gastric cancer, particularly in terms of tumour angiogenesis. Differential expression of KIRREL in tissues and cells was detected using quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. A bioinformatics analysis was conducted to screen for the function and pathway enrichment of KIRREL in gastric cancer. Lentivirus-induced KIRREL silencing in SNU-5 cells and lentivirus-induced KIRREL overexpression in AGS cells were used to study the effect of KIRREL on the proliferation, cell cycle and angiogenesis of gastric cancer cells. Moreover, the expressions of PI3K, P-PI3K, AKT, P-AKT, mTOR, P-mTOR, HIF-1α and VEGF were also detected. Gastric cancer tissues and cells had high levels of KIRREL expression, which is associated with the proliferation, cell cycle and angiogenesis of gastric cancer cells. After silencing and overexpressing KIRREL in SNU-5 and AGS cells, respectively, the proliferation and angiogenesis of SNU-5 cells were inhibited, while the proliferation and angiogenesis of AGS cells were promoted. According to a bioinformatics analysis of the KIRREL gene, angiogenesis regulation and the PI3K/AKT pathway were highly connected. The PI3K/AKT/mTOR pathway was repressed and stimulated by KIRREL silencing and overexpression, respectively. IGF-1, an AKT agonist, and LY294002, an inhibitor, reversed the effects of KIRREL silencing and overexpression on the PI3K/AKT/mTOR pathway and on gastric cancer cell proliferation and angiogenesis. KIRREL may mediate the proliferation and angiogenesis of gastric cancer cells through the PI3K/AKT/mTOR signalling pathway. These findings could help in the further development of potential anti-angiogenesis targets.
Collapse
Affiliation(s)
- Tao Wang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Shuo Chen
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ziliang Wang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Siyu Li
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xichang Fei
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Tong Wang
- Department of General PracticeThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Mingjun Zhang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
10
|
Wang L, Zhang Z. Diabetes Mellitus and Gastric Cancer: Correlation and Potential Mechanisms. J Diabetes Res 2023; 2023:4388437. [PMID: 38020199 PMCID: PMC10653978 DOI: 10.1155/2023/4388437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
This review summarizes the correlation between diabetes mellitus (DM) and gastric cancer (GC) from the perspectives of epidemiology, drug use, and potential mechanisms. The association between DM and GC is inconclusive, and the positive direction of the association reported in most published meta-analyses suggests that DM may be an independent risk factor for GC. Many clinical investigations have shown that people with DM and GC who undergo gastrectomy may have better glycemic control. The potential link between DM and GC may involve the interaction of multiple common risk factors, such as obesity, hyperglycemia and hyperinsulinemia, H. pylori infection, and the use of metformin. Although in vitro and in vivo data support that H. pylori infection status and metformin can influence GC risk in DM patients, there are conflicting results. Patient survival outcomes are influenced by multiple factors, so further research is needed to identify the patients who may benefit.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
- Zhejiang Provincial Critical Research Center for Emergency Medicine Clinic, Hangzhou 310052, China
- Key Laboratory of Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310052, China
| | - Zhe Zhang
- Department of Emergency Medicine, The First People's Hospital of Linping District, 311100, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Yang X, Zhu Z, Liang T, Lei X. Comprehensive analysis of anoikis-related genes in prognosis and immune infiltration of gastric cancer based on bulk and single-cell RNA sequencing data. J Cancer Res Clin Oncol 2023; 149:13163-13173. [PMID: 37474682 DOI: 10.1007/s00432-023-05157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Accumulating evidence suggests that anoikis resistance is a key process in cancer cell metastasis, making it an attractive therapeutic target. Therefore, anoikis may become a new treatment for gastric cancer. METHODS We used the univariate Cox regression method to screen gastric cancer-related anoikis genes, and a prognostic risk model was established. We analyzed differences between high- and low-risk groups in terms of tumor infiltrating immune cells, gene mutation signatures, and treatment of gastric cancer. Analysis of model associated genes at single-cell resolution was performed. RESULTS We filtered to 12 anoikis-related genes and built a prognostic risk model using seven of them, which performed well in multiple datasets. Patients with CCDC178 mutations had a worse prognosis. We also found that patients at low risk were more likely to benefit from chemotherapy and immunotherapy. ERBB2 was found to be highly expressed in epithelial cells and fibroblasts. Our analysis also indicated that gastric cancer samples with high infiltration of iCAFs had a worse prognosis. CONCLUSION Seven anoikis-related genes were selected to establish a risk model. The model can be used to predict the prognosis of patients and guide the drug treatment, which provides a new idea for the evaluation and treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Xiaobo Yang
- Center for General Practice Medicine, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, Zhejiang, China, 310014
| | - Zheng Zhu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang road 158, Hangzhou, Zhejiang, China, 310014
| | - Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang road 158, Hangzhou, Zhejiang, China, 310014.
| | - Xiaoju Lei
- Center for General Practice Medicine, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, Zhejiang, China, 310014.
| |
Collapse
|
12
|
Kazemi A, Goodarzi M, Daneshipour K, Sarabadani H, Shahpar Z, Hajiagha BS, Kheradjoo H, Mohammadzadehsaliani S. Unrevealing the vital role of ncRNAs in Gastric Cancer chemoresistance. Pathol Res Pract 2023; 250:154761. [PMID: 37689003 DOI: 10.1016/j.prp.2023.154761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/11/2023]
Abstract
The high incidence of gastric cancer in many nations and poor overall survival rates has remained a serious global health concern. Chemoresistance in gastric cancer is a significant issue that hinders the efficacy of available treatment options. In gastric cancer, non-coding RNAs like microRNAs, long non-coding RNAs, and circular RNAs have become effective regulators of chemoresistance. These non-coding RNAs can influence several mechanisms, including drug efflux transporters, drug metabolism, and detoxification, cancer stem cells and the epithelial-mesenchymal transition, autophagy and apoptosis, and the tumor microenvironment. In this article review, we summarize the key roles non-coding RNAs play in the chemoresistance of gastric cancer and consider how they might be used in clinical settings as markers for diagnosis and prognosis, as well as potential targets and treatment plans. We also emphasize the need for additional study and collaborations in this area and highlight the difficulties and opportunities in non-coding RNA research for gastric cancer chemoresistance. This review offers crucial insights into the intricate relationship between non-coding RNAs and chemoresistance in gastric cancer, with implications for precision oncology and personalized medicine.
Collapse
Affiliation(s)
- Aida Kazemi
- Department of Biomedical Science, Monash University, Melbourne, Australia
| | - Masomeh Goodarzi
- Department of Biology, Zabol University of Medical Sciences, Zabol, Iran
| | - Kosar Daneshipour
- Department of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Hoda Sarabadani
- Rajiv Gandhi Institute of Information Technology & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Zahra Shahpar
- M.Sc, Technical Department, İstanbul University, İstanbul, Türkiye
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
13
|
Zheng L, Gan LH, Yao L, Li B, Huang YQ, Zhang FB, Kuang MQ, Fang N. Serum basic fibroblast growth factor and interleukin-1β predict the effect of first-line chemotherapy in patients with advanced gastric cancer. World J Clin Cases 2023; 11:6083-6090. [PMID: 37731570 PMCID: PMC10507556 DOI: 10.12998/wjcc.v11.i26.6083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The incidence and mortality rates of gastric cancer in China are the second-highest in the world, and most patients with gastric cancer lose their chance of surgery by the time of their diagnosis. AIM To explore the predictive potential of serum basic fibroblast growth factor and interleukin-1β levels for the effect of first-line chemotherapy in patients with advanced gastric cancer. METHODS From the gastric cancer patients admitted to our hospital from May 2019 to April 2023, 84 patients were selected and randomly and equally assigned to the experimental or control group. The FLOT group received the FLOT chemotherapy regimen (composed of oxaliplatin + calcium folinate + fluorouracil + paclitaxel), while the SOX group received the SOX chemotherapy regimen (composed of oxaliplatin + tiga capsules). The clinical efficacy, tumor marker levels, adverse reactions, and survival rates of the two groups were compared 7 days after the end of the relevant treatments. RESULTS The target effective rate of the FLOT group was 54.76%, which was much higher than that of the SOX group (33.33%; P < 0.05). After treatment, both the groups demonstrated lower levels of cancer antigen (CEA), carbohydrate antigen 199 (CA199), and peptide tissue antigen (TPS). For several patients before treatment (P < 0.05). Third and fourth grades. In terms of adverse reactions, the level of white blood cells in both the groups was lower. Moreover, the incidence of hand-foot skin reactions in these two study groups was lower (P < 0.05), while those of peripheral neuritis, vomiting, diarrhea, and abnormal liver function were significant (P < 0.05). No statistically significant difference was noted between the two groups (P < 0.05). The 1-year survival rate was higher in the FLOT group (P < 0.05). CONCLUSION The FLOT regimen was effective in reducing the serum CEA, CA199, and TPS levels as well as in improving the 1-year survival rate of patients with good tolerability, making it worthy of clinical promotion and application.
Collapse
Affiliation(s)
- Li Zheng
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Li-Hong Gan
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Ling Yao
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Bin Li
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Ya-Qin Huang
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Fu-Bao Zhang
- Department of Stomatology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Meng-Qi Kuang
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Nian Fang
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| |
Collapse
|
14
|
Wang XJ, Liu Y, Ke B, Zhang L, Liang H. RNA-binding protein CPSF6 regulates IBSP to affect pyroptosis in gastric cancer. World J Gastrointest Oncol 2023; 15:1531-1543. [PMID: 37746647 PMCID: PMC10514719 DOI: 10.4251/wjgo.v15.i9.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Extensive evidence has illustrated the promotive role of integrin binding sialoprotein (IBSP) in the progression of multiple cancers. However, little is known about the functions of IBSP in gastric cancer (GC) progression. AIM To investigate the mechanism underlying the regulatory effects of IBSP in GC progression, and the relationship between IBSP and cleavage and polyadenylation factor 6 (CPSF6) in this process. METHODS The mRNA and protein expression of relevant genes were assessed through real-time quantitative polymerase chain reaction and Western blot, respectively. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell invasion and migration were evaluated by Transwell assay. Pyroptosis was measured by flow cytometry. The binding between CPSF6 and IBSP was confirmed by luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS IBSP exhibited higher expression in GC tissues and cell lines than in normal tissues and cell lines. IBSP knockdown suppressed cell proliferation, migration, and invasion but facilitated pyroptosis. In the exploration of the regulatory mechanism of IBSP, potential RNA binding proteins for IBSP were screened with catRAPID omics v2.0. The RNA-binding protein CPSF6 was selected due to its higher expression in stomach adenocarcinoma. Luciferase reporter and RIP assays revealed that CPSF6 binds to the 3'-untranslated region of IBSP and regulates its expression. Knockdown of CPSF6 inhibited cell proliferation, migration, and invasion but boosted pyroptosis. Through rescue assays, it was uncovered that the retarded GC progression mediated by CPSF6 knockdown was reversed by IBSP overexpression. CONCLUSION Our study highlighted the vital role of the CPSF6/IBSP axis in GC, suggesting that IBSP might be an effective bio-target for GC treatment.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Yong Liu
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Bin Ke
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Li Zhang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Han Liang
- Department of Gastric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| |
Collapse
|
15
|
Qiu Y, Huang S, Zhu M. The molecular targets of Kangai injection in gastric cancer by in silico network pharmacology approach and experiment confirmation. J Appl Biomed 2023; 21:150-159. [PMID: 37747314 DOI: 10.32725/jab.2023.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
INTRODUCTION This study aimed to identify the phytochemical constituents that could target gastric cancer in Kangai injection using a network pharmacology-based approach. METHODS Protein-protein interactions (PPI), Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted utilizing String and OmicShare tools. In the in vitro experiments, the related mRNA and protein levels were assessed via real-time quantitative polymerase chain reaction and Western blotting, respectively. Cell proliferation was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. RESULTS Kangai injection comprises several compounds, which target multiple substrates and pathways related to gastric cancer. The PPI and Gene Ontology analyses revealed that tumor necrosis factor (TNF) was a hub gene. KEGG pathway enrichment analysis indicated that the the TNF pathway was significantly enriched. Kangai injection decreased the mRNA levels of TNFR2, TRAF2, PI3K, AKT, and IκBα and inhibited the phosphorylation of PI3K, AKT, and IκBα phosphorylations. Kangai injection inhibited cell proliferation, while TNFR2 overexpression or treatment with the PI3K activator 740 Y-P partially restored it. CONCLUSION Kangai injection operates through multiple targets and pathways in gastric cancer, with the TNFR2/PI3K/AKT/NF-κB pathway playing a crucial role in its mechanism against gastric cancer.
Collapse
Affiliation(s)
- Yongjun Qiu
- ShangRao People's Hospital, Department of Pharmacy, ShangRao, Jiangxi 334000, China
| | - Sujun Huang
- ShangRao People's Hospital, Department of Pharmacy, ShangRao, Jiangxi 334000, China
| | - Minfang Zhu
- ShangRao People's Hospital, Department of Pharmacy, ShangRao, Jiangxi 334000, China
| |
Collapse
|
16
|
Zhang KX, Ding C, Liu QH, Zhu DM. Knockdown of LINC01087 inhibits gastric cancer malignant behavior by regulating the miR-135a-5p/CAAP1 axis. Funct Integr Genomics 2023; 23:248. [PMID: 37474836 DOI: 10.1007/s10142-023-01157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Long noncoding RNAs play important roles in the occurrence and development of many malignant cancers. This study focuses on the effects of LINC01087 on gastric cancer and its underlying mechanism. In the present study, LINC01087 and CAAP1 were found to be upregulated, and miR-135a-5p was diminished in gastric cancer specimens and cells. Inhibition of LINC01087 resulted in cell proliferation inhibition and induced cell apoptosis through the intrinsic apoptosis signaling pathway, as evidenced by the activation of caspase-3 and caspase-9. An investigation of the signaling pathway revealed that the effects on proliferation and apoptosis following LINC01087 knockdown were mediated by suppression of CAAP1. Furthermore, application of a miR-135a-5p inhibitor or overexpression of CAAP1 could attenuate the apoptotic effect achieved by LINC01087 inhibition, confirming the involvement of miR-135a-5p/CAAP1 signaling in the occurrence of gastric cancer. In conclusion, the LINC01087/miR-135a-5p/CAAP1 axis modulates gastric cancer tumorigenesis and pathogenesis and presents new insight into gastric cancer targeted therapy.
Collapse
Affiliation(s)
- Kai-Xin Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215600, Jiangsu Province, China
| | - Chuang Ding
- Department of Gastrointestinal Surgery, Suqian Hospital affiliated to Xuzhou Medical University, Suqian, 223800, Jiangsu Province, China
| | - Qiu-Hua Liu
- Department of General Surgery, Zhangjiagang Hospital Affiliated to Soochow University, the First People's Hospital of Zhangjiagang, Zhangjiagang, 215600, Jiangsu Province, China
| | - Dong-Ming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215600, Jiangsu Province, China.
| |
Collapse
|
17
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
18
|
Wang D, Wang QH, Luo T, Jia W, Wang J. Comprehensive bioinformatic analysis of mind bomb 1 gene in stomach adenocarcinoma. World J Gastrointest Oncol 2023; 15:1295-1310. [PMID: 37546549 PMCID: PMC10401463 DOI: 10.4251/wjgo.v15.i7.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The carcinogenesis of stomach adenocarcinoma (STAD) involves many different molecules and multiple pathways, including the NOTCH signaling pathway. As a key factor that functions as a critical link in the NOTCH pathway, mind bomb 1 (MIB1) is upregulated in various tumors and has been reported to promote cell metastasis and invasion. However, studies on the role of MIB1 in STAD are limited. Here, we evaluated the prognostic value of MIB1 in STAD and its association with immune infiltration and copy number variation.
AIM To elucidate the relationship between MIB1 gene and gastric cancer (GC) and provide a new idea for the treatment of GC.
METHODS We identified mutations in the MIB1 gene by searching the cBioPortal database and then analyzed their relationship with the overall survival rate and disease-free survival rate using the Kaplan-Meier method. The Cancer Genome Atlas (TCGA) database provided transcript levels for MIB1 in STADs and normal tissues. As a method of distinguishing the STAD tissues from adjacent normal tissues, a receiver operating characteristic (ROC) curve was generated. Kaplan-Meier plotter was used to determine the effect of MIB1 expression on survival. Based on the LinkedOmics database, we were able to identify the coexpressed genes of the MIB1 gene, the top 50 positively correlated genes, and the top 50 negatively correlated genes. STRING was used to construct protein-protein interaction networks related to the MIB1 gene. An analysis of functional enrichment was carried out using the R package “Cluster Profiler”. The relationships between mRNA expression of MIB1 and immune infiltrates were assessed by Tumor IMmune Estimation Resource (TIMER) and the “GSVA package” in R.
RESULTS According to the cBioPortal database, the MIB1 mutation rate in 287 patients in the TCGA dataset was approximately 6%. Kaplan-Meier survival analysis showed that patients with STAD in the mutated group had a worse prognosis than those in the unmutated group (P = 0.0156). There was a significant upregulation of MIB1 expression in STAD tissues compared to adjacent normal tissues. A high T stage was associated with increased MIB1 mRNA expression. The ROC curve analysis revealed 59.4% sensitivity and 85.6% specificity of MIB1 for differentiating STAD tissues from adjacent normal tissues at a truncation level of 2.248. Kaplan-Meier plotter indicated that patients with higher MIB1 levels had a worse prognosis than those with lower levels (26.4 mo vs 56.2 mo, P = 0.0330). A correlation analysis demonstrated an association between immune infiltrates and MIB1 mRNA expression.
CONCLUSION Upregulation of MIB1 expression is significantly associated with poor survival rate and immune infiltration in gastric adenocarcinoma. MIB1 may be a biomarker for the poor prognosis of STAD patients and a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Di Wang
- Department of Digestive Endoscopy, The General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang 110840, Liaoning Province, China
| | - Qi-Hong Wang
- Department of Digestive Endoscopy, The General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang 110840, Liaoning Province, China
| | - Ting Luo
- Department of Digestive Endoscopy, The General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang 110840, Liaoning Province, China
| | - Wen Jia
- Department of Digestive Endoscopy, The General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jing Wang
- Department of Digestive Endoscopy, The General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
19
|
Xu D, Luo Y, Wang P, Li J, Ma L, Huang J, Zhang H, Yang X, Li L, Zheng Y, Fang G, Yan P. Clinical progress of anti-angiogenic targeted therapy and combination therapy for gastric cancer. Front Oncol 2023; 13:1148131. [PMID: 37384288 PMCID: PMC10295723 DOI: 10.3389/fonc.2023.1148131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The incidence of gastric cancer is increasing year by year. Most gastric cancers are already in the advanced stage with poor prognosis when diagnosed, which means the current treatment is not satisfactory. Angiogenesis is an important link in the occurrence and development of tumors, and there are multiple anti-angiogenesis targeted therapies. To comprehensively evaluate the efficacy and safety of anti-angiogenic targeted drugs alone and in combination against gastric cancer, we systematically searched and sorted out relevant literature. In this review, we summarized the efficacy and safety of Ramucirumab, Bevacizumab, Apatinib, Fruquintinib, Sorafenib, Sunitinib, Pazopanib on gastric cancer when used alone or in combination based on prospective clinical trials reported in the literature, and sorted response biomarkers. We also summarized the challenges faced by anti-angiogenesis therapy for gastric cancer and available solutions. Finally, the characteristics of the current clinical research are summarized and suggestions and prospects are raised. This review will serve as a good reference for the clinical research of anti-angiogenic targeted drugs in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Donghan Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yehao Luo
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiaxin Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Linrui Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jie Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiaoman Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liqi Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yuhong Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Gang Fang
- Guangxi Key Laboratory of Applied Fundamental Research of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
20
|
Zhang Y, Dong P, Yang L. The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment. Front Immunol 2023; 14:1189323. [PMID: 37292204 PMCID: PMC10244756 DOI: 10.3389/fimmu.2023.1189323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) refers to a group of highly malignant and pathogenically complex tumors. Traditional treatment methods include surgery, radiotherapy, and chemotherapy. However, with advancements in genetics, molecular medicine, and nanotherapy, more effective and safer treatments have been developed. Nanotherapy, in particular, has the potential to be an alternative therapeutic option for HNSCC patients, given its advantageous targeting capabilities, low toxicity and modifiability. Recent research has highlighted the important role of the tumor microenvironment (TME) in the development of HNSCC. The TME is composed of various cellular components, such as fibroblasts, vascular endothelial cells, and immune cells, as well as non-cellular agents such as cytokines, chemokines, growth factors, extracellular matrix (ECM), and extracellular vesicles (EVs). These components greatly influence the prognosis and therapeutic efficacy of HNSCC, making the TME a potential target for treatment using nanotherapy. By regulating angiogenesis, immune response, tumor metastasis and other factors, nanotherapy can potentially alleviate HNSCC symptoms. This review aims to summarize and discuss the application of nanotherapy that targets HNSCC's TME. We highlight the therapeutic value of nanotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Pengbo Dong
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
21
|
Peng X, Shi J, Zhao Z, Tong R, Zhang X, Zhong L. Emetine, a small molecule natural product, displays potent anti-gastric cancer activity via regulation of multiple signaling pathways. Cancer Chemother Pharmacol 2023; 91:303-315. [PMID: 36941385 PMCID: PMC10027284 DOI: 10.1007/s00280-023-04521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a life-threatening malignant tumor with high incidence rate. Despite great progress, there are still many GC sufferers that cannot benefit from the existing anti-GC treatments. Therefore, it is still necessary to develop novel medicines against GC. Emetine, a natural small molecule isolated from Psychotria ipecacuanha, has been broadly used for medicinal purposes including cancer treatment. Here, we conducted a comprehensive study on the anti-GC effects of emetine and the related mechanisms of action. METHODS The cell viability was evaluated by MTT and colony formation assay. Cellular proliferation and apoptosis were analyzed by edu incorporation assay and Annexin V-PI staining, respectively. Moreover, wound healing assay and transwell invasion assay were conducted to detect cell migration and invasion after treatment with emetine. To elucidate the molecular mechanism involved in the anti-GC effects of emetine, RNA sequencing and functional enrichment analysis were carried out on MGC803 cells. Then, the western blot analysis was performed to further verify the anti-GC mechanism of emetine. In vivo anti-tumor efficacy of emetine was evaluated in the MGC803 xenograft model. RESULTS MTT and colony formation assay exhibited a strong potency of emetine against GC cell growth, with IC50 values of 0.0497 μM and 0.0244 μM on MGC803 and HGC-27 cells, respectively. Further pharmacodynamic studies revealed that emetine restrained the growth of GC cells mainly via proliferation inhibition and apoptosis induction. Meanwhile, emetine also had the ability to block GC cell migration and invasion. The results of RNA sequencing and western blot showed that emetine acted through regulating multiple signaling pathways, including not only MAPKs and Wnt/β-catenin signaling axes, but also PI3K/AKT and Hippo/YAP signaling cascades that were not found in other tumor types. Notably, the antitumor efficacy of emetine could also be observed in MGC803 xenograft models. CONCLUSION Our data demonstrate that emetine is a promising lead compound and even a potential drug candidate for GC treatment, deserving further structural optimization and development.
Collapse
Affiliation(s)
- Xuerun Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
22
|
Cao Y, Xu P, Shen Y, Wu W, Chen M, Wang F, Zhu Y, Yan F, Gu W, Lin Y. Exosomes and cancer immunotherapy: A review of recent cancer research. Front Oncol 2023; 12:1118101. [PMID: 36727049 PMCID: PMC9885269 DOI: 10.3389/fonc.2022.1118101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
As phospholipid extracellular vesicles (EVs) secreted by various cells, exosomes contain non-coding RNA (ncRNA), mRNA, DNA fragments, lipids, and proteins, which are essential for intercellular communication. Several types of cells can secrete exosomes that contribute to cancer initiation and progression. Cancer cells and the immune microenvironment interact and restrict each other. Tumor-derived exosomes (TDEs) have become essential players in this balance because they carry information from the original cancer cells and express complexes of MHC class I/II epitopes and costimulatory molecules. In the present study, we aimed to identify potential targets for exosome therapy by examining the specific expression and mechanism of exosomes derived from cancer cells. We introduced TDEs and explored their role in different tumor immune microenvironment (TIME), with a particular emphasis on gastrointestinal cancers, before briefly describing the therapeutic strategies of exosomes in cancer immune-related therapy.
Collapse
Affiliation(s)
- Yue Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peng Xu
- Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou, Jiangsu, China
| | - Yangling Shen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wei Wu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Min Chen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Fei Wang
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yuandong Zhu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Yan
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Yan Lin, ; Weiying Gu,
| | - Yan Lin
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Yan Lin, ; Weiying Gu,
| |
Collapse
|
23
|
Zhang Z, Peng L, Yang W, Li B, Hua Y, Luo S. PHF5A facilitates the development and progression of gastric cancer through SKP2-mediated stabilization of FOS. J Transl Med 2023; 21:5. [PMID: 36609277 PMCID: PMC9817416 DOI: 10.1186/s12967-022-03821-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common cancer and the third most common cause of cancer death worldwide. Plant homeodomain (PHD)-finger domain protein PHF5A has been demonstrated to play a promoting role in a variety of cancers. This study aimed to clarify the role of PHF5A in the progression of GC and its potential mechanism of action. METHODS Immunohistochemical staining experiments were performed based on tissues from clinical GC patients to reveal PHF5A expression. A series of functional experiments in vitro and in vivo were used to clarify the role of PHF5A in GC. RESULTS Clinically, PHF5A was abundantly expressed in GC and existed clinical value indicating poor prognosis. In addition, GC cells with knockdown of PHF5A expression showed slowed proliferation, enhanced sensitivity to apoptosis and inhibition of migration. Mechanically, knockdown of PHF5A led to decreased protein stability of FOS, which was mediated ubiquitination of E3 ubiquitin ligase S-phase kinase-associated protein 2 (SKP2). Moreover, downregulation of FOS attenuated the promotion of PHF5A overexpression on GC cells. Consistently, Pladienolide B (PHF5A inhibitor) treatment reversed the induction of PHF5A overexpression on the malignant phenotypes and tumor formation of GC cells. CONCLUSION Knockdown of PHF5A inhibited the progression of GC through SKP2-mediated ubiquitination of FOS, which may be a promising candidate target with potential therapeutic value.
Collapse
Affiliation(s)
- Zhandong Zhang
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Liangqun Peng
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Wei Yang
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Baodong Li
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Yawei Hua
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| | - Suxia Luo
- grid.414008.90000 0004 1799 4638Department of General Surgery, Henan Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan China
| |
Collapse
|
24
|
Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023; 24:ijms24021053. [PMID: 36674567 PMCID: PMC9866533 DOI: 10.3390/ijms24021053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Camptothecin (CPT) has demonstrated antitumor activity in lung, ovarian, breast, pancreas, and stomach cancers. However, this drug, like many other potent anticancer agents, is extremely water-insoluble. Furthermore, pharmacology studies have revealed that prolonged schedules must be administered continuously. For these reasons, several of its water-soluble analogues, prodrugs, and macromolecular conjugates have been synthesized, and various formulation approaches have been investigated. Biodegradable polyesters have gained popularity in cancer treatment in recent years. A number of biodegradable polymeric drug delivery systems (DDSs), designed for localized and systemic administration of therapeutic agents, as well as tumor-targeting macromolecules, have entered clinical trials, demonstrating the importance of biodegradable polyesters in cancer therapy. Biodegradable polyester-based DDSs have the potential to deliver the payload to the target while also increasing drug availability at intended site. The systemic toxicity and serious side-effects associated with conventional cancer therapies can be significantly reduced with targeted polymeric systems. This review elaborates on the use of biodegradable polyesters in the delivery of CPT and its analogues. The design of various DDSs based on biodegradable polyesters has been described, with the drug either adsorbed on the polymer's surface or encapsulated within its macrostructure, as well as those in which a hydrolyzed chemical bond is formed between the active substance and the polymer chain. The data related to the type of DDSs, the kind of linkage, and the details of in vitro and in vivo studies are included.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| | - Ewa Oledzka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-55
| |
Collapse
|
25
|
Xue S, Zheng T, Yan J, Ma J, Lin C, Dong S, Wei C, Li T, Zhang X, Li G. Identification of a 3-Gene Model as Prognostic Biomarker in Patients With Gastric Cancer. Front Oncol 2022; 12:930586. [PMID: 35912206 PMCID: PMC9329618 DOI: 10.3389/fonc.2022.930586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAlthough the incidence of gastric cancer (GC) is decreasing, GC remains one of the leading cancers in the world. Surgical resection, radiotherapy, chemotherapy, and neoadjuvant therapy have advanced, but patients still face the risk of recurrence and poor prognosis. This study provides new insights for assessment of prognosis and postoperative recurrence of GC patients.MethodsWe collected paired cancer and adjacent tissues of 17 patients with early primary GC for bulk transcriptome sequencing. By comparing the transcriptome information of cancer and adjacent cancer, 321 differentially expressed genes (DEGs) were identified. These DEGs were further screened and analyzed with the GC cohort of TCGA to establish a 3-gene prognostic model (PLCL1, PLOD2 and ABCA6). At the same time, the predictive ability of this risk model is validated in multiple public data sets. Besides, the differences in immune cells proportion between the high- and low-risk groups were analyzed by the CIBERSORT algorithm with the Leukocyte signature matrix (LM22) gene signature to reveal the role of the immune microenvironment in the occurrence and development of GC.ResultsThe model could divide GC samples from TCGA cohorts into two groups with significant differences in overall and disease-free survival. The excellent predictive ability of this model was also validated in multiple other public data sets. The proportion of these immune cells such as resting mast cells, T cells CD4+ memory activated and Macrophages M2 are significantly different between high and low risk group.ConclusionThese three genes used to build the models were validated as biomarkers for predicting tumor recurrence and survival. They may have potential significance for the treatment and diagnosis of patients in the future, and may also promote the development of targeted drugs.
Collapse
Affiliation(s)
- Siming Xue
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Beijing Genomics Institute (BGI)-Henan, BGI-Shenzhen, Xinxiang, China
| | - Tianjiao Zheng
- Beijing Genomics Institute (BGl) College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Juan Yan
- Beijing Genomics Institute (BGl) College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinmin Ma
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Cong Lin
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Shichen Dong
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Beijing Genomics Institute (BGI)-Henan, BGI-Shenzhen, Xinxiang, China
| | - Chen Wei
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Beijing Genomics Institute (BGI)-Henan, BGI-Shenzhen, Xinxiang, China
| | - Tong Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Beijing Genomics Institute (BGI)-Henan, BGI-Shenzhen, Xinxiang, China
| | - Xiaoyin Zhang
- Department of Gastroenterology, National Clinical Research Center of Infectious Disease, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Guibo Li, ; Xiaoyin Zhang,
| | - Guibo Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Beijing Genomics Institute (BGI)-Henan, BGI-Shenzhen, Xinxiang, China
- *Correspondence: Guibo Li, ; Xiaoyin Zhang,
| |
Collapse
|
26
|
Gu R, Xia Y, Li P, Zou D, Lu K, Ren L, Zhang H, Sun Z. Ferroptosis and its Role in Gastric Cancer. Front Cell Dev Biol 2022; 10:860344. [PMID: 35846356 PMCID: PMC9280052 DOI: 10.3389/fcell.2022.860344] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. Currently, surgery is the treatment of choice for GC. However, the associated expenses and post-surgical pain impose a huge burden on these patients. Furthermore, disease recurrence is also very common in GC patients, thus necessitating the discovery and development of other potential treatment options. A growing body of knowledge about ferroptosis in different cancer types provides a new perspective in cancer therapeutics. Ferroptosis is an iron-dependent form of cell death. It is characterized by intracellular lipid peroxide accumulation and redox imbalance. In this review, we summarized the current findings of ferroptosis regulation in GC. We also tackled on the action of different potential drugs and genes in inducing ferroptosis for treating GC and solving drug resistance. Furthermore, we also explored the relationship between ferroptosis and the tumor microenvironment in GC. Finally, we discussed areas for future studies on the role of ferroptosis in GC to accelerate the clinical utility of ferroptosis induction as a treatment strategy for GC.
Collapse
Affiliation(s)
- Renjun Gu
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Defang Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lang Ren
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongru Zhang
- School of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Zhiguang Sun,
| | - Zhiguang Sun
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Zhiguang Sun,
| |
Collapse
|
27
|
Qiao D, Xing J, Duan Y, Wang S, Yao G, Zhang S, Jin J, Lin Z, Chen L, Piao Y. The molecular mechanism of baicalein repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154046. [PMID: 35306368 DOI: 10.1016/j.phymed.2022.154046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Baicalein (BAI) has a significant anti-cancerous function in the treatment of gastric cancer (GC). Focal adhesion kinase (FAK) is a key regulatory molecule in integrin and growth factor receptor mediated signaling. MicroRNA-7 (miR-7), has been considered as a potential tumor suppressor in a variety of cancers. However, the possible mechanisms by which BAI inhibiting progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway remain unclear. PURPOSE To investigate the molecular mechanism and effects of BAI inhibiting progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway. METHODS Gastric cancer cell lines with FAK knockdown and overexpression were constructed by lentivirus transfection. After BAI treatment, the effects of FAK protein on proliferation, metastasis and angiogenesis of gastric cancer cells were detected by MTT, EdU, colony formation, wound healing, transwell and Matrigel tube formation assays. In vivo experiment was performed by xenograft model. Immunofluorescence and western blot assay were used to detect the effects of FAK protein on the expression levels of EMT markers and PI3K/AKT signaling pathway related proteins. qRT-PCR and luciferase reporter assay were used to clarify the targeting relationship between miR-7 and FAK. RESULTS BAI can regulate FAK to affect proliferation, metastasis and angiogenesis of gastric cancer cells through PI3K/AKT signaling pathway. qRT-PCR showed BAI can upregulated the expression of miR-7 and luciferase reporter assay showed the targeting relationship between miR-7 and FAK. Additionally, miR-7 mediates cell proliferation, metastasis and angiogenesis by directly targeting FAK 3'UTR to inhibit FAK expression. CONCLUSION BAI repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway.
Collapse
Affiliation(s)
- Dan Qiao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Jian Xing
- Department of Image, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Yunxiao Duan
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Shiyu Wang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Guangyuan Yao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Shengjun Zhang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Jingchun Jin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China; Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P.R. China
| | - Zhenhua Lin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China; Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P.R. China
| | - Liyan Chen
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Yingshi Piao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China.
| |
Collapse
|
28
|
Lin C, Miao J, He J, Feng W, Chen X, Jiang X, Liu J, Li B, Huang Q, Liao S, Liu Y. The regulatory mechanism of LncRNA-mediated ceRNA network in osteosarcoma. Sci Rep 2022; 12:8756. [PMID: 35610231 PMCID: PMC9130241 DOI: 10.1038/s41598-022-11371-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/18/2022] [Indexed: 12/25/2022] Open
Abstract
Aberrantly expressed lncRNAs have been reported to be closely related to the oncogenesis and development of osteosarcoma. However, the role of a dysregulated lncRNA-miRNA-mRNA network in osteosarcoma in the same individual needs to be further investigated. Whole transcriptome sequencing was performed on the tumour tissues and matched paratumour tissues of three patients with confirmed osteosarcoma. Two divergent lncRNA-miRNA-mRNA regulatory networks were constructed in accordance with their biological significance. The GO and KEGG analysis results of the mRNAs in the two networks revealed that the aberrantly expressed lncRNAs were involved in regulating bone growth and development, epithelial cell proliferation, cell cycle arrest and the N-terminal acetylation of proteins. The survival analysis results of the two networks showed that patients with high expression of GALNT3, FAM91A1, STC2 and SLC7A1 end in poorer prognosis. Likewise, patients with low expression of IGF2, BLCAP, ZBTB47, THRB, PKIA and MITF also had poor prognosis. A subnetwork was then constructed to demonstrate the key genes regulated by aberrantly expressed lncRNAs at the posttranscriptional level via the ceRNA network. Aberrantly expressed lncRNAs in osteosarcoma tissues regulate genes involved in cellular proliferation, differentiation, angiogenesis and the cell cycle via the ceRNA network.
Collapse
Affiliation(s)
- Chengsen Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedics, The Children's Hospital of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jifeng Miao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang He
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianxiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohong Jiang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedics, Ethnic Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianhong Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Boxiang Li
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedics, Ethnic Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qian Huang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yun Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
29
|
Effect of Apatinib Combined with Seggio on the Expression of Serum AFP and CA724 and Long-Term Survival Rate in Patients with Advanced Gastric Cancer Undergoing Comfortable Nursing Intervention. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2004973. [PMID: 35432838 PMCID: PMC9010191 DOI: 10.1155/2022/2004973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
Objective To study the effect of apatinib combined with seggio on the expression of serum AFP and CA724 and the long-term survival rate in advanced gastric cancer patients undergoing comfort nursing intervention. Methods 98 advanced gastric cancer patients were divided into single-drug group and joint group. Both groups of patients were given comfort nursing intervention, the single-drug group was treated with seggio, and the joint group was treated with apatinib and seggio. The clinical efficacy, survival rate, relationship between the tumor markers and the survival time, serum tumor markers levels (CA724 and AFP), inflammatory factors (IL-4, IL-10) levels, quality-of-life scores, and immunity function were measured after treatment. Results The clinical efficacy in the joint group was better than that in the single-drug group. The three-year survival time in the joint group was upregulated relative to the single-drug group. The patients with high expression of CA724 or AFP had a lower survival time than the patients with low expression of CA724 or AFP. After treatment, IL-10 and IL-4 levels were obviously decreased, and the joint group showed a more obvious decrease compared with the single-drug group. The quality-of-life scores were significantly upregulated after treatment, and compared with the joint group, the scores in the single drug-group were obviously higher. The CD4+/CD8+, CD4+, and CD3+ levels were increased, while CD8+ levels were decreased after treatment, and the changes of each index in the joint group were more significant than those in the single-drug group. The content of CA724 and AFP were significantly decreased after treatment, and the joint group showed a more significant decrease than the single-drug group. Conclusion Apatinib combined with seggio for advanced gastric cancer patients' treatment based on comfort nursing intervention can improve the clinical efficacy and survival time, reduce inflammatory factors and serum tumor markers levels, enhance patients' immune function, and quality of life.
Collapse
|
30
|
Wu D, Wang Z. Gastric Cancer Cell-Derived Kynurenines Hyperactive Regulatory T Cells to Promote Chemoresistance via the IL-10/STAT3/BCL2 Signaling Pathway. DNA Cell Biol 2022; 41:447-455. [PMID: 35353612 PMCID: PMC9063152 DOI: 10.1089/dna.2021.0936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy resistance is frequently observed in gastric cancer patients and is associated with poor prognosis; tryptophan (Trp) catabolism has been recognized as a key metabolic regulator of many types of cancer progression. Regulatory T cells (Tregs) and Trp metabolite kynurenine (Kyn) were analyzed using tumor tissues. Chemotherapy resistance induced by IL-10 or Treg was detected by flow cytometry assay. The activation of STAT3/BCL2 signaling pathways in gastric cells cocultured by Treg was illustrated by western blotting. Patients' Treg and human gastric cancer organoid model were established to examine the anticancer effects of STAT3 inhibitor. We found that a higher level of IL-10 secreted by Kyn-induced Tregs was responsible for the 5-fluorouracil-induced resistance of gastric cancer cell lines. STAT3 and BCL2 knockout significantly abrogated Treg supernatant- or IL-10-induced chemoresistance in SGC7901 and BGC823 cell lines. Furthermore, STAT3 inhibitor significantly reduced the organoid and clonogenicity of organoids cocultured with Treg. Our data suggested that tumor-derived Kyn may hyperactivate Tregs and induce chemoresistance through the IL-10/STAT3/BCL2 signaling pathway.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhongli Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
31
|
Zhou Y, Zhang Q, Liao B, Qiu X, Hu S, Xu Q. Circ_0006089 promotes gastric cancer growth, metastasis, glycolysis and angiogenesis by regulating miR‐361‐3p/TGFB1. Cancer Sci 2022; 113:2044-2055. [PMID: 35347818 PMCID: PMC9207367 DOI: 10.1111/cas.15351] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
Circular RNA (circRNA) participates in a variety of pathophysiological processes, including the development of gastric cancer (GC). However, the role of circ_0006089 in GC progression and its underlying molecular mechanism need to be further revealed. Quantitative real‐time PCR was utilized for detecting circ_0006089, microRNA (miR)‐361‐3p and transforming growth factor‐β1 (TGFB1) expression. The interaction between miR‐361‐3p and circ_0006089 or TGFB1 was confirmed using a dual‐luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. Cell proliferation, metastasis, apoptosis, and angiogenesis were determined using colony formation assay, EdU assay, transwell assay, flow cytometry, and tube formation assay. Cell glycolysis was evaluated by detecting glucose consumption, lactate production, and ATP levels. In addition, western blot (WB) analysis was used to measure protein expression. Xenograft tumor models were used to assess the effect of circ_0006089 knockdown on GC tumorigenesis. circ_0006089 had been found to be upregulated in GC tissues and cells, and it could act as an miR‐361‐3p sponge. circ_0006089 knockdown suppressed GC proliferation, metastasis, glycolysis, angiogenesis, and increased apoptosis, while this effect could be revoked by miR‐361‐3p inhibitor. TGFB1 was targeted by miR‐361‐3p, and its overexpression reversed the effects of miR‐361‐3p on GC cell function. Also, circ_0006089 promoted TGFB1 expression via sponging miR‐361‐3p. Animal experiments showed that silenced circ_0006089 inhibited GC tumorigenesis through the miR‐361‐3p/TGFB1 pathway. Our results revealed that the circ_0006089/miR‐361‐3p/TGFB1 axis contributed to GC progression, confirming that circ_0006089 might be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Qilin Zhang
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Bingling Liao
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Xiaofeng Qiu
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Sheng Hu
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Qihua Xu
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| |
Collapse
|
32
|
Szklener K, Chmiel P, Michalski A, Mańdziuk S. New Directions and Challenges in Targeted Therapies of Advanced Bladder Cancer: The Role of FGFR Inhibitors. Cancers (Basel) 2022; 14:1416. [PMID: 35326568 PMCID: PMC8946699 DOI: 10.3390/cancers14061416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Bladder neoplasms, including the most common urothelial carcinoma, have been an escalating problem for years, especially in highly developed countries. Recent decades have brought us a steadily growing share of this cancer in terms of both morbidity and mortality statistics. Bladder neoplasms are not only a therapeutic challenge but also an economical one due to the demanding, costly diagnostics and treatment. The treatment of urothelial cancer can be divided depending on the stage and advancement; thus, we can distinguish three main categories: non-muscle invasive bladder cancer, conventionally treated by surgical interventions; muscle invasive bladder cancer, conventionally treated with chemotherapeutics; and advanced bladder cancer with distant metastases, conventionally treated with the intensive chemotherapy in the MVAC scheme (methotrexate, vinblastine, doxorubicin, and cisplatin). Recent years have brought a breakthrough: immunotherapy and targeted therapy were discovered to be beneficial for patients disqualified from chemotherapy or patients who progressed despite treatment. This literature review summarizes the latest research into the use of targeted therapy in the treatment of advanced bladder cancer, its benefits, and its limitations.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland; (P.C.); (A.M.); (S.M.)
| | | | | | | |
Collapse
|
33
|
Li Z, Zhao Z, Wang C, Wang D, Mao H, Liu F, Yang Y, Tao F, Lu Z. Association Between DCE-MRI Perfusion Histogram Parameters and EGFR and VEGF Expressions in Different Lauren Classifications of Advanced Gastric Cancer. Pathol Oncol Res 2022; 27:1610001. [PMID: 35069035 PMCID: PMC8772396 DOI: 10.3389/pore.2021.1610001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Objective: To investigate the correlations between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion histogram parameters and vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) expressions in advanced gastric cancer (AGC). Methods: This retrospective study included 80 pathologically confirmed patients with AGC who underwent DCE-MRI before surgery from February 2017 to May 2021. The DCE-MRI perfusion histogram parameters were calculated by Omni Kinetics software in four quantitative parameter maps. Immunohistochemical methods were used to detect VEGF and EGFR expressions and calculate the immunohistochemical score. Results: VEGF expression was relatively lower in patients with intestinal-type AGC than those with diffuse-type AGC (p < 0.05). For VEGF, Receiver operating characteristics (ROC) curve analysis revealed that Quantile 90 of Ktrans, Meanvalue of Kep and Quantile 50 of Ve provided the perfect combination of sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for distinguishing high and low VEGF expression, For EGFR, Skewness of Ktrans, Energy of Kep and Entropy of Vp provided the perfect combination of sensitivity, specificity, PPV and NPV for distinguishing high and low EGFR expression. Ktrans (Quantile 90, Entropy) showed the strongest correlation with VEGF and EGFR in patients with intestinal-type AGC (r = 0.854 and r = 0.627, respectively); Ktrans (Mean value, Entropy) had the strongest correlation with VEGF and EGFR in patients with diffuse-type AGC (r = 0.635 and 0.656, respectively). Conclusion: DCE-MRI perfusion histogram parameters can serve as imaging biomarkers to reflect VEGF and EGFR expressions and estimate their difference in different Lauren classifications of AGC.
Collapse
Affiliation(s)
- Zhiheng Li
- Shaoxing University School of Medicine, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Chuchu Wang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Dandan Wang
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Haijia Mao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Fang Liu
- Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Ye Yang
- Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zengxin Lu
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.,The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|
34
|
Liu H, Liu M, He B, Li Q. Inhibition of USP11 sensitizes gastric cancer to chemotherapy via suppressing RhoA and Ras-mediated signaling pathways. Clin Res Hepatol Gastroenterol 2022; 46:101779. [PMID: 34332125 DOI: 10.1016/j.clinre.2021.101779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The poor outcomes in advanced gastric cancer (GC) necessitate alternative therapeutic strategy. Ubiquitin-specific protease 11 (USP11) has recently garnered attention as a therapeutic target in cancer because of its important regulatory role in cancer cell functions. Here, we revealed the expression, function and underlying molecular interactions of USP11 in gastric cancer. METHODS The expression of USP11 was analyzed using immunohistochemistry and ELISA. The loss-of function and gain-of function analysis of USP11 was performed using siRNA knockdown and plasmid overexpression approaches. The downstream molecules regulated by USP11 were determined using immunoblotting analysis. RESULTS USP11 was upregulated in ∼80% of gastric cancer patients, and the upregulation was associated with HER3 overexpression. In addition, USP11 level was not regulated by HER3 and vice versa. Functional studies demonstrated that USP11 overexpression promoted gastric cancer growth and migration, and alleviated toxicity-induced by chemotherapeutic drug. In contrast, USP11 depletion significantly inhibited gastric cancer growth, migration and survival, and augmented chemotherapeutic drug's efficacy. Gastric cancer cells with higher USP11 levels were more sensitive to USP11 inhibitions than cells with lower USP11 levels. Mechanism studies showed that USP11 depletion suppressed migration via RhoA-mediated pathway and inhibited growth and survival likely via Ras-mediated pathway. CONCLUSIONS Our work highlights the important role of USP11 in gastric cancer and therapeutic value of inhibiting USP11 to sensitize gastric cancer to chemotherapy.
Collapse
Affiliation(s)
- Hongfang Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Mei Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Bin He
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China.
| | - Qinghuan Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China.
| |
Collapse
|
35
|
Gui Z, Zhao Z, Sun Q, Shao G, Huang J, Zhao W, Kuang Y. LncRNA FEZF1-AS1 Promotes Multi-Drug Resistance of Gastric Cancer Cells via Upregulating ATG5. Front Cell Dev Biol 2021; 9:749129. [PMID: 34790665 PMCID: PMC8591218 DOI: 10.3389/fcell.2021.749129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in human cancers including gastric cancer (GC). Dysregulation of lncRNAs is involved in a variety of pathological activities associated with gastric cancer progression and chemo-resistance. However, the role and molecular mechanisms of FEZF1-AS1 in chemoresistance of GC remain unknown. In this study, we aimed to determine the role of FEZF1-AS1 in chemoresistance of GC. The level of FEZF1-AS1 in GC tissues and GC cell lines was assessed by qRT-PCR. Our results showed that the expression of FEZF1-AS1 was higher in gastric cancer tissues than in adjacent normal tissues. Multivariate analysis identified that high level of FEZF1-AS1 is an independent predictor for poor overall survival. Increased FEZF1-AS1 expression promoted gastric cancer cell proliferation in vitro. Additionally, FEZF1-AS1 was upregulated in chemo-resistant GC tissues. The regulatory effect of FEZF1-AS1 on multi-drug resistance (MDR) in GC cells and the underlying mechanism was investigated. It was found that increased FEZF1-AS1 expression promoted chemo-resistance of GC cells. Molecular interactions were determined by RNA immunoprecipitation (RIP) and the results showed that FEZF1-AS1 regulated chemo-resistance of GC cells through modulating autophagy by directly targeting ATG5. The proliferation and autophagy of GC cells promoted by overexpression of LncFEZF1-AS1 was suppressed when ATG5 was knocked down. Moreover, knockdown of FEZF1-AS1 inhibited tumor growth and increased 5-FU sensitivity in GC cells in vivo. Taken together, this study revealed that the FEZF1-AS1/ATG5 axis regulates MDR of GC cells via modulating autophagy.
Collapse
Affiliation(s)
- Zhifu Gui
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of General Surgery, Jiangyin Hospital Affiliated to Medical College of Southeast University, Wuxi, China
| | - Zhenguo Zhao
- Department of General Surgery, Jiangyin Hospital Affiliated to Medical College of Southeast University, Wuxi, China
| | - Qi Sun
- Department of General Surgery, Jiangyin Hospital Affiliated to Medical College of Southeast University, Wuxi, China
| | - Guoyi Shao
- Department of General Surgery, Jiangyin Hospital Affiliated to Medical College of Southeast University, Wuxi, China
| | - Jianming Huang
- Department of General Surgery, Jiangyin Hospital Affiliated to Medical College of Southeast University, Wuxi, China
| | - Wei Zhao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
36
|
Qu J, Luo M, Zhang J, Han F, Hou N, Pan R, Sun X. A paradoxical role for sestrin 2 protein in tumor suppression and tumorigenesis. Cancer Cell Int 2021; 21:606. [PMID: 34784907 PMCID: PMC8596924 DOI: 10.1186/s12935-021-02317-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Sestrin 2, a highly conserved stress-induced protein, participates in the pathological processes of metabolic and age-related diseases. This p53-inducible protein also regulates cell growth and metabolism, which is closely related to malignant tumorigenesis. Sestrin 2 was reported to regulate various cellular processes, such as tumor cell proliferation, invasion and metastasis, apoptosis, anoikis resistance, and drug resistance. Although sestrin 2 is associated with colorectal, lung, liver, and other cancers, sestrin 2 expression varies among different types of cancer, and the effects and mechanisms of action of this protein are also different. Sestrin 2 was considered a tumor suppressor gene in most studies, whereas conflicting reports considered sestrin 2 an oncogene. Thus, this review aims to examine the literature regarding sestrin 2 in various cancers, summarize its roles in suppression and tumorigenesis, discuss potential mechanisms in the regulation of cancer, and provide a basis for follow-up research and potential cancer treatment development.
Collapse
Affiliation(s)
- Junsheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Moyi Luo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
37
|
Li WW, Jiao J, Wang ZY, Wei YN, Zhang YF. Clinical efficacy of immunotherapy combined with chemotherapy in patients with advanced gastric cancer, its effect on nutritional status and Changes of peripheral blood T lymphocyte subsets. Pak J Med Sci 2021; 37:1902-1907. [PMID: 34912415 PMCID: PMC8613044 DOI: 10.12669/pjms.37.7.4347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To evaluate the clinical efficacy of immunotherapy combined with chemotherapy in patients with advanced gastric cancer and its effect on nutritional status and changes of peripheral blood T lymphocyte subsets. METHODS Sixty patients with locally advanced gastric cancer who were admitted by Affiliated Hospital of Hebei University from March 2020 to February 2021 were enrolled and randomly divided into two groups, with 30 cases in each group. The control group was treated with FOLFOX4 chemotherapy, while the experimental group was additively treated with cindilizumab on the basis of control group. The incidence of adverse reactions, clinical efficacy, improvement of nutritional and physical status, and changes in the levels of T lymphocyte subgroups in the two groups were compared and analyzed. RESULTS The total effective rate was 70% in the experimental group, which was better than 43.3% of the control group (p=0.04). The improvement rate of performance status (ECOG) score and nutritional indicators in the experimental group was significantly better than that in the control group (p<0.05). Moreover, the indicators of CD3+, CD4+, CD4+/CD8+ in the experimental group were significantly higher than those in the control group after treatment, with statistically significant differences (CD3+, p=0.01; CD4 +, p= 0.02; CD4+/CD8+, p=0.01). CONCLUSION Immunotherapy combined with chemotherapy has a significant effect on locally advanced gastric cancer patients, with significant improvement in physical strength and nutritional status, significant improvement in T lymphocyte function, and no obvious adverse reactions. It is worth promoting in clinical application.
Collapse
Affiliation(s)
- Wen-wen Li
- Wen-wen Li, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Jin Jiao
- Jin Jiao, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Zhi-yu Wang
- Zhi-yu Wang, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ya-ning Wei
- Ya-ning Wei, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yuan-fang Zhang
- Yuan-fang Zhang, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
38
|
Hou M, Li C, Dong S. LINC00963/miR-4458 regulates the effect of oxaliplatin in gastric cancer by mediating autophagic flux through targeting of ATG16L1. Sci Rep 2021; 11:20951. [PMID: 34697403 PMCID: PMC8546147 DOI: 10.1038/s41598-021-98728-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
Oxaliplatin resistance is the greatest obstacle to the management of local recurrence in gastric cancer patients after surgery. Accumulating evidence has suggested that inhibiting autophagy may be a novel approach for reversing resistance to oxaliplatin treatment. In this manuscript, we aimed to investigate the role of LINC00963 in regulating autophagy and oxaliplatin resistance. qRT-PCR, immunochemistry staining, and western blotting were used to detect gene expression. Plasmids were used to up- and downregulate the expression of LINC00963 and miR-4458. A caspase 3/7 activity kit and flow cytometry were used to detect the apoptosis rate. CCK8 and Transwell assays were used to test cell proliferation and migration, respectively. Transmission electron microscopy and a dual fluorescent lentivirus autophagy system were used to evaluate autophagic flux. Dual luciferase reporter gene assays and RNA pulldown assays were used to evaluate the potential crosstalk. LINC00963 was highly expressed in gastric cancer patients and cell lines. In addition, high LINC00963 expression was found to be associated with poor prognosis and local recurrence in gastric cancer patients, indicating that LINC00963 might be involved in oxaliplatin resistance. Moreover, we found that LINC00963 was aberrantly highly expressed in oxaliplatin-resistant SGC-7901 (SGC-7901-R) cells and promoted proliferation and migration and reduced the apoptosis rate in SGC-7901-R cells. Furthermore, among all potential target microRNAs, miR-4458 was found to be negatively regulated by LINC00963 both in vivo and in vitro. In addition, miR-4458 overexpression led to impaired proliferation and migration and enhanced cell apoptosis and G1 arrest in SGC-7901-R cells. Further RNA pulldown and dual luciferase reporter gene assays indicated the interaction between LINC00963 and miR-4458. Moreover, we found enhanced autophagic flux in SGC-7901-R cells compared with SGC-7901 cells; in addition, an inhibitor of autophagy induced apoptosis in SGC-7901-R cells. Then, we found that downregulation of LINC00963 expression and upregulation of miR-4458 expression significantly suppressed autophagic flux in SGC-7901-R cells. Based on starBase V3.0 and dual luciferase reporter gene assays, we predicted and confirmed that ATG16L1 might be the target of miR-4458 to regulate autophagy. In conclusion, LINC00963 and miR-4458 are potential biomarkers for predicting the overall survival of gastric cancer patients. Moreover, targeting LINC00963 to inhibit autophagic flux sensitizes gastric cancer cells to oxaliplatin treatment, suggesting that it is a potential novel therapeutic target for improving oxaliplatin sensitivity.
Collapse
Affiliation(s)
- Meng Hou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chao Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shunbin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
39
|
Xu L, Liu C, Ye Z, Wu C, Ding Y, Huang J. Overexpressed LINC00467 promotes the viability and proliferation yet inhibits apoptosis of gastric cancer cells via raising ITGB3 level. Tissue Cell 2021; 73:101644. [PMID: 34555778 DOI: 10.1016/j.tice.2021.101644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022]
Abstract
Long non-coding RNA (lncRNA) LINC00467 plays a proto-oncogenic role in non-small cell lung cancer. However, its effect and modulatory mechanism in gastric cancer (GC) are unknown. Thereby, we elucidated the mechanism of LINC00467 in GC. LINC00467 level in GC tissues was assessed by bioinformatic analysis, and clinicopathological parameters from GC patients were collected. The levels of LINC00467, integrin subunit beta 3 (ITGB3), proliferating cell nuclear antigen (PCNA), cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase 1 (PARP1) in tissue samples or treated GC cells were assessed by quantitative real-time polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), or Western blot. The viability, proliferation and apoptosis of GC cells were detected by methyl thiazolyl tetrazolium assay, colony formation assay, and flow cytometry. Levels of LINC00467 and ITGB3 were up-regulated in GC, and highly expressed LINC00467 was positively associated with tumor size, differentiation, N stage, and T stage in GC patients. LINC00467 was enriched in cytoplasm of GC cells, and overexpressed LINC00467 promoted the viability and proliferation as well as levels of ITGB3 and PCNA, while suppressing the apoptosis and levels of cleaved caspase-3 and cleaved PARP1 in GC cells. Besides, the effects of shLINC00467 on inhibiting cell viability, proliferation of GC cells and PCNA level and promoting apoptosis as well as levels of cleaved caspase-3 and cleaved PARP1 were all partially reversed by overexpressed ITGB3. Overexpressed LINC00467 enhanced the viability and proliferation but inhibited apoptosis of GC cells via increasing ITGB3 level.
Collapse
Affiliation(s)
- Limao Xu
- Gastroenterology Department, The 3(rd) Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Chengmin Liu
- Gastroenterology Department, The 3(rd) Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Zhiyao Ye
- Gastroenterology Department, The 3(rd) Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Chengfeng Wu
- Gastroenterology Department, The 3(rd) Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Yuhang Ding
- Gastroenterology Department, The 3(rd) Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Juan Huang
- Gastroenterology Department, The 3(rd) Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China.
| |
Collapse
|
40
|
Shen X, Yang Z, Feng S, Li Y. Identification of uterine leiomyosarcoma-associated hub genes and immune cell infiltration pattern using weighted co-expression network analysis and CIBERSORT algorithm. World J Surg Oncol 2021; 19:223. [PMID: 34321013 PMCID: PMC8320213 DOI: 10.1186/s12957-021-02333-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND While large-scale genomic analyses symbolize a precious attempt to decipher the molecular foundation of uterine leiomyosarcoma (ULMS), bioinformatics results associated with the occurrence of ULMS based totally on WGCNA and CIBERSORT have not yet been reported. This study aimed to screen the hub genes and the immune cell infiltration pattern in ULMS by bioinformatics methods. METHODS Firstly, the GSE67463 dataset, including 25 ULMS tissues and 29 normal myometrium (NL) tissues, was downloaded from the public database. The differentially expressed genes (DEGs) were screened by the 'limma' package and hub modules were identified by weighted gene co-expression network analysis (WGCNA). Subsequently, gene function annotations were performed to investigate the biological role of the genes from the intersection of two groups (hub module and DEGs). The above genes were calculated in the protein-protein interaction (PPI) network to select the hub genes further. The hub genes were validated using external data (GSE764 and GSE68295). In addition, the differential immune cell infiltration between UL and ULMS tissues was investigated using the CIBERSORT algorithm. Finally, we used western blot to preliminarily detect the hub genes in cell lines. RESULTS WGCNA analysis revealed a green-yellow module possessed the highest correlation with ULMS, including 1063 genes. A total of 172 DEGs were selected by thresholds set in the 'limma' package. The above two groups of genes were intersected to obtain 72 genes for functional annotation analysis. Interestingly, it indicated that 72 genes were mainly involved in immune processes and the Neddylation pathway. We found a higher infiltration of five types of cells (memory B cells, M0-type macrophages, mast cells activated, M1-type macrophages, and T cells follicular helper) in ULMS tissues than NL tissues, while the infiltration of two types of cells (NK cells activated and mast cells resting) was lower than in NL tissues. In addition, a total of five genes (KDR, CCL21, SELP, DPT, and DCN) were identified as the hub genes. Internal and external validation demonstrated that the five genes were over-expressed in NL tissues compared with USML tissues. Finally, the correlation analysis results indicate that NK cells activated and mast cells activated positively correlated with the hub genes. However, M1-type macrophages had a negative correlation with the hub genes. Moreover, only the DCN may be associated with the Neddylation pathway. CONCLUSION A series of evidence confirm that the five hub genes and the infiltration of seven types of immune cells are related to USML occurrence. These hub genes may affect the occurrence of USML through immune-related and Neddylation pathways, providing molecular evidence for the treatment of USML in the future.
Collapse
Affiliation(s)
- Xiaoqing Shen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhujuan Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Songwei Feng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Li
- Department of Gynecology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University and Jiangsu Shengze Hospital, 1399 Shunxin Middle Road, Suzhou, 215228, Jiangsu Province, People's Republic of China.
| |
Collapse
|
41
|
Xue S, Ma M, Bei S, Li F, Wu C, Li H, Hu Y, Zhang X, Qian Y, Qin Z, Jiang J, Feng L. Identification and Validation of the Immune Regulator CXCR4 as a Novel Promising Target for Gastric Cancer. Front Immunol 2021; 12:702615. [PMID: 34322132 PMCID: PMC8311657 DOI: 10.3389/fimmu.2021.702615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockade has attracted a lot of attention in the treatment of human malignant tumors. We are trying to establish a prognostic model of gastric cancer (GC) based on the expression profile of immunoregulatory factor-related genes. Based on the TCGA database, we identified 234 differentially expressed immunoregulatory factors. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) conducted enrichment analysis to clarify the biological functions of differential expression of immunoregulatory factors. STRING database predicted the interaction network between 234 differently expressed immune regulatory factors. The expression of 11 immunoregulatory factors was significantly related to the overall survival of gastric cancer patients. Univariate Cox regression analysis, Kaplan–Meier analysis and multivariate Cox regression analysis found that immunomodulatory factors were involved in the progression of gastric cancer and promising biomarkers for predicting prognosis. Among them, CXCR4 was related to the low survival of GC patients and a key immunomodulatory factor in GC. Based on TCGA data, the high expression of CXCR4 in GC was positively correlated with the advanced stage and grade of gastric cancer and related to poor prognosis. Univariate analysis and multivariate analysis indicated that CXCR4 was an independent prognostic indicator for TCGA gastric cancer patients. In vitro functional studies had shown that CXCR4 promoted the proliferation, migration, and invasion of gastric cancer cells. In summary, this study has determined the prognostic value of 11 immunomodulatory factors in gastric cancer. CXCR4 is an independent prognostic indicator for gastric cancer patients, which may help to improve the individualized prognostic prediction of GC and provide candidates for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shuai Xue
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Ming Ma
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Songhua Bei
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenqu Wu
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanqing Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanling Hu
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - YanQing Qian
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhe Qin
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Jiang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Ungureanu BS, Lungulescu CV, Pirici D, Turcu-Stiolica A, Gheonea DI, Sacerdotianu VM, Liliac IM, Moraru E, Bende F, Saftoiu A. Clinicopathologic Relevance of Claudin 18.2 Expression in Gastric Cancer: A Meta-Analysis. Front Oncol 2021; 11:643872. [PMID: 33747967 PMCID: PMC7969651 DOI: 10.3389/fonc.2021.643872] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
An increasing number of tumor markers have been discovered to have potential efficacy as diagnostic and prognostic tools in gastric cancer. We aimed to assess putative correlations between claudin 18.2 expression and pathological or prognosis features in patients with gastric cancer. MEDLINE, Web of Science, EBSCO, and ClinicalTrials.gov were used to search for relevant studies from their inception to 30 October 2020. Finally, a total of six articles were included in this meta-analysis. Review Manager 5 software was applied to examine the heterogeneity among the studies and to calculate the odds ratio with 95% CI by selecting corresponding models, in evaluating the strength of the relationship. Publication bias test was also conducted. No bias and no significant correlations were found between CLDN 18.2 and TNM stages, Lauren classification, HER2, grading, or overall survival. This meta-analysis expounded that the relationship with CLDN 18.2 and pathological features depends on the percentage of staining of tumor cells for which CLDN 18.2 is considered positive. Our pooled outcomes suggest that targeted therapy for CLDN 18.2 could be effective if certain criteria were established.
Collapse
Affiliation(s)
- Bogdan Silviu Ungureanu
- Gastroenterology Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Daniel Pirici
- Histology Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Adina Turcu-Stiolica
- Pharmacoeconomics Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Dan Ionut Gheonea
- Gastroenterology Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Ilona Mihaela Liliac
- Histology Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Emil Moraru
- Surgical Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Felix Bende
- Gastroenterology Department, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| | - Adrian Saftoiu
- Gastroenterology Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|