1
|
Cho CK, Kang P, Jang CG, Lee SY, Lee YJ, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. Arch Pharm Res 2023; 46:939-953. [PMID: 38064121 DOI: 10.1007/s12272-023-01472-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Irbesartan, a potent and selective angiotensin II type-1 (AT1) receptor blocker (ARB), is one of the representative medications for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan. CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. The irbesartan PBPK model was established using the PK-Sim® software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the development of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model. Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling software, or optimized to fit the observed plasma concentration-time profiles. Model evaluation was performed by comparing the predicted plasma concentration-time profiles and pharmacokinetic parameters to the observed results. Predicted plasma concentration-time profiles were visually similar to observed profiles. Predicted AUCinf in CYP2C9*1/*3 and CYP2C9*1/*13 genotypes were increased by 1.54- and 1.62-fold compared to CYP2C9*1/*1 genotype, respectively. All fold error values for AUC and Cmax in non-genotyped and CYP2C9 genotyped models were within the two-fold error criterion. We properly established the PBPK model of irbesartan in different CYP2C9 genotypes. It can be used to predict the pharmacokinetics of irbesartan for personalized pharmacotherapy in individuals of various races, ages, and CYP2C9 genotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
2
|
Association of AGTR1 A1166C and CYP2C9∗3 Gene Polymorphisms with the Antihypertensive Effect of Valsartan. Int J Hypertens 2022; 2022:7677252. [PMID: 35345577 PMCID: PMC8957473 DOI: 10.1155/2022/7677252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background The differences in the antihypertensive treatment with angiotensin type II receptor blockers (ARBs) may be attributed to polymorphisms in genes involving drug-targeted receptor and drug metabolism. The present study aimed to investigate whether the antihypertensive effect of the ARB drug valsartan was associated with angiotensin II type 1 receptor (AGTR1) gene polymorphism (A1166 C) and cytochrome P450 enzyme 2C9 (CYP2C9) gene polymorphism (CYP2C9∗3). Methods 281 patients with hypertension who received valsartan monotherapy in the past month were included in this retrospective study. Polymerase chain reaction-melting curve analysis was performed to genotype the AGTR1 and CYP2C9 gene polymorphisms. Based on the systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the time of visit, the patients were divided into well-controlled group (n = 144, SBP/DBP <140/90 mmHg) and poorly controlled group (n = 137, SBP/DBP ≥140/90 mmHg). Results Older age, decreased history of drinking, a higher proportion of mild-to-moderate hypertension, lower alanine aminotransferase levels, and higher high-density lipoprotein cholesterol levels were observed in the well-controlled group than the poorly controlled group. Higher frequencies of the C allele and AC + CC genotype of AGTR1 A1166C were detected in the well-controlled than the poorly controlled patients (P = 0.005 and P = 0.006). After adjustment for demographic and environmental factors, the CC + AC genotype of AGTR1 A1166C was markedly linked to better hypertension control with valsartan treatment compared to the AA genotype (odds ratio: 2.836, 95% confidence interval: 1.199–6.705, P = 0.018). No significant difference was observed in the allele or genotype distribution of CYP2C9∗3 polymorphism between well-controlled and poorly controlled patients. Conclusions The current data suggested that the AGTR1 A1166 C polymorphism may be associated with the antihypertensive effect of valsartan, and carriers with AC and CC genotypes may have a better antihypertensive efficacy response to valsartan treatment.
Collapse
|
3
|
Park YA, Song YB, Yee J, Yoon HY, Gwak HS. Influence of CYP2C9 Genetic Polymorphisms on the Pharmacokinetics of Losartan and Its Active Metabolite E-3174: A Systematic Review and Meta-Analysis. J Pers Med 2021; 11:jpm11070617. [PMID: 34210056 PMCID: PMC8303964 DOI: 10.3390/jpm11070617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the influence of CYP2C9 genetic polymorphisms on the pharmacokinetics of losartan and its active metabolite, E-3174, through a systematic review and meta-analysis. Eight studies published before March 2021 were included in this study. We used PubMed, the Cochrane Library, EMBASE, and Web of Science, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The data analysis was conducted through Review Manager (RevMan), version 5.3, and R software. We found that healthy volunteers with CYP2C9*2 or *3 carriers had higher area under the curve (AUC0-∞) of losartan (mean difference (MD) 0.17 μg·h/mL; 95% confidence intervals (CI): 0.04, 0.29) and lower AUC0-∞ of E-3174 (MD −0.35 μg·h/mL; 95% CI: −0.62, −0.08) than those with CYP2C9*1/*1. Subjects with CYP2C9*2 or *3 carriers showed lower maximum concentration (Cmax) of E-3174 than those with CYP2C9*1/*1 (MD −0.13 μg/mL; 95% CI: −0.17, −0.09). For half-life, subjects with CYP2C9*2 or *3 carriers had longer half-lives of losartan and E-3174 than those with CYP2C9*1/*1 (MD 0.47 h; 95% CI: 0.32, 0.61 and MD 0.68 h; 95% CI: 0.44, 0.92, respectively). This meta-analysis suggests that the pharmacokinetics of losartan and E-3174 are associated with the CYP2C9 polymorphisms
Collapse
Affiliation(s)
| | | | | | | | - Hye-Sun Gwak
- Correspondence: ; Tel.: +82-2-3277-4376; Fax: +82-2-3277-3051
| |
Collapse
|
4
|
Chen K, Xiao P, Li G, Wang C, Yang C. Distributive characteristics of the CYP2C9 and AGTR1 genetic polymorphisms in Han Chinese hypertensive patients: a retrospective study. BMC Cardiovasc Disord 2021; 21:73. [PMID: 33541272 PMCID: PMC7863246 DOI: 10.1186/s12872-021-01895-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Background There is an individual variation in response to antihypertensive effect of the angiotensin II receptor antagonist. This study aimed to determine the allele and genotype frequencies of CYP2C9 and AGTR1 genetic polymorphisms and explore the potential role of these polymorphisms in guiding the selection of angiotensinIIreceptor antagonist in Han Chinese hypertensive patients. Methods Totally 2419 Han Chinese hypertensive patients and 126 normotensive controls were recruited in this study. Venous blood samples were collected from each patient, and the genetic polymorphisms of CYP2C9 and AGTR1 were assessed using a gene chip platform. The allele and genotype frequency of each gene and the combined genotypes in this study were analyzed respectively. Results The gene chip analysis identified an allelic frequency of 96.51% for CYP2C9*1 and 3.49% for CYP2C9*3 in the cohort of Han Chinese hypertensive patients. Statistical analysis showed that the frequency of wild-type homozygous for CYP2C9*1/*1 was 93.30%, while the frequency of heterozygous for *1/*3 or mutant homozygous for *3/*3 was 6.41% or 0.29%. Meanwhile, we detected allelic frequencies of 95.06% and 4.94% for the A and C allele of AGTR1, respectively. While the genotype frequency of wild-type homozygous for AA was 90.41%, the frequency of heterozygous for AC or mutant homozygous for CC was 9.30% or 0.29%. Notably, we observed that 84.66% (2048/2419) of the subjects exhibited a combined genotype of CYP2C9 and AGTR1 as *1/*1 + AA, while the combined genotypes *3/*3 + AC or *3/*3 + CC were not detected in hypertension patients. Besides, no significant association was found between normotensive controls and hypertensive patients, or among the three grades of hypertensive patients. Conclusions These data revealed the polymorphisms characteristics of CYP2C9 and AGTR1 in Han Chinese hypertensive patients, providing valuable information for genotype-based antihypertension therapy in prospective clinical studies in the future.
Collapse
Affiliation(s)
- Keping Chen
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao Road 87, Nanjing, 210009, China.
| | - Peng Xiao
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao Road 87, Nanjing, 210009, China
| | - Guochun Li
- Nanjing Central Hospital, Nanjing Municipal Government Hospital, Nanjing, 210009, China
| | - Chunling Wang
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao Road 87, Nanjing, 210009, China
| | - Chuankun Yang
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao Road 87, Nanjing, 210009, China
| |
Collapse
|
5
|
Pescatello LS, Parducci P, Livingston J, Taylor BA. A Systematically Assembled Signature of Genes to be Deep-Sequenced for Their Associations with the Blood Pressure Response to Exercise. Genes (Basel) 2019; 10:genes10040295. [PMID: 30979034 PMCID: PMC6523684 DOI: 10.3390/genes10040295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 02/08/2023] Open
Abstract
: Background: Exercise is one of the best nonpharmacologic therapies to treat hypertension. The blood pressure (BP) response to exercise is heritable. Yet, the genetic basis for the antihypertensive effects of exercise remains elusive. Methods: To assemble a prioritized gene signature, we performed a systematic review with a series of Boolean searches in PubMed (including Medline) from earliest coverage. The inclusion criteria were human genes in major BP regulatory pathways reported to be associated with: (1) the BP response to exercise; (2) hypertension in genome-wide association studies (GWAS); (3) the BP response to pharmacotherapy; (4a) physical activity and/or obesity in GWAS; and (4b) BP, physical activity, and/or obesity in non-GWAS. Included GWAS reports disclosed the statistically significant thresholds used for multiple testing. Results: The search yielded 1422 reports. Of these, 57 trials qualified from which we extracted 11 genes under criteria 1, 18 genes under criteria 2, 28 genes under criteria 3, 27 genes under criteria 4a, and 29 genes under criteria 4b. We also included 41 genes identified from our previous work. Conclusions: Deep-sequencing the exons of this systematically assembled signature of genes represents a cost and time efficient approach to investigate the genomic basis for the antihypertensive effects of exercise.
Collapse
Affiliation(s)
- Linda S Pescatello
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Paul Parducci
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Jill Livingston
- Homer Babbidge Library, Health Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Beth A Taylor
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
- Preventive Cardiology, Hartford Hospital, Hartford, CT 06269, USA.
| |
Collapse
|
6
|
Sychev DA, Ashraf GM, Svistunov AA, Maksimov ML, Tarasov VV, Chubarev VN, Otdelenov VA, Denisenko NP, Barreto GE, Aliev G. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1147-1156. [PMID: 29780235 PMCID: PMC5951216 DOI: 10.2147/dddt.s149069] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome (CYP) 450 isoenzymes are the basic enzymes involved in Phase I biotransformation. The most important role in biotransformation belongs to CYP3A4, CYP2D6, CYP2C9, CYP2C19 and CYP1A2. Inhibition and induction of CYP isoenzymes caused by drugs are important and clinically relevant pharmacokinetic mechanisms of drug interaction. Investigation of the activity of CYP isoenzymes by using phenotyping methods (such as the determination of the concentration of specific substrates and metabolites in biological fluids) during drug administration provides the prediction of negative side effects caused by drug interaction. In clinical practice, the process of phenotyping of CYP isoenzymes and some endogenous substrates in the ratio of cortisol to 6β-hydroxycortisol in urine for the evaluation of CYP3A4 activity has been deemed to be a quite promising, safe and minimally invasive method for patients nowadays.
Collapse
Affiliation(s)
- Dmitrij A Sychev
- Russian Medical Academy of Postgraduate Education Studies, Moscow, Russia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Maksim L Maksimov
- Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education «Russian Medical Academy of Continuous Professional Education» of the Ministry of Healthcare of the Russian Federation, Kazan State Medical Academy, Volga Region, Kazan, Russia
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gjumrakch Aliev
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, USA.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, USA.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
7
|
Choi CI, Kim MJ, Chung EK, Lee HI, Jang CG, Bae JW, Lee SY. CYP2C9*3 and *13 alleles significantly affect the pharmacokinetics of irbesartan in healthy Korean subjects. Eur J Clin Pharmacol 2011; 68:149-54. [DOI: 10.1007/s00228-011-1098-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/30/2011] [Indexed: 10/17/2022]
|
8
|
CYP2C9 variants and blood pressure response to salt: when salt sensitivity meets pharmacogenomics. J Hypertens 2011; 29:29-31. [DOI: 10.1097/hjh.0b013e32834091a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
|
10
|
Bae JW, Kim JH, Choi CI, Kim MJ, Kim HJ, Byun SA, Chang YS, Jang CG, Park YS, Lee SY. Effect of CYP2C9*3 allele on the pharmacokinetics of naproxen in Korean subjects. Arch Pharm Res 2009; 32:269-73. [DOI: 10.1007/s12272-009-1232-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/30/2022]
|