1
|
Ma Y, Xu Y, Zhang Y, Duan X. Molecular Mechanisms of Craniofacial and Dental Abnormalities in Osteopetrosis. Int J Mol Sci 2023; 24:10412. [PMID: 37373559 DOI: 10.3390/ijms241210412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Osteopetrosis is a group of genetic bone disorders characterized by increased bone density and defective bone resorption. Osteopetrosis presents a series of clinical manifestations, including craniofacial deformities and dental problems. However, few previous reports have focused on the features of craniofacial and dental problems in osteopetrosis. In this review, we go through the clinical features, types, and related pathogenic genes of osteopetrosis. Then we summarize and describe the characteristics of craniofacial and dental abnormalities in osteopetrosis that have been published in PubMed from 1965 to the present. We found that all 13 types of osteopetrosis have craniomaxillofacial and dental phenotypes. The main pathogenic genes, such as chloride channel 7 gene (CLCN7), T cell immune regulator 1 (TCIRG1), osteopetrosis-associated transmembrane protein 1 (OSTM1), pleckstrin homology domain-containing protein family member 1 (PLEKHM1), and carbonic anhydrase II (CA2), and their molecular mechanisms involved in craniofacial and dental phenotypes, are discussed. We conclude that the telltale craniofacial and dental abnormalities are important for dentists and other clinicians in the diagnosis of osteopetrosis and other genetic bone diseases.
Collapse
Affiliation(s)
- Yu Ma
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yali Xu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
2
|
Alotaibi Q, Dighe M, Aldaihani S. The clinical features of OSTM1-associated malignant infantile osteopetrosis: A retrospective, single-center experience over one decade. Am J Med Genet A 2023; 191:459-468. [PMID: 36369659 DOI: 10.1002/ajmg.a.63042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
Mutation in OSTM1 give rise to the rarest and most lethal subtype of malignant infantile osteopetrosis (MIOP), and an improved understanding of OSTM1-associated MIOP would help with informed decision-making regarding symptom management and early palliative care referral. This retrospective study describes the clinical and laboratory features of patients with a genetic diagnosis of OSTM1 MIOP made between January 2011 and December 2021 in the Department of Pediatrics, Al-Adan Hospital, Kuwait. Twenty-two children had confirmed homozygous deletion in OSTM1 (13 females, nine males). Consanguinity was reported in almost all parents. 72.7% were diagnosed before the age of two months, most commonly incidentally with a high clinical suspicion. All 22 patients developed upper respiratory symptoms, hepatosplenomegaly, poor feeding, and had severe developmental delay. 80% of patients developed pain and/or irritability, and 40.9% were diagnosed with primary seizures. Bone fractures developed in 27% of patients, most likely iatrogenic, and some patients had hernia and gum abnormalities. The mean survival was 10.9 months. The clinical presentation, symptomatology, and mortality of our cohort were compared with other cases of OSTM1 MIOP identified through a comperhensive search of the PubMed database. The findings conclude that OSTM1 MIOP is a multi-systemic disease with distinct clinical features, of which neurological complications are the most severe and include nociplastic pain and irritability. Although orthopedic complications influence the trajectory of most patients with other forms of osteopetrosis, OSTM1 MIOP is driven by its neurological complications. Hence, OSTM1 should be regarded as a neurodegenerative disease with osteopetrosis as a comorbidity that warrants early palliative care referral.
Collapse
Affiliation(s)
| | - Manjiri Dighe
- Pediatric Department, Aladan Hospital, Al-Masayel, Kuwait
| | - Saad Aldaihani
- Pediatric Department, Aladan Hospital, Al-Masayel, Kuwait
| |
Collapse
|
3
|
Chen Y, Zhou L, Guan X, Wen X, Yu J, Dou Y. Case report: Gene mutations and clinical characteristics of four patients with osteopetrosis. Front Pediatr 2023; 11:1096770. [PMID: 36999084 PMCID: PMC10043213 DOI: 10.3389/fped.2023.1096770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 04/01/2023] Open
Abstract
Osteopetrosis is characterized by increased bone density caused by decreased osteoclasts or dysfunction of their differentiation and absorption properties, usually caused by biallelic variants of the TCIRG1(OMIM:604592)and CLCN7(OMIM:602727) genes. Herein, the clinical, biochemical, and radiological manifestations of osteopetrosis in four Chinese children are described. Whole-exome sequencing identified compound heterozygous variants of the CLCN7 and TCIRG1 genes in these patients. In Patient 1, two novel variants were identified in CLCN7:c.880T > G(p.F294V) and c.686C > G(p.S229X). Patient 2 harbored previously reported a single gene variant c.643G > A(p.G215R) in CLCN7. Patient 3 had a novel variant c.569A > G(p.N190S) and a novel frameshift variant c.1113dupG(p.N372fs) in CLCN7. Patient 4 had a frameshift variant c.43delA(p.K15fs) and variant c.C1360T in TCIRG1, resulting in the formation of a premature termination codon (p.R454X), both of which were reported previously. Our results expand the spectrum of identified genetic variation in osteopetrosis and provide a deeper understanding of the relations between genotype and clinical characteristics of this disorder.
Collapse
Affiliation(s)
- Yu Chen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematological Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xianmin Guan
- Department of Hematological Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xianhao Wen
- Department of Hematological Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematological Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Dou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematological Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Correspondence: Ying Dou
| |
Collapse
|
4
|
Vacher J. OSTM1 pleiotropic roles from osteopetrosis to neurodegeneration. Bone 2022; 163:116505. [PMID: 35902071 DOI: 10.1016/j.bone.2022.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Autosomal recessive osteopetroses (ARO) are rare genetic skeletal disorders of high clinical and molecular heterogeneity with an estimated frequency of 1:250,000 worldwide. The manifestations are diverse and although individually rare, the various forms contribute to the prevalence of a significant number of affected individuals with considerable morbidity and mortality. Among the ARO classification, the most severe form is the autosomal recessive-5 (OPTB5) osteopetrosis (OMIM 259720) that results from homozygous mutation in the OSTM1 gene (607649). OSTM1 mutations account for approximately 5 % of instances of autosomal recessive osteopetrosis and lead to a highly debilitating form of the disease in infancy and death within the first few years of life (Sobacchi et al., 2013) [1].
Collapse
Affiliation(s)
- Jean Vacher
- Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Mutabaruka MS, Pata M, Vacher J. A Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis is a critical mediator of Ostm1 regulatory network in T lymphopoiesis. iScience 2022; 25:104160. [PMID: 35434560 PMCID: PMC9010627 DOI: 10.1016/j.isci.2022.104160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Ostm1 mutations cause the severe form of osteopetrosis with bone marrow deficiency in humans and mice, yet a role in T cell ontogeny remains to be determined. Herein, we show that thymi of the Ostm1-null mice (gl/gl) from P8-to-P15 become markedly hypocellular with disturbed architecture. Analysis of gl/gl early T cell program determined a major decrease of 3-fold in bone marrow common lymphoid precursors (CLP), 35-fold in early thymic precursors (ETPs) and 100-fold in T cell double positive subpopulations. Ostm1 ablation in T cell double negative (DN) also appears to induce fast-paced differentiation kinetics with a transitory intermediate CD44+CD25int subpopulation. Transgenic targeting Ostm1 expression from the gl/gl DN1 population partially rescued T cell subpopulations from ETP onwards and normalized the accelerated DN differentiation, indicating a cell-autonomous role for Ostm1. Transcriptome of early DN1 population identified an Ostm1 crosstalk with a Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis. Our findings establish that Ostm1 is an essential regulator of T cell ontogeny. Loss of Ostm1 causes severe thymus hypocellularity Ostm1 is a modulator of the T cell differentiation program from the CLPs onwards Targeted CD2-Ostm1 in Ostm1 null mice leads to partial rescue of DN differentiation Ostm1 null DN1 transcriptome identifies a Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis
Collapse
Affiliation(s)
- Marie S Mutabaruka
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| | - Monica Pata
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada.,Département de Médecine, Université de Montréal, Montréal, QC H3T 3J7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
6
|
Elson A, Stein M, Rabie G, Barnea-Zohar M, Winograd-Katz S, Reuven N, Shalev M, Sekeres J, Kanaan M, Tuckermann J, Geiger B. Sorting Nexin 10 as a Key Regulator of Membrane Trafficking in Bone-Resorbing Osteoclasts: Lessons Learned From Osteopetrosis. Front Cell Dev Biol 2021; 9:671210. [PMID: 34095139 PMCID: PMC8173195 DOI: 10.3389/fcell.2021.671210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Bone homeostasis is a complex, multi-step process, which is based primarily on a tightly orchestrated interplay between bone formation and bone resorption that is executed by osteoblasts and osteoclasts (OCLs), respectively. The essential physiological balance between these cells is maintained and controlled at multiple levels, ranging from regulated gene expression to endocrine signals, yet the underlying cellular and molecular mechanisms are still poorly understood. One approach for deciphering the mechanisms that regulate bone homeostasis is the characterization of relevant pathological states in which this balance is disturbed. In this article we describe one such “error of nature,” namely the development of acute recessive osteopetrosis (ARO) in humans that is caused by mutations in sorting nexin 10 (SNX10) that affect OCL functioning. We hypothesize here that, by virtue of its specific roles in vesicular trafficking, SNX10 serves as a key selective regulator of the composition of diverse membrane compartments in OCLs, thereby affecting critical processes in the sequence of events that link the plasma membrane with formation of the ruffled border and with extracellular acidification. As a result, SNX10 determines multiple features of these cells either directly or, as in regulation of cell-cell fusion, indirectly. This hypothesis is further supported by the similarities between the cellular defects observed in OCLs form various models of ARO, induced by mutations in SNX10 and in other genes, which suggest that mutations in the known ARO-associated genes act by disrupting the same plasma membrane-to-ruffled border axis, albeit to different degrees. In this article, we describe the population genetics and spread of the original arginine-to-glutamine mutation at position 51 (R51Q) in SNX10 in the Palestinian community. We further review recent studies, conducted in animal and cellular model systems, that highlight the essential roles of SNX10 in critical membrane functions in OCLs, and discuss possible future research directions that are needed for challenging or substantiating our hypothesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Grace Rabie
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Juraj Sekeres
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Benjamin Geiger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Vacher J, Bruccoleri M, Pata M. Ostm1 from Mouse to Human: Insights into Osteoclast Maturation. Int J Mol Sci 2020; 21:ijms21165600. [PMID: 32764302 PMCID: PMC7460669 DOI: 10.3390/ijms21165600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The maintenance of bone mass is a dynamic process that requires a strict balance between bone formation and resorption. Bone formation is controlled by osteoblasts, while osteoclasts are responsible for resorption of the bone matrix. The opposite functions of these cell types have to be tightly regulated not only during normal bone development, but also during adult life, to maintain serum calcium homeostasis and sustain bone integrity to prevent bone fractures. Disruption of the control of bone synthesis or resorption can lead to an over accumulation of bone tissue in osteopetrosis or conversely to a net depletion of the bone mass in osteoporosis. Moreover, high levels of bone resorption with focal bone formation can cause Paget’s disease. Here, we summarize the steps toward isolation and characterization of the osteopetrosis associated trans-membrane protein 1 (Ostm1) gene and protein, essential for proper osteoclast maturation, and responsible when mutated for the most severe form of osteopetrosis in mice and humans.
Collapse
Affiliation(s)
- Jean Vacher
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
- Departement de Medecine, Universite de Montreal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
- Correspondence:
| | - Michael Bruccoleri
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
- Departement de Medecine, Universite de Montreal, Montreal, QC H2W 1R7, Canada
| | - Monica Pata
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
| |
Collapse
|
8
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
9
|
Pata M, Vacher J. Ostm1 Bifunctional Roles in Osteoclast Maturation: Insights From a Mouse Model Mimicking a Human OSTM1 Mutation. J Bone Miner Res 2018; 33:888-898. [PMID: 29297601 DOI: 10.1002/jbmr.3378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 11/12/2022]
Abstract
Ostm1 mutations are responsible for the most severe form of osteopetrosis in human and mice. To gain insight into Ostm1 cellular functions, we engineered a conditional in-frame deletion of the Ostm1 transmembrane domain and generated the first Ostm1 mouse model with a human mutation. Systemic targeting of Ostm1 loss of transmembrane domain produced osteopetrosis, as in the null Ostm1 gl/gl mouse. Significantly, conditional osteoclast targeting of Ostm1 resulted in similar osteopetrosis, thereby demonstrating that the intrinsic Ostm1 osteoclast deficiency is solely responsible for the mouse phenotype. Our analysis showed oversized osteoclasts with enhanced multinucleation associated with stimulation of intracellular calcium levels, of Nfatc1 nuclear re-localization, and of specific downstream Nfatc1 target genes, providing compelling evidence that Ostm1 is a negative regulator of preosteoclast fusion. Moreover, mature OCs with Ostm1 loss of transmembrane domain show appropriate levels of intracellular acidification but an altered distribution pattern, highlighting misregulation of endolysosome localization and dispersion. Consistently, the hydrolases tartrate-resistant acid phosphatase (TRAP) and cathepsin K (Ctsk) normally produced are sequestered within the osteoclasts and are not extracellularly secreted. These studies defined bifunctional roles for Ostm1 as a major regulator of preosteoclast cytoskeletal rearrangements toward cell multinucleation and of mature osteoclast intracellular lysosomal trafficking and exocytosis mechanism, both of which are essential for bone resorption. Importantly, these Ostm1 molecular and regulatory functions could serve as preclinical targets in this mouse model toward osteoclastogenic pathologies as osteoporosis and inflammation-induced bone loss. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Monica Pata
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
10
|
Woldemichael T, Rosania GR. The physiological determinants of drug-induced lysosomal stress resistance. PLoS One 2017; 12:e0187627. [PMID: 29117253 PMCID: PMC5678708 DOI: 10.1371/journal.pone.0187627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs.
Collapse
Affiliation(s)
- Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tsukuba T, Sakai E, Nishishita K, Kadowaki T, Okamoto K. New functions of lysosomes in bone cells. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Barrallo-Gimeno A, Gradogna A, Zanardi I, Pusch M, Estévez R. Regulatory-auxiliary subunits of CLC chloride channel-transport proteins. J Physiol 2016; 593:4111-27. [PMID: 25762128 DOI: 10.1113/jp270057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/15/2015] [Indexed: 02/06/2023] Open
Abstract
The CLC family of chloride channels and transporters is composed by nine members, but only three of them, ClC-Ka/b, ClC-7 and ClC-2, have been found so far associated with auxiliary subunits. These CLC regulatory subunits are small proteins that present few common characteristics among them, both structurally and functionally, and their effects on the corresponding CLC protein are different. Barttin, a protein with two transmembrane domains, is essential for the membrane localization of ClC-K proteins and their activity in the kidney and inner ear. Ostm1 is a protein with a single transmembrane domain and a highly glycosylated N-terminus. Unlike the other two CLC auxiliary subunits, Ostm1 shows a reciprocal relationship with ClC-7 for their stability. The subcellular localization of Ostm1 depends on ClC-7 and not the other way around. ClC-2 is active on its own, but GlialCAM, a transmembrane cell adhesion molecule with two extracellular immunoglobulin (Ig)-like domains, regulates its subcellular localization and activity in glial cells. The common theme for these three proteins is their requirement for a proper homeostasis, since their malfunction leads to distinct diseases. We will review here their properties and their role in normal chloride physiology and the pathological consequences of their improper function.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, University of Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| | | | - Ilaria Zanardi
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genoa, Italy
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genoa, Italy
| | - Raúl Estévez
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, University of Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
13
|
Role of Ostm1 Cytosolic Complex with Kinesin 5B in Intracellular Dispersion and Trafficking. Mol Cell Biol 2015; 36:507-21. [PMID: 26598607 DOI: 10.1128/mcb.00656-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/17/2015] [Indexed: 01/05/2023] Open
Abstract
In humans and in mice, mutations in the Ostm1 gene cause the most severe form of osteopetrosis, a major bone disease, and neuronal degeneration, both of which are associated with early death. To gain insight into Ostm1 function, we first investigated by sequence and biochemical analysis an immature 34-kDa type I transmembrane Ostm1 protein with a unique cytosolic tail. Mature Ostm1 is posttranslationally processed and highly N-glycosylated and has an apparent mass of ∼60 kDa. Analysis the subcellular localization of Ostm1 showed that it is within the endoplasmic reticulum, trans-Golgi network, and endosomes/lysosomes. By a wide protein screen under physiologic conditions, several novel cytosolic Ostm1 partners were identified and validated, for which a direct interaction with the kinesin 5B heavy chains was demonstrated. These results determined that Ostm1 is part of a cytosolic scaffolding multiprotein complex, imparting an adaptor function to Ostm1. Moreover, we uncovered a role for the Ostm1/KIF5B complex in intracellular trafficking and dispersion of cargos from the endoplasmic reticulum to late endosomal/lysosomal subcellular compartments. These Ostm1 molecular and cellular functions could elucidate all of the pathophysiologic mechanisms underlying the wide phenotypic spectrum of Ostm1-deficient mice.
Collapse
|
14
|
Shin B, Yu J, Park ES, Choi S, Yu J, Hwang JM, Yun H, Chung YH, Hong KS, Choi JS, Takami M, Rho J. Secretion of a truncated osteopetrosis-associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down-regulation of the B lymphocyte-induced maturation protein 1 (BLIMP1)-nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem 2014; 289:35868-81. [PMID: 25359771 DOI: 10.1074/jbc.m114.589614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic mutations in osteoclastogenic genes are closely associated with osteopetrotic bone diseases. Genetic defects in OSTM1 (osteopetrosis-associated transmembrane protein 1) cause autosomal recessive osteopetrosis in humans. In particular, OSTM1 mutations that exclude the transmembrane domain might lead to the production of a secreted form of truncated OSTM1. However, the precise role of the secreted form of truncated OSTM1 remains unknown. In this study, we analyzed the functional role of truncated OSTM1 in osteoclastogenesis. Here, we showed that a secreted form of truncated OSTM1 binds to the cell surface of osteoclast (OC) precursors and inhibits the formation of multinucleated OCs through the reduction of cell fusion and survival. Truncated OSTM1 significantly inhibited the expression of OC marker genes through the down-regulation of the BLIMP1 (B lymphocyte-induced maturation protein 1)-NFATc1 (nuclear factor of activated T cells c1) axis. Finally, we demonstrated that truncated OSTM1 reduces lipopolysaccharide-induced bone destruction in vivo. Thus, these findings suggest that autosomal recessive osteopetrosis patients with an OSTM1 gene mutation lacking the transmembrane domain produce a secreted form of truncated OSTM1 that inhibits osteoclastogenesis.
Collapse
Affiliation(s)
- Bongjin Shin
- From the Department of Microbiology and Molecular Biology and
| | - Jungeun Yu
- From the Department of Microbiology and Molecular Biology and
| | - Eui-Soon Park
- From the Department of Microbiology and Molecular Biology and
| | - Seunga Choi
- From the Department of Microbiology and Molecular Biology and
| | - Jiyeon Yu
- From the Department of Microbiology and Molecular Biology and
| | - Jung Me Hwang
- From the Department of Microbiology and Molecular Biology and
| | - Hyeongseok Yun
- From the Department of Microbiology and Molecular Biology and
| | - Young-Ho Chung
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and
| | - Kwan Soo Hong
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Jong-Soon Choi
- the Division of Life Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea, and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Masamichi Takami
- the Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawaku 142-8555, Japan
| | - Jaerang Rho
- From the Department of Microbiology and Molecular Biology and the Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea,
| |
Collapse
|
15
|
Héraud C, Griffiths A, Pandruvada SNM, Kilimann MW, Pata M, Vacher J. Severe neurodegeneration with impaired autophagy mechanism triggered by ostm1 deficiency. J Biol Chem 2014; 289:13912-25. [PMID: 24719316 DOI: 10.1074/jbc.m113.537233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of Ostm1 leads to the most severe form of osteopetrosis in mice and humans. Because functional rescue of the osteopetrotic defect in these mice extended their lifespan from ∼3 weeks to 6 weeks, this unraveled a second essential role of Ostm1. We discovered that Ostm1 is highly expressed in the mouse brain in neurons, microglia, and astrocytes. At 3-4 weeks of age, mice with Ostm1 loss showed 3-10-fold stimulation of reactive gliosis, with an increased astrocyte cell population and microglia activation. This inflammatory response was associated with marked retinal photoreceptor degeneration and massive neuronal loss in the brain. Intracellular characterization of neurons revealed abnormal storage of carbohydrates, lipids, and ubiquitinated proteins, combined with marked accumulation of autophagosomes that causes frequent axonal swelling. Stimulation of autophagy was provided by specific markers and by significant down-regulation of the mammalian target of rapamycin signaling, identifying a cellular pathologic mechanism. A series of transgenic mouse lines specifically targeted to distinct central nervous system cell subpopulations determined that Ostm1 has a primary and autonomous role in neuronal homeostasis. Complete functional complementation demonstrated that the development of severe and rapid neurodegeneration in these mice is independent of the hematopoietic lineage and has clinical implications for treatment of osteopetrosis. Importantly, this study establishes a novel neurodegenerative mouse model critical for understanding the multistep pathogenic cascade of cellular autophagy disorders toward therapeutic strategy design.
Collapse
Affiliation(s)
- Céline Héraud
- From the Institut de Recherches Cliniques de Montréal (IRCM), Département de Médecine, Université de Montréal, Montréal, Québec H2W 1R7, Canada, the Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Adam Griffiths
- From the Institut de Recherches Cliniques de Montréal (IRCM), Département de Médecine, Université de Montréal, Montréal, Québec H2W 1R7, Canada, the Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Subramanya N M Pandruvada
- From the Institut de Recherches Cliniques de Montréal (IRCM), Département de Médecine, Université de Montréal, Montréal, Québec H2W 1R7, Canada, the Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Manfred W Kilimann
- the Department of Otolaryngology, Göttingen University Medical Center, D-37075 Göttingen, Germany, and the Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, D-37075 Göttingen, Germany
| | - Monica Pata
- From the Institut de Recherches Cliniques de Montréal (IRCM), Département de Médecine, Université de Montréal, Montréal, Québec H2W 1R7, Canada, the Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Jean Vacher
- From the Institut de Recherches Cliniques de Montréal (IRCM), Département de Médecine, Université de Montréal, Montréal, Québec H2W 1R7, Canada, the Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada,
| |
Collapse
|
16
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
17
|
Ott CE, Fischer B, Schröter P, Richter R, Gupta N, Verma N, Kabra M, Mundlos S, Rajab A, Neitzel H, Kornak U. Severe neuronopathic autosomal recessive osteopetrosis due to homozygous deletions affecting OSTM1. Bone 2013; 55:292-7. [PMID: 23685543 DOI: 10.1016/j.bone.2013.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/18/2013] [Accepted: 04/10/2013] [Indexed: 01/12/2023]
Abstract
Autosomal recessive osteopetrosis (ARO, MIM 259700) is a genetically heterogeneous rare skeletal disorder characterized by failure of osteoclast resorption leading to pathologically increased bone density, bone marrow failure, and fractures. In the neuronopathic form neurological complications are especially severe and progressive. An early identification of the underlying genetic defect is imperative for assessment of prognosis and treatment by hematopoietic stem cell transplantation. Here we describe for the first time homozygous microdeletions of different sizes affecting the OSTM1 gene in two unrelated consanguineous families with children suffering from neuronopathic infantile malignant osteopetrosis. Patients showed an exceptionally severe phenotype with variable CNS malformations, seizures, blindness, and deafness. Multi-organ failure due to sepsis led to early death between six weeks and five months of age in spite of intensive care treatment. Analysis of the breakpoints revealed different mechanisms underlying both rearrangements. Microdeletions seem to represent a considerable portion of OSTM1 mutations and should therefore be included in a sufficient diagnostic screening.
Collapse
Affiliation(s)
- Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Reissmann M, Ludwig A. Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals. Semin Cell Dev Biol 2013; 24:576-86. [PMID: 23583561 DOI: 10.1016/j.semcdb.2013.03.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
The characterisation of the pleiotropic effects of coat colour-associated mutations in mammals illustrates that sensory organs and nerves are particularly affected by disorders because of the shared origin of melanocytes and neurocytes in the neural crest; e.g. the eye-colour is a valuable indicator of disorders in pigment production and eye dysfunctions. Disorders related to coat colour-associated alleles also occur in the skin (melanoma), reproductive tract and immune system. Additionally, the coat colour phenotype of an individual influences its general behaviour and fitness. Mutations in the same genes often produce similar coat colours and pleiotropic effects in different species (e.g., KIT [reproductive disorders, lethality], EDNRB [megacolon] and LYST [CHS]). Whereas similar disorders and similar-looking coat colour phenotypes sometimes have a different genetic background (e.g., deafness [EDN3/EDNRB, MITF, PAX and SNAI2] and visual diseases [OCA2, RAB38, SLC24A5, SLC45A2, TRPM1 and TYR]). The human predilection for fancy phenotypes that ignore disorders and genetic defects is a major driving force for the increase of pleiotropic effects in domestic species and laboratory subjects since domestication has commenced approximately 18,000 years ago.
Collapse
Key Words
- AS
- ASIP
- ATRN
- Agouti signalling protein
- Albino
- Angelman syndrome
- Attractin (mahogany)
- BLOC
- Biogenesis of lysosomal organelles complex
- CCSD
- CHS
- CSD
- CSNB
- Canine congenital sensorineural deafness
- Chediak-Higashi syndrome
- Coat colour gene
- Congenital sensorineural deafness
- Congenital stationary night blindness
- Disorder
- EDN3
- EDNRB
- Endothelin 3
- Endothelin receptor type B
- Epistasis
- Fitness
- GS
- Griscelli syndrome (type 1 or 2)
- HPS
- HSCR
- Hermansky-Pudlak syndrome with different types
- Hirschsprung disease
- IPE
- Iris pigment epithelium
- KIT
- KIT ligand (steel factor)
- KITLG
- LFS
- LYST
- Lavender foal syndrome
- Lethal
- Leucism
- Lysosomal trafficking regulator
- MC1R
- MCOA
- MCOLN3
- MGRN1
- MITF
- MYO5A
- Mahogunin ring finger 1 (E3 ubiquitin protein ligase)
- Melanocortin 1 receptor
- Melanoma
- Microphthalmia-associated transcription factor
- Mucolipin 3 (TRPML3)
- Multiple congenital ocular anomalies
- Myosin VA (heavy chain 12, myoxin)
- OA
- OCA
- OCA2
- OLWS
- OSTM1
- Ocular albinism
- Oculocutaneous albinism II (pink-eye dilution homolog)
- Oculocutaneous albinism type 1–4
- Osteopetrosis associated transmembrane protein 1 (Grey lethal osteopetrosis)
- Overo lethal white syndrome
- PAX3
- PMEL
- PWS
- Paired box 3
- Pleiotropy
- Prader-Willi syndrome
- Premelanosome protein (Pmel17, SILV)
- RAB27A
- RAB27A member RAS oncogene family
- RAB38
- RAB38 member RAS oncogene family
- RPE
- Reproduction
- Retinal pigmented epithelium
- SLC24A5
- SLC2A9
- SLC45A2
- SNAI2
- STX17
- Snail homolog 2 (Drosophila), (SLUG), SOX10, SRY (sex determining region Y)-box 10
- Solute carrier family 2 (facilitated glucose transporter), member 9
- Solute carrier family 24, member 5
- Solute carrier family 45, member 2, MATP
- Syntaxin 17
- TRPM1
- TYR
- Tameness
- Transient receptor potential cation channel, subfamily M, member 1 (melastatin-1)
- Tyrosinase, TYRP1, Tyrosinase-related protein 1
- V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog, tyrosine kinase receptor (c-kit)
- WS
- Waardenburg syndrome (type 1, type 2 combined with Tietz syndrome type 3 Klein-Waardenburg syndrome, type 4 Waardenburg-Shah syndrome)
- alpha-melanocyte-stimulating hormone
- αMSH
Collapse
Affiliation(s)
- Monika Reissmann
- Humboldt University Berlin, Department for Crop and Animal Sciences, Berlin, Germany.
| | | |
Collapse
|
19
|
Kantaputra PN, Thawanaphong S, Issarangporn W, Klangsinsirikul P, Ohazama A, Sharpe P, Supanchart C. Long-term survival in infantile malignant autosomal recessive osteopetrosis secondary to homozygous p.Arg526Gln mutation in CLCN7. Am J Med Genet A 2012; 158A:909-16. [DOI: 10.1002/ajmg.a.35264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 12/19/2011] [Indexed: 01/23/2023]
|
20
|
Endoscopic third ventriculostomy for the treatment of osteopetrosis-related hydrocephalus: a case-based update. Childs Nerv Syst 2011; 27:1861-5. [PMID: 21552996 DOI: 10.1007/s00381-011-1474-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Osteopetrosis is a heterogenous group of disorders characterised by a failure of normal bone maturation and abnormal bone sclerosis secondary to the failure of osteoclasts to resorb bone. The most serious consequences of this disorder affect the nervous system. Patients with infantile osteopetrosis (also called malignant osteopetrosis) can develop a gradual occlusion of, or narrowing of the skull foramina at the skull base, resulting in the compression of vital nerves and vessels. Hydrocephalus has been identified in these patients, particularly those with the autosomal recessive variety of osteopetrosis. Although the exact aetiology is uncertain, it is possible that venous outflow obstruction at the cranial foramina along with a reduced intracranial space for cerebrospinal fluid (CSF) to flow around the hemispheres could be contributing factors. There are few reports in the literature on the management of this unusual association, hydrocephalus secondary to osteopetrosis. The authors report one such case where this association has been successfully surgically treated with endoscopic third ventriculostomy as a form of CSF diversion. CASE REPORT We successfully treated a 9-month-old girl with osteopetrosis and symptomatic hydrocephalus with an endoscopic third ventriculostomy (ETV). She later went on to have stem cell transplantation to treat the osteopetrosis. CONCLUSIONS Most reports in the literature have identified ventriculoperitoneal (or other distal site) shunting as the treatment of choice for hydrocephalus in this setting. We would like to highlight that ETV is another effective and often very suitable method of CSF diversion in these patients.
Collapse
|
21
|
Distinct neuropathologic phenotypes after disrupting the chloride transport proteins ClC-6 or ClC-7/Ostm1. J Neuropathol Exp Neurol 2010; 69:1228-46. [PMID: 21107136 DOI: 10.1097/nen.0b013e3181ffe742] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The proteins ClC-6 and ClC-7 are expressed in the endosomal-lysosomal system. Because Clcn6-deficient mice display some features of neuronal ceroid lipofuscinosis (NCL), CLCN6 may be a candidate gene for novel forms of NCL. Using landmarks of disease progression from NCL mouse models as a guide, we examined neuropathologic alterations in the central nervous system of Clcn6(-/-), Clcn7(-/-), andgl mice. gl mice bear a mutation in Ostm1, the β-subunit critical for Clcn7 function. Severely affected Clcn7(-/-) and gl mice have remarkably similar neuropathologic phenotypes, with pronounced reactive changes and neuron loss in the thalamocortical system, similar to findings in early-onset forms of NCL. In contrast, Clcn6(-/-) mice display slowly progressive, milder neuropathologic features with very little thalamic involvement or microglial activation. These findings detail for the first time the markedly different neuropathologic consequences of mutations in these two CLC genes. Clcn7(-/-) and gl mice bear a close resemblance to the progressive neuropathologic phenotypes of early onset forms of NCL, whereas the distinct phenotype of Clcn6-deficient mice suggests that this gene could be a candidate for a later-onset form of mild neurologic dysfunction with some NCL-like features.
Collapse
|
22
|
Yamashita J, Koi K, Yang DY, McCauley LK. Effect of zoledronate on oral wound healing in rats. Clin Cancer Res 2010; 17:1405-14. [PMID: 21149614 DOI: 10.1158/1078-0432.ccr-10-1614] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Osteonecrosis of the jaw (ONJ) is a growing concern in patients who receive bisphosphonates that target osteoclasts. As osteoclasts play multifunctional roles in the bone marrow, their suppression likely affects bone homeostasis and alters wound healing of the jaw. The objective was to delineate the impact of osteoclast suppression in the bone marrow and wound healing of the jaw. EXPERIMENTAL DESIGN Zoledronate was administered to senile rats for 14 weeks. A portion of the gingiva was removed to denude the palatal bone. Gene expression in the bone marrow was assessed and histologic sections were analyzed to determine the wound healing status. RESULTS Angiogenesis-related genes, CD31 and VEGF-A, were not altered by zoledronate. VEGF-C, which plays a role in lymphangiogenesis, was suppressed. There was a decrease in gene expression of Tcirg1 and MMP-13. Bone denudation caused extensive osteocyte death indicative of bone necrosis. In zoledronate-treated rats, the necrotic bone was retained in the wound while, in controls, osteoclastic resorption of the necrotic bone was prominent. Even though large necrotic bone areas existed in zoledronate-treated rats, overlaying soft tissue healed clinically. Immunohistochemical staining showed rich vascularity in the overlaying soft tissue. CONCLUSIONS Zoledronate therapy impacts bone marrow by suppressing genes associated with lymphangiogenesis and tissue remodeling, such as VEGF-C and MMP-13. Zoledronate was associated with impaired osseous wound healing but had no effect on angiogenic markers in the bone marrow or soft tissue wound healing. Zoledronate selectively blunts healing in bone but does not affect soft tissue healing in the oral cavity.
Collapse
Affiliation(s)
- Junro Yamashita
- Department of Biologic Materials and Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | |
Collapse
|
23
|
Mazzolari E, Forino C, Razza A, Porta F, Villa A, Notarangelo LD. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am J Hematol 2009; 84:473-9. [PMID: 19507210 DOI: 10.1002/ajh.21447] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Infantile malignant osteopetrosis (IMO) includes various genetic disorders that affect osteoclast development and/or function. Genotype-phenotype correlation studies in IMO have been hampered by the rarity and heterogeneity of the disease and by the severity of the clinical course, which often leads to death early in life. We report on the clinical and molecular findings and treatment in 20 consecutive patients (11 males, nine females) with IMO, diagnosed at a single center in the period 1991-2008. Mean age at diagnosis was 3.9 months, and mean follow-up was 66.75 months. Mutations in TCIRG1, OSTM1, ClCN7, and TNFRSF11A genes were detected in nine, three, one, and one patients, respectively. Six patients remain genetically undefined. OSTM1 and ClCN7 mutations were associated with poor neurologic outcome. Among nine patients with TCIRG1 defects, six presented with hypogammaglobulinemia, and one showed primary pulmonary hypertension. Fourteen patients received hematopoietic cell transplantation; of these, nine are alive and eight of them have evidence of osteoclast function. These data may provide a basis for informed decisions regarding the care of patients with IMO.
Collapse
Affiliation(s)
- Evelina Mazzolari
- Department of Pediatrics, University of Brescia, 25123 Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 2009; 84:1-12. [PMID: 19082854 DOI: 10.1007/s00223-008-9196-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/07/2008] [Indexed: 02/06/2023]
Abstract
Human recessive osteopetrosis (ARO) represents a group of diseases in which, due to a defect in osteoclasts, bone resorption is prevented. The deficit could arise either from failure in osteoclast differentiation or from inability to perform resorption by mature, multinucleated, but nonfunctional cells. Historically, osteopetrosis due to both these mechanisms was found in spontaneous and artificially created mouse mutants, but the first five genes identified in human ARO (CA-II, TCIRG1, ClCN7, OSTM1, and PLEKHM1) were all involved in the effector function of mature osteoclasts, being linked to acidification of the cell/bone interface or to intracellular processing of the resorbed material. Differentiation defects in human ARO have only recently been described, following the identification of mutations in both RANKL and RANK, which define a new form of osteoclast-poor ARO, as expected from biochemical, cellular, and animal studies. The molecular dissection of ARO has prognostic and therapeutic implications. RANKL-dependent patients, in particular, represent an interesting subset which could benefit from mesenchymal cell transplant and/or administration of soluble RANKL cytokine.
Collapse
Affiliation(s)
- Anna Villa
- Istituto di Tecnologie Biomediche, CNR, via Cervi 93, Segrate, Italy.
| | | | | | | | | |
Collapse
|
25
|
Pata M, Héraud C, Vacher J. OSTM1 bone defect reveals an intercellular hematopoietic crosstalk. J Biol Chem 2008; 283:30522-30. [PMID: 18790735 PMCID: PMC2662145 DOI: 10.1074/jbc.m805242200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/08/2008] [Indexed: 12/31/2022] Open
Abstract
The most severe form of bone autosomal recessive osteopetrosis both in humans and in the gray-lethal (gl/gl) mouse is caused by mutations in the Ostm1 gene. Although osteopetrosis is usually associated with a defect in the hematopoietic-derived osteoclast cells, this study determined that Ostm1 is expressed in many hematopoietic cells of the myeloid and lymphoid B- and T-lineages. Hematopoiesis in gl/gl mice is characterized by a marked expansion of the osteoclast lineage but also by deregulation of the lymphoid lineages with a decrease in B-lymphoid cell populations and altered distribution in T-lymphoid double and single CD4 CD8-positive cells. In committed gl/gl osteoclasts, specific Ostm1 transgene targeting showed a requirement of additional factors and/or cells for normal osteoclast function, and importantly, defined the gl osteopetrotic defect as non-cell autonomous. By contrast, gl/gl osteoclast, B- and T-lymphoid lineage phenotypes were rescued when Ostm1 is expressed under PU.1 regulation from a bacterial artificial chromosome transgene, which established an essential role for Ostm1 in hematopoietic cells in addition to osteoclasts. Together these experiments are the first to demonstrate the existence of hematopoietic crosstalk for the production of functional and active osteoclasts.
Collapse
Affiliation(s)
- Monica Pata
- Department of Cellular Interactions and Development, Faculté de Médecine de l'Université de Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
26
|
Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet 2008; 124:561-77. [DOI: 10.1007/s00439-008-0583-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/28/2008] [Indexed: 02/05/2023]
|
27
|
Al-Azzawi F. Prevention of postmenopausal osteoporosis and associated fractures: Clinical evaluation of the choice between estrogen and bisphosphonates. Gynecol Endocrinol 2008; 24:601-9. [PMID: 19031214 DOI: 10.1080/09513590802296245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Villa A, Pangrazio A, Caldana E, Guerrini M, Vezzoni P, Frattini A, Sobacchi C. Prognostic potential of precise molecular diagnosis of Autosomal Recessive Osteopetrosis with respect to the outcome of bone marrow transplantation. Cytotechnology 2008; 58:57-62. [PMID: 19002772 DOI: 10.1007/s10616-008-9165-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is often the only practical approach to fatal genetic defects. One of the first pathologies which HSCT was applied to was Autosomal Recessive Osteopetrosis (ARO), a rare genetic bone disease in which a deficit in bone resorption by osteoclasts leads to increased bone density and secondary defects. The disease is often lethal early in life unless treated with HSCT. In utero transplantation (IUT) of the oc/oc mouse, reproducing the clinical features of a subset of ARO, has demonstrated that the quality of life and the survival of transplanted animals are greatly improved, suggesting that a similar protocol could be applied to humans. However, recently the dissection of the molecular bases of the disease has shown that ARO is genetically heterogeneous and has revealed the presence of subsets of patients which do not benefit from HSCT. This observation highlights the importance of molecular diagnosing ARO to identify and establish the proper therapies for a better prognosis. In particular, on the basis of experimental results in murine models, efforts should be undertaken to develop approaches such as IUT and new pharmacological strategies.
Collapse
Affiliation(s)
- Anna Villa
- Istituto di Tecnologie Biomediche, CNR, via F.lli Cervi 93, 20090, Segrate, Italy,
| | | | | | | | | | | | | |
Collapse
|
29
|
Brain lipid composition in grey-lethal mutant mouse characterized by severe malignant osteopetrosis. Glycoconj J 2008; 26:623-33. [DOI: 10.1007/s10719-008-9179-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 12/11/2022]
|
30
|
Jentsch TJ. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 2008; 43:3-36. [PMID: 18307107 DOI: 10.1080/10409230701829110] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CLC genes are expressed in species from bacteria to human and encode Cl(-)-channels or Cl(-)/H(+)-exchangers. CLC proteins assemble to dimers, with each monomer containing an ion translocation pathway. Some mammalian isoforms need essential beta -subunits (barttin and Ostm1). Crystal structures of bacterial CLC Cl(-)/H(+)-exchangers, combined with transport analysis of mammalian and bacterial CLCs, yielded surprising insights into their structure and function. The large cytosolic carboxy-termini of eukaryotic CLCs contain CBS domains, which may modulate transport activity. Some of these have been crystallized. Mammals express nine CLC isoforms that differ in tissue distribution and subcellular localization. Some of these are plasma membrane Cl(-) channels, which play important roles in transepithelial transport and in dampening muscle excitability. Other CLC proteins localize mainly to the endosomal-lysosomal system where they may facilitate luminal acidification or regulate luminal chloride concentration. All vesicular CLCs may be Cl(-)/H(+)-exchangers, as shown for the endosomal ClC-4 and -5 proteins. Human diseases and knockout mouse models have yielded important insights into their physiology and pathology. Phenotypes and diseases include myotonia, renal salt wasting, kidney stones, deafness, blindness, male infertility, leukodystrophy, osteopetrosis, lysosomal storage disease and defective endocytosis, demonstrating the broad physiological role of CLC-mediated anion transport.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| |
Collapse
|
31
|
Abstract
UNLABELLED Infantile ARO is a genetic disorder characterized by osteoclast dysfunction that leads to osteopetrosis. We describe a novel mutation affecting the OSTM1 locus responsible for ARO. In addition to common clinical features of osteopetrosis, the patient developed a unique neuronal pathology that provided evidence for an essential role of OSTM1 in normal neuronal cell development. INTRODUCTION Infantile autosomal recessive osteopetrosis (ARO) is a genetic disorder characterized by osteoclast dysfunction that leads to osteopetrosis. We describe a novel mutation affecting the OSTM1 locus responsible for ARO. In addition to common clinical features of osteopetrosis, the patient developed a unique neuronal pathology that provided evidence for an essential role of OSTM1 in normal neuronal cell development. MATERIALS AND METHODS We report a new case of ARO caused by an homozygous mutation in OSTM1. In addition to osteopetrosis and bone marrow failure, this patient also had neurological impairment not related to bone entrapment. Retinal dystrophy with absent evoked visual potentials and sensorineural deafness were documented, as well as cerebral atrophy and bilateral atrial subependymal heterotopias. RESULTS The patient developed generalized seizures and had a profound developmental delay. Nerve biopsy failed to show inclusion material suggestive of neuroaxonal dystrophy. Bone marrow transplantation was declined considering the severe neurological compromise. The patient died at 1 yr of age. Osteoclasts derived from peripheral blood were mature and multinucleated. Expression analysis showed that the amount of OSTM1 cDNA transcript was significantly lowered but not absent. CONCLUSIONS These results support the role of OSTM1 in osteoclast function and activation. However, they also suggest that OSTM1 has a primary role in neural development not related to lysosomal dysfunction.
Collapse
|
32
|
Askmyr MK, Fasth A, Richter J. Towards a better understanding and new therapeutics of osteopetrosis. Br J Haematol 2008; 140:597-609. [PMID: 18241253 DOI: 10.1111/j.1365-2141.2008.06983.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lack of or dysfunction in osteoclasts result in osteopetrosis, a group of rare but often severe, genetic disorders affecting skeletal tissue. Increase in bone mass results in skeletal malformation and bone marrow failure that may be fatal. Many of the underlying defects have lately been characterized in humans and in animal models of the disease. In humans, these defects often involve mutations in genes expressing proteins involved in the acidification of the osteoclast resorption compartment, a process necessary for proper bone degradation. So far, the only cure for children with severe osteopetrosis is allogeneic hematopoietic stem cell (HSC) transplantation but without a matching donor this form of therapy is far from optimal. The characterization of the genetic defects opens up the possibility for gene replacement therapy as an alternative. Accordingly, HSC-targeted gene therapy in a mouse model of infantile malignant osteopetrosis was recently shown to correct many aspects of the disease.
Collapse
Affiliation(s)
- Maria K Askmyr
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | | | | |
Collapse
|
33
|
Feigin ME, Malbon CC. OSTM1 regulates beta-catenin/Lef1 interaction and is required for Wnt/beta-catenin signaling. Cell Signal 2008; 20:949-57. [PMID: 18296023 DOI: 10.1016/j.cellsig.2008.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
The Wnt/beta-catenin signaling pathway controls key aspects of embryonic development and adult tissue homeostasis, including the formation and maintenance of bone. Recently, mutations in the OSTM1 gene were found to be the cause of severe autosomal recessive osteopetrosis in both the mouse and humans. This disorder is characterized by increased bone mass resulting from a defect in osteoclast maturation. The possible role of OSTM1 in signaling of the Wnt/beta-catenin "canonical" pathway was investigated in totipotent mouse F9 embryonal teratocarcinoma cells. Overexpression of OSTM1 in F9 cells increased Wnt3a-responsive beta-catenin accumulation and Lef/Tcf-sensitive transcription. Similarly, knockdown of endogenous OSTM1 attenuated the ability of Wnt3a to stimulate the canonical signaling pathway. An OSTM1 mutant (detected in humans with osteopetrosis) was expressed in F9 cells and found to inhibit Wnt-stimulated beta-catenin stabilization, gene transcription, and primitive endoderm formation. Expression of this OSTM1 C-terminal deletion mutant attenuated Lef/Tcf-sensitive gene transcription, even when transcription was activated by expression of a constitutively-active form of beta-catenin. However, expression of this OSTM1 C-terminal deletion mutant was unable to alter Lef/Tcf-sensitive gene transcription when transcription was activated by expression of a beta-catenin/Lef chimeric protein. From the standpoint of protein-protein interactions, expression of wild-type OSTM1 stimulated whereas mutant OSTM1 inhibited, the Wnt-dependent association of beta-catenin and Lef1. On the foundation of these experiments, we propose that the human mutations in OSTM1 such as the C-terminal deletion mutant studied herein provoke dysregulation of the canonical Wnt/beta-catenin signaling pathway, providing a molecular basis for severe autosomal recessive osteopetrosis.
Collapse
Affiliation(s)
- Michael E Feigin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, United States.
| | | |
Collapse
|
34
|
Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F, Jacobs R, Peruzzi B, Teti A, Helfrich MH, Rogers MJ, Villa A, Van Hul W. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 2007; 117:919-30. [PMID: 17404618 PMCID: PMC1838941 DOI: 10.1172/jci30328] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/23/2007] [Indexed: 12/23/2022] Open
Abstract
This study illustrates that Plekhm1 is an essential protein for bone resorption, as loss-of-function mutations were found to underlie the osteopetrotic phenotype of the incisors absent rat as well as an intermediate type of human osteopetrosis. Electron and confocal microscopic analysis demonstrated that monocytes from a patient homozygous for the mutation differentiated into osteoclasts normally, but when cultured on dentine discs, the osteoclasts failed to form ruffled borders and showed little evidence of bone resorption. The presence of both RUN and pleckstrin homology domains suggests that Plekhm1 may be linked to small GTPase signaling. We found that Plekhm1 colocalized with Rab7 to late endosomal/lysosomal vesicles in HEK293 and osteoclast-like cells, an effect that was dependent on the prenylation of Rab7. In conclusion, we believe PLEKHM1 to be a novel gene implicated in the development of osteopetrosis, with a putative critical function in vesicular transport in the osteoclast.
Collapse
Affiliation(s)
- Liesbeth Van Wesenbeeck
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Paul R. Odgren
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Fraser P. Coxon
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Annalisa Frattini
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Pierre Moens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Bram Perdu
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Carole A. MacKay
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Els Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Jean-Pierre Timmermans
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Filip Vanhoenacker
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Ruben Jacobs
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Barbara Peruzzi
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Anna Teti
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Miep H. Helfrich
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Michael J. Rogers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Anna Villa
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Medicine and Therapeutics, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Instituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
Pediatric Orthopaedics, Catholic University of Leuven, Leuven, Belgium.
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium.
Department of Experimental Medicine, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
35
|
Karsdal MA, Qvist P, Christiansen C, Tankó LB. Optimising antiresorptive therapies in postmenopausal women: why do we need to give due consideration to the degree of suppression? Drugs 2007; 66:1909-18. [PMID: 17100403 DOI: 10.2165/00003495-200666150-00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accelerated bone turnover with bone resorption exceeding bone formation is a major mechanism underlying postmenopausal bone loss and hence the development of osteoporosis. Accordingly, inhibition of bone resorption is a rational approach for the prevention of osteoporosis. In this context, the most logical option, hormone replacement therapy, reverses the rate of bone turnover to premenopausal levels, whereas the magnitude of inhibition by amino-bisphosphonates and the recently introduced anti-receptor activator of NFkappaB ligand (RANKL) antibody often exceeds this. As bone turnover has crucial implications for the continuous renewal of bone tissue, the over-suppression of bone turnover has potential consequences for bone quality and strength. Long-term treatment with potent bisphosphonates has recently been associated with osteonecrosis of the jaw and dose-dependent increases in micro-crack accumulation in animals. Although these observations are the subject of ongoing discussions, it is timely to discuss whether the over-suppression of bone turnover below premenopausal levels is really our ultimate goal when defining the success criteria for antiresorptive agents. In this review, the implications of high and excessively low bone turnover of endogenous origin for bone quality, fracture risk and integrity of the jaw are discussed. In addition, animal and clinical research revealing initial findings regarding the potential adverse effects of drug-induced suppression of bone remodeling are summarised. The inhibition of bone resorption, which is either transient between doses (e.g. with calcitonin) or does not exceed premenopausal levels (with hormone replacement therapy or selective estrogen receptor modulators), is preferable because it not only provides similar antifracture efficacy but can also assist in the maintenance of the dynamic repair of micro-cracks/micro-fractures.
Collapse
|
36
|
Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, Rucci F, Lucchini F, Ravanini M, Facchetti F, Abinun M, Vezzoni P, Villa A, Frattini A. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res 2006; 21:1098-105. [PMID: 16813530 DOI: 10.1359/jbmr.060403] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED We report three novel osteopetrosis patients with OSTM1 mutations and review two that have been previously described. Our analysis suggests that OSTM1 defines a new subset of patients with severe central nervous system involvement. This defect is also present in the gl mouse, which could represent a good model to study the role of the gene in the pathogenesis of this disease. INTRODUCTION Autosomal recessive osteopetrosis (ARO) is a severe hereditary bone disease whose cellular basis is in the osteoclast, but with heterogeneous molecular defects. In addition to the TCIRG1 and the ClCN7 genes, whose mutations account for approximately 55% and 10% of cases, respectively, the OSTM1 gene has been described thus far in only two ARO patients. materials and methods: We report here three novel ARO patients presenting with severe primary central nervous system involvement in addition to the classical stigmata of severe bone sclerosis, growth failure, anemia, thrombocytopenia, and visual impairment with optic atrophy. In addition we analyzed the brain morphology and histology of the grey lethal mutant mouse. RESULTS The analysis of the OSTM1 gene in two patients, both from Kuwait, showed homozygous two nucleotide deletion in exon 2, leading to a frameshift and premature termination. The third (Lebanese) patient showed a single point mutation in exon 1, leading to a nonsense mutation. The clinical neurological evaluation of the two Kuwaiti patients by CT and MRI scans showed a defect in the white matter, with a specific diagnosis of severe cerebral atrophy. The gl brain showed a diffuse translucent appearance with loss of the normal demarcation between the white and the grey matter, features consistent with myelin loss or hypomyelination. Histological and myelin staining analysis evidenced an atrophy of the corpus callosum with loss of myelin fibers, and in cortical areas, loss of the normal lamination consistent with multiple foci of cortical dysplasia. CONCLUSIONS These findings suggest that OSTM1-dependent ARO defines a new subset of patients with severe central nervous system involvement leading to a very poor prognosis. The fact that central nervous system involvement is also present in the gl mouse mutant suggests that this mouse is a good model to test possible therapies.
Collapse
|
37
|
Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 2006; 440:220-3. [PMID: 16525474 DOI: 10.1038/nature04535] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 12/16/2005] [Indexed: 01/28/2023]
Abstract
Mutations in ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, cause osteopetrosis and lysosomal storage disease in humans and mice. Severe osteopetrosis is also observed with mutations in the OSTM1 gene, which encodes a membrane protein of unknown function. Here we show that both ClC-7 and Ostm1 proteins co-localize in late endosomes and lysosomes of various tissues, as well as in the ruffled border of bone-resorbing osteoclasts. Co-immunoprecipitations show that ClC-7 and Ostm1 form a molecular complex and suggest that Ostm1 is a beta-subunit of ClC-7. ClC-7 is required for Ostm1 to reach lysosomes, where the highly glycosylated Ostm1 luminal domain is cleaved. Protein but not RNA levels of ClC-7 are greatly reduced in grey-lethal mice, which lack Ostm1, suggesting that the ClC-7-Ostm1 interaction is important for protein stability. As ClC-7 protein levels in Ostm1-deficient tissues and cells, including osteoclasts, are decreased below 10% of normal levels, Ostm1 mutations probably cause osteopetrosis by impairing the acidification of the osteoclast resorption lacuna, which depends on ClC-7 (ref. 3). The finding that grey-lethal mice, just like ClC-7-deficient mice, show lysosomal storage and neurodegeneration in addition to osteopetrosis implies a more general importance for ClC-7-Ostm1 complexes.
Collapse
Affiliation(s)
- Philipp F Lange
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
38
|
Nicholls BM, Bredius RGM, Hamdy NAT, Gerritsen EJA, Lankester AC, Hogendoorn PCW, Nesbitt SA, Horton MA, Flanagan AM. Limited rescue of osteoclast-poor osteopetrosis after successful engraftment by cord blood from an unrelated donor. J Bone Miner Res 2005; 20:2264-70. [PMID: 16294279 DOI: 10.1359/jbmr.050807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 07/19/2005] [Accepted: 08/04/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED We report on a case of osteoclast-poor osteopetrosis who received a hematopoietic stem cell graft and, despite hematological engraftment, showed little signs of response in the skeletal defect. Clinical and laboratory studies supported the concept that the bone microenvironment remained abnormal, thus reducing the clinical response to transplantation. INTRODUCTION Osteopetrosis is a rare genetic disorder characterized by severely reduced bone resorption resulting from a defect in either osteoclast development (osteoclast-poor osteopetrosis) or activation (osteoclast-rich osteopetrosis). Patients with osteoclast-rich osteopetrosis can be rescued by allogenic hematopoietic stem cell transplantation; however, little information exists concerning the success of transplantation as a treatment for osteoclast-poor osteopetrosis. We report on a child with osteoclast-poor osteopetrosis whose diagnosis was delayed, consequently receiving a cord blood transplant from an unrelated donor at the age of 8 years. Engraftment was deemed successful by peripheral blood genotyping, although >3 years after transplantation there was little rescue of the skeletal defect and anemia, and extramedullary hematopoiesis persisted. MATERIALS AND METHODS Peripheral blood mononuclear cells from the osteopetrosis patient, before and after transplantation, were used to generate osteoclasts in vitro in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. RESULTS Before transplantation few, small mononuclear osteoclasts formed (F-actin ring-positive cells, co-localizing with vitronectin receptor [alphavbeta3 integrin] and TRACP) associated with occasional, small resorption lacunae. Low levels of collagen C-terminal telopeptide (CTx) fragments were released from these cultures as assessed by ELISA (CrossLaps; patient, 12.85 nM; control, 448.6 nM). In contrast, osteoclasts formed in cultures after transplantation formed to a similar degree to control cultures from healthy individuals: large numbers of osteoclasts containing numerous nuclei were present, and approximately 50% of the surface of bone slices was resorbed, associated with intermediate levels of collagen fragment release (116.48 nM). The culture data reflect the histopathology and radiological findings and also support previous studies showing that neither M-CSF nor RANKL rescues osteoclast-poor osteopetrosis. CONCLUSIONS This is the first case reported in which a successful hematopoietic engraftment failed to correct an osteopetrotic skeletal defect, and this finding may be credited to the age at which the child was transplanted.
Collapse
Affiliation(s)
- Brian M Nicholls
- Department of Medicine, Bone and Mineral Centre, University College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int 2005; 77:263-74. [PMID: 16307387 DOI: 10.1007/s00223-005-0027-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 04/08/2005] [Indexed: 12/15/2022]
Abstract
The osteopetroses are a heterogeneous group of bone remodeling disorders characterized by an increase in bone density due to a defect in osteoclastic bone resorption. In humans, several types can be distinguished and a classification has been made based on their mode of inheritance, age of onset, severity, and associated clinical symptoms. The best-known forms of osteopetrosis are the malignant and intermediate autosomal recessive forms and the milder autosomal dominant subtypes. In addition to these forms, a restricted number of cases have been reported in which additional clinical features unrelated to the increased bone mass occur. During the last years, molecular genetic studies have resulted in the identification of several disease-causing gene mutations. Thus far, all genes associated with a human osteopetrosis encode proteins that participate in the functioning of the differentiated osteoclast. This contributed substantially to the understanding of osteoclast functioning and the pathogenesis of the human osteopetroses and will provide deeper insights into the molecular pathways involved in other bone pathologies, including osteoporosis.
Collapse
Affiliation(s)
- W Balemans
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
40
|
Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M, Devito R, Pinto R, Caniglia M, Lanino E, Messina C, Cesaro S, Letizia C, Bianchini G, Fryssira H, Grabowski P, Shaw N, Bishop N, Hughes D, Kapur RP, Datta HK, Taranta A, Fornari R, Migliaccio S, Teti A. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet 2005; 43:315-25. [PMID: 16118345 PMCID: PMC2563229 DOI: 10.1136/jmg.2005.036673] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Osteopetrosis, a genetic disease characterised by osteoclast failure, is classified into three forms: infantile malignant autosomal recessive osteopetrosis (ARO), intermediate autosomal recessive osteopetrosis (IRO), and autosomal dominant osteopetrosis (ADO). METHODS We studied 49 patients, 21 with ARO, one with IRO, and 27 with type II ADO (ADO II). RESULTS Most ARO patients bore known or novel (one case) ATP6i (TCIRG1) gene mutations. Six ADO II patients had no mutations in ClCN7, the only so far recognised gene implicated, suggesting involvement of yet unknown genes. Identical ClCN7 mutations produced differing phenotypes with variable degrees of severity. In ADO II, serum tartrate resistant acid phosphatase was always elevated. Bone alkaline phosphatase (BALP) was generally low, but osteocalcin was high, suggesting perturbed osteoblast differentiation or function. In contrast, BALP was high in ARO patients. Elevated osteoclast surface/bone surface was noted in biopsies from most ARO patients. Cases with high osteoclasts also showed increased osteoblast surface/bone surface. ARO osteoclasts were morphologically normal, with unaltered formation rates, intracellular pH handling, and response to acidification. Their resorption activity was greatly reduced, but not abolished. In control osteoclasts, all resorption activity was abolished by combined inhibition of proton pumping and sodium/proton antiport. CONCLUSIONS These findings provide a rationale for novel therapies targeting pH handling mechanisms in osteoclasts and their microenvironment.
Collapse
Affiliation(s)
- A Del Fattore
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|