1
|
Wang Q, Wang X, Chen Y, Pan J. Dual role of Sfrp4 in bone remodelling during orthodontic tooth movement. Orthod Craniofac Res 2024. [PMID: 39319631 DOI: 10.1111/ocr.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The objective of this study was to determine changes in gene expression by establishing an orthodontic tooth movement (OTM) rat model with appropriate and excessive orthodontic force. MATERIALS AND METHODS Using a closed coil nickel-titanium spring, the OTM was carried out to apply a mesial force of 50 or 100 g to the maxillary first molars. Micro-CT, histological and immunohistochemical staining were used to evaluate the bone formation at the tension site and the bone resorption and bone formation at pressure site. Then RNA sequencing and bioinformatic analysis were performed. RESULTS According to the results of the Mirco-CT scan of OTM rat models, both the 50 g group and the 100 g group showed variable degrees of reduction in alveolar bone density on the tension and pressure sides. The results of histological and immunohistochemical staining demonstrated that the periodontal tissue and osteogenic ability of the 50 g group were restored at the 14 days, while the 100 g group caused severe periodontal tissue damage. The GO and KEGG analysis results, as well as the number of differentially expressed genes (DEGs), varied depending on the loading time and value of appliance, according to the results of the RNA sequencing. And the immunohistochemical staining results showed that Sfrp4 functioned by efficiently influencing both bone formation and bone absorption. CONCLUSIONS Appropriate orthodontic force value could cause appropriate movement of teeth in rats without adverse periodontal damage. Simultaneously, distinct gene expression patterns were observed at various force levels and time intervals.
Collapse
Affiliation(s)
- Qing Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jinsong Pan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Chen X, Yu B, Wang Z, Zhou Q, Wu Q, He J, Dai C, Li Q, Wei J. Dynamic Transcriptome Analysis of SFRP Family in Guided Bone Regeneration With Occlusive Periosteum in Swine Model. J Craniofac Surg 2024; 35:1432-1437. [PMID: 39042069 DOI: 10.1097/scs.0000000000010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND A variety of congenital or acquired conditions can cause craniomaxillofacial bone defects, resulting in a heavy financial burden and psychological stress. Guided bone self-generation with periosteum-preserved has great potential for reconstructing large bone defects. METHODS A swine model of guided bone regeneration with occlusive periosteum was established, the rib segment was removed, and the periosteum was sutured to form a closed regeneration chamber. Hematoxylin and eosin staining, Masson's staining, and Safranine O-Fast Green staining were done. Nine-time points were chosen for collecting the periosteum and regenerated bone tissue for gene sequencing. The expression level of each secreted frizzled-related protein (SFRP) member and the correlations among them were analyzed. RESULTS The process of bone regeneration is almost complete 1 month after surgery, and up to 1 week after surgery is an important interval for initiating the process. The expression of each SFRP family member fluctuated greatly. The highest expression level of all members ranged from 3 days to 3 months after surgery. The expression level of SFRP2 was the highest, and the difference between 2 groups was the largest. Secreted frizzled-related protein 2 and SFRP4 showed a notable positive correlation between the control and model groups. Secreted frizzled-related protein 1, SFRP2, and SFRP4 had a significant spike in fold change at 1 month postoperatively. Secreted frizzled-related protein 1 and SFRP2 had the strongest correlation. CONCLUSIONS This study revealed the dynamic expression of the SFRP family in guided bone regeneration with occlusive periosteum in a swine model, providing a possibility to advance the clinical application of bone defect repair.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kalyanaraman H, Casteel DE, China SP, Zhuang S, Boss GR, Pilz RB. A plasma membrane-associated form of the androgen receptor enhances nuclear androgen signaling in osteoblasts and prostate cancer cells. Sci Signal 2024; 17:eadi7861. [PMID: 38289986 PMCID: PMC10916501 DOI: 10.1126/scisignal.adi7861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Androgen binding to the androgen receptor (AR) in the cytoplasm induces the AR to translocate to the nucleus, where it regulates the expression of target genes. Here, we found that androgens rapidly activated a plasma membrane-associated signaling node that enhanced nuclear AR functions. In murine primary osteoblasts, dihydrotestosterone (DHT) binding to a membrane-associated form of AR stimulated plasma membrane-associated protein kinase G type 2 (PKG2), leading to the activation of multiple kinases, including ERK. Phosphorylation of AR at Ser515 by ERK increased the nuclear accumulation and binding of AR to the promoter of Ctnnb1, which encodes the transcription factor β-catenin. In male mouse osteoblasts and human prostate cancer cells, DHT induced the expression of Ctnnb1 and CTNN1B, respectively, as well as β-catenin target genes, stimulating the proliferation, survival, and differentiation of osteoblasts and the proliferation of prostate cancer cells in a PKG2-dependent fashion. Because β-catenin is a master regulator of skeletal homeostasis, these results explain the reported male-specific osteoporotic phenotype of mice lacking PKG2 in osteoblasts and imply that PKG2-dependent AR signaling is essential for maintaining bone mass in vivo. Our results suggest that widely used pharmacological PKG activators, such as sildenafil, could be beneficial for male and estrogen-deficient female patients with osteoporosis but detrimental in patients with prostate cancer.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Deng Y, Phillips K, Feng ZP, Smith PN, Li RW. Aseptic loosening around total joint replacement in humans is regulated by miR-1246 and miR-6089 via the Wnt signalling pathway. J Orthop Surg Res 2024; 19:94. [PMID: 38287447 PMCID: PMC10823634 DOI: 10.1186/s13018-024-04578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Total joint replacement for osteoarthritis is one of the most successful surgical procedures in modern medicine. However, aseptic loosening continues to be a leading cause of revision arthroplasty. The diagnosis of aseptic loosening remains a challenge as patients are often asymptomatic until the late stages. MicroRNA (miRNA) has been demonstrated to be a useful diagnostic tool and has been successfully used in the diagnosis of other diseases. We aimed to identify differentially expressed miRNA in the plasma of patients with aseptic loosening. METHODS Adult patients undergoing revision arthroplasty for aseptic loosening and age- and gender-matched controls were recruited. Samples of bone, tissue and blood were collected, and RNA sequencing was performed in 24 patients with aseptic loosening and 26 controls. Differentially expressed miRNA in plasma was matched to differentially expressed mRNA in periprosthetic bone and tissue. Western blot was used to validate protein expression. RESULTS Seven miRNA was differentially expressed in the plasma of patients with osteolysis (logFC >|2|, adj-P < 0.05). Three thousand six hundred and eighty mRNA genes in bone and 427 mRNA genes in tissue samples of osteolysis patients were differentially expressed (logFC >|2|, adj-P < 0.05). Gene enrichment analysis and pathway analysis revealed two miRNA (miR-1246 and miR-6089) had multiple gene targets in the Wnt signalling pathway in the local bone and tissues which regulate bone metabolism. CONCLUSION These results suggest that aseptic loosening may be regulated by miR-1246 and miR-6089 via the Wnt signalling pathway.
Collapse
Affiliation(s)
- Yi Deng
- Australian National University Medical School, Canberra, Australia.
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia.
| | - Kate Phillips
- Australian National University Medical School, Canberra, Australia
| | - Zhi-Ping Feng
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Paul N Smith
- Australian National University Medical School, Canberra, Australia
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia
| | - Rachel W Li
- Australian National University Medical School, Canberra, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Mosca MJ, He Z, Ricarte FR, Le Henaff C, Partridge NC. Differential Effects of PTH (1-34), PTHrP (1-36), and Abaloparatide on the Murine Osteoblast Transcriptome. J Endocr Soc 2023; 8:bvad156. [PMID: 38155918 PMCID: PMC10753291 DOI: 10.1210/jendso/bvad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 12/30/2023] Open
Abstract
Teriparatide (PTH (1-34)), PTHrP (1-36), and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy long term is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize they may also differentially modulate the osteoblast transcriptome. Treatment of mouse calvarial osteoblasts with 1 nM of the peptides for 4 hours results in RNA sequencing data with PTH (1-34) regulating 367 genes, including 194 unique genes; PTHrP (1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes. There were 83 genes shared among all 3 peptides. Gene ontology analyses showed similarities in Wnt signaling, cAMP-mediated signaling, ossification, but differences in morphogenesis of a branching structure in biological processes; receptor ligand activity, transcription factor activity, and cytokine receptor/binding activity in molecular functions. The peptides increased Vdr, Cited1, and Pde10a messenger RNAs (mRNAs) in a pattern similar to Rankl, that is, PTH (1-34) greater than ABL greater than PTHrP (1-36). mRNA abundance of other genes, including Wnt4, Wnt7, Wnt11, Sfrp4, Dkk1, Kcnk10, Hdac4, Epn3, Tcf7, Crem, Fzd5, Ppp2r2a, and Dvl3, showed that some genes were regulated similarly by all 3 peptides; others were not. Finally, small interfering RNA knockdowns of SIK1/2/3 and CRTC1/2/3 in PTH (1-34)-treated cells revealed that Vdr and Wnt4 genes are regulated by salt-inducible kinases (SIKs) and CREB-regulated transcriptional coactivators (CRTCs), while others are not. Although many studies have examined PTH signaling in the osteoblast/osteocyte, ours is the first to compare the global effects of these peptides on the osteoblast transcriptome or to analyze the roles of the SIKs and CRTCs.
Collapse
Affiliation(s)
- Michael J Mosca
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Zhiming He
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Florante R Ricarte
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Carole Le Henaff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nicola C Partridge
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
7
|
Liu Y, Chen Y, Li XH, Cao C, Zhang HX, Zhou C, Chen Y, Gong Y, Yang JX, Cheng L, Chen XD, Shen H, Xiao HM, Tan LJ, Deng HW. Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution. Int J Stem Cells 2023; 16:342-355. [PMID: 37105556 PMCID: PMC10465330 DOI: 10.15283/ijsc22101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Xi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
8
|
Mosca MJ, He Z, Ricarte FR, Le Henaff C, Partridge NC. Differential effects of PTH (1-34), PTHrP (1-36) and abaloparatide on the murine osteoblast transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523646. [PMID: 37645806 PMCID: PMC10461920 DOI: 10.1101/2023.01.11.523646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Teriparatide (PTH(1-34)) and its analogs, PTHrP(1-36) and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy over long-term use is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize that they may also differentially modulate the osteoblast transcriptome. We show that treatment of mouse calvarial osteoblasts with 1 nM of the 3 peptides for 4 h results in RNA-Seq data with PTH(1-34) regulating 367 genes, including 194 unique genes; PTHrP(1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes. There were 83 genes shared among all 3 peptides. Gene ontology analyses showed differences in Wnt signaling, cAMP-mediated signaling, bone mineralization, morphogenesis of a branching structure in biological processes; receptor ligand activity, transcription factor activity, cytokine receptor/binding activity and many other actions in molecular functions. The 3 peptides increased Vdr, Cited1 and Pde10a mRNAs in a pattern similar to Rankl , i.e., PTH(1-34) > ABL > PTHrP(1-36). mRNA abundance of other genes based on gene/pathway analyses, including Wnt4, Wnt7, Wnt11, Sfrp4, Dkk1, Kcnk10, Hdac4, Epha3, Tcf7, Crem, Fzd5, Pp2r2a , and Dvl3 showed that some genes were regulated similarly by all 3 peptides; others were not. Finally, siRNA knockdowns of SIK1/2/3 and CRTC1/2/3 in PTH(1-34)-treated cells revealed that Vdr and Wnt4 genes are regulated by SIKs and CRTCs, while others are not. Although many studies have examined PTH signaling in the osteoblast/osteocyte, ours is the first to examine the global effects of these peptides on the osteoblast transcriptome. Further delineation of which signaling events are attributable to PTH(1-34), PTHrP(1-36) or ABL exclusively and which are shared among all 3 will help improve our understanding of the effects these peptides have on the osteoblast and lead to the refinement of PTH-derived treatments for osteoporosis.
Collapse
|
9
|
Brommage R, Liu J, Powell DR. Skeletal phenotypes in secreted frizzled-related protein 4 gene knockout mice mimic skeletal architectural abnormalities in subjects with Pyle's disease from SFRP4 mutations. Bone Res 2023; 11:9. [PMID: 36808149 PMCID: PMC9941579 DOI: 10.1038/s41413-022-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 02/22/2023] Open
Abstract
Mutations in SFRP4 cause Pyle's bone disease with wide metaphyses and increased skeletal fragility. The WNT signaling pathway plays important roles in determining skeletal architecture and SFRP4 is a secreted Frizzled decoy receptor that inhibits WNT signaling. Seven cohorts of male and female Sfrp4 gene knockout mice, examined through 2 years of age, had a normal lifespan but showed cortical and trabecular bone phenotypes. Mimicking human Erlenmeyer flask deformities, bone cross-sectional areas were elevated 2-fold in the distal femur and proximal tibia but only 30% in femur and tibia shafts. Reduced cortical bone thickness was observed in the vertebral body, midshaft femur and distal tibia. Elevated trabecular bone mass and numbers were observed in the vertebral body, distal femur metaphysis and proximal tibia metaphysis. Midshaft femurs retained extensive trabecular bone through 2 years of age. Vertebral bodies had increased compressive strength, but femur shafts had reduced bending strength. Trabecular, but not cortical, bone parameters in heterozygous Sfrp4 mice were modestly affected. Ovariectomy resulted in similar declines in both cortical and trabecular bone mass in wild-type and Sfrp4 KO mice. SFRP4 is critical for metaphyseal bone modeling involved in determining bone width. Sfrp4 KO mice show similar skeletal architecture and bone fragility deficits observed in patients with Pyle's disease with SFRP4 mutations.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
- BoneGenomics, The Woodlands, TX, USA.
| | - Jeff Liu
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
- Biogen, Cambridge, MA, USA.
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
| |
Collapse
|
10
|
Kalyanaraman H, China SP, Cabriales JA, Moininazeri J, Casteel DE, Garcia JJ, Wong VW, Chen A, Sah RL, Boss GR, Pilz RB. Protein Kinase G2 Is Essential for Skeletal Homeostasis and Adaptation to Mechanical Loading in Male but Not Female Mice. J Bone Miner Res 2023; 38:171-185. [PMID: 36371651 PMCID: PMC9825661 DOI: 10.1002/jbmr.4746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
We previously showed that the NO/cGMP/protein kinase G (PKG) signaling pathway positively regulates osteoblast proliferation, differentiation, and survival in vitro, and that cGMP-elevating agents have bone-anabolic effects in mice. Here, we generated mice with an osteoblast-specific (OB) knockout (KO) of type 2 PKG (gene name Prkg2) using a Col1a1(2.3 kb)-Cre driver. Compared to wild type (WT) littermates, 8-week-old male OB Prkg2-KO mice had fewer osteoblasts, reduced bone formation rates, and lower trabecular and cortical bone volumes. Female OB Prkg2-KO littermates showed no bone abnormalities, despite the same degree of PKG2 deficiency in bone. Expression of osteoblast differentiation- and Wnt/β-catenin-related genes was lower in primary osteoblasts and bones of male KO but not female KO mice compared to WT littermates. Osteoclast parameters were unaffected in both sexes. Since PKG2 is part of a mechano-sensitive complex in osteoblast membranes, we examined its role during mechanical loading. Cyclical compression of the tibia increased cortical thickness and induced mechanosensitive and Wnt/β-catenin-related genes to a similar extent in male and female WT mice and female OB Prkg2-KO mice, but loading had a minimal effect in male KO mice. We conclude that PKG2 drives bone acquisition and adaptation to mechanical loading via the Wnt/β-catenin pathway in male mice. The striking sexual dimorphism of OB Prkg2-KO mice suggests that current U.S. Food and Drug Administration-approved cGMP-elevating agents may represent novel effective treatment options for male osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These two authors contributed equally to the work
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These two authors contributed equally to the work
| | - Justin A. Cabriales
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jafar Moininazeri
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julian J. Garcia
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Van W. Wong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Albert Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Park H, Jo S, Jang MA, Choi SH, Kim TH. Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca +-CAMK2A- CREB1 pathway. BMB Rep 2022; 55:627-632. [PMID: 36229414 PMCID: PMC9813425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts. [BMB Reports 2022; 55(12): 627-632].
Collapse
Affiliation(s)
- Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea,Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea
| | - Sung Hoon Choi
- Department of Orthopedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea,Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea,Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea,Corresponding author. Tel: +82-2-2290-9245; Fax: +82-2-2290-9253; E-mail:
| |
Collapse
|
12
|
Durham EL, Grey ZJ, Black L, Howie RN, Barth JL, Lee BS, Cray JJ. Sfrp4 expression in thyroxine treated calvarial cells. Life Sci 2022; 311:121158. [PMID: 36370870 PMCID: PMC9719041 DOI: 10.1016/j.lfs.2022.121158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
AIMS Evidence suggests alterations of thyroid hormone levels can disrupt normal bone development. Most data suggest the major targets of thyroid hormones to be the Htra1/Igf1 pathway. Recent discovery by our group suggests involvement of targets WNT pathway, specifically overexpression of antagonist Sfrp4 in the presence of exogenous thyroid hormone. MAIN METHODS Here we aimed to model these interactions in vitro using primary and isotype cell lines to determine if thyroid hormone drives increased Sfrp4 expression in cells relevant to craniofacial development. Transcriptional profiling, bioinformatics interrogation, protein and function analyses were used. KEY FINDINGS Affymetrix transcriptional profiling found Sfrp4 overexpression in primary cranial suture derived cells stimulated with thyroxine in vitro. Interrogation of the SFRP4 promoter identified multiple putative binding sites for thyroid hormone receptors. Experimentation with several cell lines demonstrated that thyroxine treatment induced Sfrp4 expression, demonstrating that Sfrp4 mRNA and protein levels are not tightly coupled. Transcriptional and protein analyses demonstrate thyroid hormone receptor binding to the proximal promoter of the target gene Sfrp4 in murine calvarial pre-osteoblasts. Functional analysis after thyroxine hormone stimulation for alkaline phosphatase activity shows that pre-osteoblasts increase alkaline phosphatase activity compared to other cell types, suggesting cell type susceptibility. Finally, we added recombinant SFRP4 to pre-osteoblasts in combination with thyroxine treatment and observed a significant decrease in alkaline phosphatase positivity. SIGNIFICANCE Taken together, these results suggest SFRP4 may be a key regulatory molecule that prevents thyroxine driven osteogenesis. These data corroborate clinical findings indicating a potential for SFRP4 as a diagnostic or therapeutic target for hyperostotic craniofacial disorders.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zachary J Grey
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - James J Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Park H, Jo S, Jang MA, Choi SH, Kim TH. Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca +-CAMK2A- CREB1 pathway. BMB Rep 2022; 55:627-632. [PMID: 36229414 PMCID: PMC9813425 DOI: 10.5483/bmbrep.2022.55.12.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2023] Open
Abstract
Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts. [BMB Reports 2022; 55(12): 627-632].
Collapse
Affiliation(s)
- Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea
| | - Sung Hoon Choi
- Department of Orthopedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| |
Collapse
|
14
|
Yoshioka H, Komura S, Kuramitsu N, Goto A, Hasegawa T, Amizuka N, Ishimoto T, Ozasa R, Nakano T, Imai Y, Akiyama H. Deletion of Tfam in Prx1-Cre expressing limb mesenchyme results in spontaneous bone fractures. J Bone Miner Metab 2022; 40:839-852. [PMID: 35947192 DOI: 10.1007/s00774-022-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Norishige Kuramitsu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
15
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
16
|
Chen R, Baron R, Gori F. Sfrp4 and the Biology of Cortical Bone. Curr Osteoporos Rep 2022; 20:153-161. [PMID: 35182301 PMCID: PMC9098678 DOI: 10.1007/s11914-022-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Periosteal apposition and endosteal remodeling regulate cortical bone expansion and thickness, both critical determinants of bone strength. Yet, the cellular characteristics and local or paracrine factors that regulate the periosteum and endosteum remain largely elusive. Here we discuss novel insights in cortical bone growth, expansion, and homeostasis, provided by the study of Secreted Frizzled Receptor Protein 4 (Sfrp4), a decoy receptor for Wnt ligands. RECENT FINDINGS SFRP4 loss-of function mutations cause Pyle disease, a rare skeletal disorder characterized by cortical bone thinning and increased fragility fractures despite increased trabecular bone density. On the endosteal surface, Sfrp4-mediated repression of non-canonical Wnt signaling regulates endosteal resorption. On the periosteum, Sfrp4 identifies as a critical functional mediator of periosteal stem cell/progenitor expansion and differentiation. Analysis of signaling pathways regulating skeletal stem cells/progenitors provides an opportunity to advance our understanding of the mechanisms involved in cortical bone biology.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
17
|
Maeda K, Yoshida K, Nishizawa T, Otani K, Yamashita Y, Okabe H, Hadano Y, Kayama T, Kurosaka D, Saito M. Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. Int J Mol Sci 2022; 23:2871. [PMID: 35270012 PMCID: PMC8911191 DOI: 10.3390/ijms23052871] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease characterized by a variety of symptoms and pathologies often presenting with polyarthritis. The primary symptom in the initial stage is joint swelling due to synovitis. With disease progression, cartilage and bone are affected to cause joint deformities. Advanced osteoarticular destruction and deformation can cause irreversible physical disabilities. Physical disabilities not only deteriorate patients' quality of life but also have substantial medical economic effects on society. Therefore, prevention of the progression of osteoarticular destruction and deformation is an important task. Recent studies have progressively improved our understanding of the molecular mechanism by which synovitis caused by immune disorders results in activation of osteoclasts; activated osteoclasts in turn cause bone destruction and para-articular osteoporosis. In this paper, we review the mechanisms of bone metabolism under physiological and RA conditions, and we describe the effects of therapeutic intervention against RA on bone.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Ken Yoshida
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Tetsuro Nishizawa
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Kazuhiro Otani
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Yu Yamashita
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Hinako Okabe
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Yuka Hadano
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| |
Collapse
|
18
|
Fu Y, Ma D, Fan F, Sun T, Han R, Yang Y, Zhang J. Noncanonical Wnt5a Signaling Suppresses Hippo/TAZ-Mediated Osteogenesis Partly Through the Canonical Wnt Pathway in SCAPs. Drug Des Devel Ther 2022; 16:469-483. [PMID: 35237028 PMCID: PMC8882979 DOI: 10.2147/dddt.s350698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Stem cells from the apical papilla (SCAPs) are promising seed cells for tissue regeneration medicine and possess the osteogenic differentiation potential. Wnt5a, a typical ligand of the noncanonical Wnt pathway, exhibits diverse roles in the regulation of osteogenesis. The transcriptional co-activator with PDZ-binding motif (TAZ, WWTR1) is a core regulator in the Hippo pathway and regulates stem behavior including osteogenic differentiation. This study aims to examine how Wnt5a regulates SCAPs osteogenesis and explore the precise mechanistic relationship between Wnt5a and TAZ. Methods SCAPs were isolated from developing apical papilla tissue of extracted human immature third molars in vitro. ALP staining, ALP activity and Alizarin red staining were used to evaluate osteogenic capacity. Osteogenic-related factors were assessed by qRT-PCR or Western blotting. Additionally, the receptor tyrosine kinase-like orphan receptor 2 (ROR2) was detected by immunocytofluorescence staining and silenced by small interfering RNA to verify the function of Wnt5a/ROR2 in TAZ-mediated osteogenesis. And we constructed TAZ-overexpression and β-catenin-overexpression SCAPs generated by lentivirus to explore the precise mechanistic relationship between Wnt5a and TAZ. Results Wnt5a (100ng/mL) significantly suppressed ALP activity, mineralization nodules formation, expression of osteogenic-related factors. Meanwhile, it decreased the expression of TAZ mRNA and protein. TAZ overexpression promoted osteogenesis of SCAPs while Wnt5a could block TAZ-mediated osteogenesis. Furthermore, ROR2 siRNA (siROR2) was found to upregulate TAZ and canonical Wnt pathway signaling related molecules such as β-catenin, GSK3β and p-GSK3β. The suppression of Wnt5a/ROR2 on osteogenesis was significantly reversed by β-catenin overexpression through Wnt5a/ROR2/β-catenin/TAZ pathway. Conclusion Taken together, the present study demonstrates that Wnt5a suppresses TAZ-mediated osteogenesis of SCAPs and there may be a Wnt5a/ROR2/β-catenin/TAZ pathway regulating osteogenesis of SCAPs. Moreover, Wnt5a could be a candidate for regulators in tissue regeneration.
Collapse
Affiliation(s)
- Yajing Fu
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Dan Ma
- Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Fengyan Fan
- Department of Orthodontics, Hangzhou Stomatological Hospital, Hangzhou, People’s Republic of China
| | - Tongke Sun
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, People’s Republic of China, Tel +86 139 5310 9816, Email
| |
Collapse
|
19
|
Li C, Liu K, Dai J, Li X, Liu X, Ni W, Li H, Wang D, Qiao J, Wang Y, Cui Y, Xia X, Hu S. Whole-genome resequencing to investigate the determinants of the multi-lumbar vertebrae trait in sheep. Gene 2022; 809:146020. [PMID: 34656743 DOI: 10.1016/j.gene.2021.146020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Multi-lumbar vertebrae trait is a beneficial mutation that can significantly improve livestock meat production. However, the genetic basis of the multi-lumbar vertebrae in sheep is still unclear. Here, we analysed the number of lumbar vertebrae of Duolang sheep and found three different traits of lumbar vertebrae number. Compared with the normal sheep, the length and weight of animal carcass from the multi-lumbar vertebrae sheep increased by 2.21 cm and 0.78 kg, respectively. We performed high-throughput genome resequencing on multi-lumbar vertebrae (n = 18) and normal (n = 11) Duolang sheep and obtained a total of more than 528.87 GB data. We found that the most significantly selective region were located in the 49.68-49.74 MB of chromosome 4 by selective-sweep analysis. We annotated this region and found that it contains SFRP4 which is known to regulate bone development. We further used the PCR-SSCP technology to detect the single nucleotide polymorphism (SNP) of the putative candidate SFRP4 and found that the two SNPs (rs600370085:C > T and rs415133338: A > G) of this gene were significantly associated with the multi-lumbar vertebrae of Duolang sheep. Our study indicates that the SFRP4 may be a potential major gene that affects the number of lumbar vertebrae in Duolang sheep, and has the potential to be utilized for sheep breeding in the future.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jihong Dai
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xia Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hui Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yue Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yuying Cui
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
20
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
21
|
de Castro LF, Sworder BJ, Mui B, Futrega K, Berendsen A, Phillips MD, Burbach NJ, Cherman N, Kuznetsov S, Gabet Y, Holmbeck K, Robey PG. Secreted frizzled related-protein 2 (Sfrp2) deficiency decreases adult skeletal stem cell function in mice. Bone Res 2021; 9:49. [PMID: 34857734 PMCID: PMC8639730 DOI: 10.1038/s41413-021-00169-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/21/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022] Open
Abstract
In a previous transcriptomic study of human bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells"), SFRP2 was highly over-represented in a subset of multipotent BMSCs (skeletal stem cells, SSCs), which recreate a bone/marrow organ in an in vivo ectopic bone formation assay. SFRPs modulate WNT signaling, which is essential to maintain skeletal homeostasis, but the specific role of SFRP2 in BMSCs/SSCs is unclear. Here, we evaluated Sfrp2 deficiency on BMSC/SSC function in models of skeletal organogenesis and regeneration. The skeleton of Sfrp2-deficient (KO) mice is overtly normal; but their BMSCs/SSCs exhibit reduced colony-forming efficiency, reflecting low SSC self-renewal/abundancy. Sfrp2 KO BMSCs/SSCs formed less trabecular bone than those from WT littermates in the ectopic bone formation assay. Moreover, regeneration of a cortical drilled hole defect was dramatically impaired in Sfrp2 KO mice. Sfrp2-deficient BMSCs/SSCs exhibited poor in vitro osteogenic differentiation as measured by Runx2 and Osterix expression and calcium accumulation. Interestingly, activation of the Wnt co-receptor, Lrp6, and expression of Wnt target genes, Axin2, C-myc and Cyclin D1, were reduced in Sfrp2-deficient BMSCs/SSCs. Addition of recombinant Sfrp2 restored most of these activities, suggesting that Sfrp2 acts as a Wnt agonist. We demonstrate that Sfrp2 plays a role in self-renewal of SSCs and in the recruitment and differentiation of adult SSCs during bone healing. SFRP2 is also a useful marker of BMSC/SSC multipotency, and a factor to potentially improve the quality of ex vivo expanded BMSC/SSC products.
Collapse
Affiliation(s)
- Luis Fernandez de Castro
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| | - Brian J. Sworder
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA ,grid.189504.10000 0004 1936 7558Department of Molecular Medicine, Boston University, Boston, MA USA
| | - Byron Mui
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Kathryn Futrega
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Agnes Berendsen
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Matthew D. Phillips
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Nathan J. Burbach
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA ,grid.17635.360000000419368657School of Dentistry, University of Minnesota—Twin Cities, Minneapolis, MN USA
| | - Natasha Cherman
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Sergei Kuznetsov
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Yankel Gabet
- grid.12136.370000 0004 1937 0546Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Kenn Holmbeck
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Pamela G. Robey
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
22
|
Li Y, Baccouche B, Olayinka O, Serikbaeva A, Kazlauskas A. The Role of the Wnt Pathway in VEGF/Anti-VEGF-Dependent Control of the Endothelial Cell Barrier. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 34542556 PMCID: PMC8458780 DOI: 10.1167/iovs.62.12.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Investigate the contribution of the Wnt pathway to vascular endothelial growth factor (VEGF)/anti-VEGF-mediated control of endothelial cell permeability. Methods High glucose-treated primary human retinal endothelial cells (HRECs) were exposed to either VEGF, or VEGF and then anti-VEGF. Changes in gene expression were assayed by RNAseq and qRT-PCR. Permeability was monitored by electrical cell-substrate impedance sensing (ECIS). Approaches to activate the Wnt pathway included treatment with LiCl and overexpression of constitutively activated β-catenin. β-catenin-dependent transcriptional activity was monitored in HRECs stably expressing a TCF/LEF-driven reporter. Results VEGF/anti-VEGF altered expression of genes encoding many members of the Wnt pathway. A subset of these genes was regulated in a way that is likely to contribute to control of the endothelial cell barrier. Namely, the VEGF-induced alteration of expression of such genes was reversed by anti-VEGF, and such adjustments occurred at times corresponding to changes in barrier function. While pharmacological and molecular approaches to activate the Wnt pathway had no effect on basal permeability, they suppressed VEGF-induced relaxation. Furthermore, anti-VEGF-mediated restoration of barrier function was unaffected by activation of the Wnt pathway. Conclusions VEGF/anti-VEGF engages multiple members of the Wnt pathway, and activating this pathway enforces the endothelial barrier by attenuating VEGF-induced relaxation. These data suggest that FDA-approved agents such as LiCl may be an adjuvant to anti-VEGF therapy for patients afflicted with blinding conditions including diabetic retinopathy.
Collapse
Affiliation(s)
- Yueru Li
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States
| | - Basma Baccouche
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States
| | - Olamide Olayinka
- Department of Physiology and Biophysics, Chicago, IL, United States
| | - Anara Serikbaeva
- Department of Physiology and Biophysics, Chicago, IL, United States
| | - Andrius Kazlauskas
- University of Illinois at Chicago, Department of Ophthalmology & Visual Sciences, Chicago, IL, United States.,Department of Physiology and Biophysics, Chicago, IL, United States
| |
Collapse
|
23
|
Li SS, He SH, Xie PY, Li W, Zhang XX, Li TF, Li DF. Recent Progresses in the Treatment of Osteoporosis. Front Pharmacol 2021; 12:717065. [PMID: 34366868 PMCID: PMC8339209 DOI: 10.3389/fphar.2021.717065] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by aberrant microstructure and macrostructure of bone, leading to reduced bone mass and increased risk of fragile fractures. Anti-resorptive drugs, especially, bisphosphonates, are currently the treatment of choice in most developing countries. However, they do have limitations and adverse effects, which, to some extent, helped the development of anabolic drugs such as teriparatide and romosozumab. In patients with high or very high risk for fracture, sequential or combined therapies may be considered with the initial drugs being anabolic agents. Great endeavors have been made to find next generation drugs with maximal efficacy and minimal toxicity, and improved understanding of the role of different signaling pathways and their crosstalk in the pathogenesis of OP may help achieve this goal. Our review focused on recent progress with regards to the drug development by modification of Wnt pathway, while other pathways/molecules were also discussed briefly. In addition, new observations made in recent years in bone biology were summarized and discussed for the treatment of OP.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng-Yu Xie
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
25
|
Mukkamalla SKR, Malipeddi D. Myeloma Bone Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:6208. [PMID: 34201396 PMCID: PMC8227693 DOI: 10.3390/ijms22126208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic clonal proliferation of plasma cells in the bone marrow microenvironment, characterized by overproduction of heavy- and light-chain monoclonal proteins (M-protein). These proteins are mainly found in the serum and/or urine. Reduction in normal gammaglobulins (immunoparesis) leads to an increased risk of infection. The primary site of origin is the bone marrow for nearly all patients affected by MM with disseminated marrow involvement in most cases. MM is known to involve bones and result in myeloma bone disease. Osteolytic lesions are seen in 80% of patients with MM which are complicated frequently by skeletal-related events (SRE) such as hypercalcemia, bone pain, pathological fractures, vertebral collapse, and spinal cord compression. These deteriorate the patient's quality of life and affect the overall survival of the patient. The underlying pathogenesis of myeloma bone disease involves uncoupling of the bone remodeling processes. Interaction of myeloma cells with the bone marrow microenvironment promotes the release of many biochemical markers including osteoclast activating factors and osteoblast inhibitory factors. Elevated levels of osteoclast activating factors such as RANK/RANKL/OPG, MIP-1-α., TNF-α, IL-3, IL-6, and IL-11 increase bone resorption by osteoclast stimulation, differentiation, and maturation, whereas osteoblast inhibitory factors such as the Wnt/DKK1 pathway, secreted frizzle related protein-2, and runt-related transcription factor 2 inhibit osteoblast differentiation and formation leading to decreased bone formation. These biochemical factors also help in development and utilization of appropriate anti-myeloma treatments in myeloma patients. This review article summarizes the pathophysiology and the recent developments of abnormal bone remodeling in MM, while reviewing various approved and potential treatments for myeloma bone disease.
Collapse
Affiliation(s)
| | - Dhatri Malipeddi
- Internal Medicine, Canton Medical Education Foundation/NEOMED, Canton, OH 44710, USA;
| |
Collapse
|
26
|
Zhang Y, Guan H, Fu Y, Wang X, Bai L, Zhao S, Liu E. Effects of SFRP4 overexpression on the production of adipokines in transgenic mice. Adipocyte 2020; 9:374-383. [PMID: 32657640 PMCID: PMC7469599 DOI: 10.1080/21623945.2020.1792614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Secreted frizzled-related protein (SFRP) 4 is an extracellular antagonist of Wnt signalling that regulates adipogenesis, and is highly in the visceral adipose tissue of obese individuals. However, it is still unclear how exactly SFRP4 regulates the secretion of adipokines in the adipose tissue in vivo, an event that is closely related to the pathogenesis of obesity and insulin resistance. In this study, we generated transgenic (Tg) mice overexpressing SFRP4 in the liver and investigated SFRP4 role in adipokine secretion in mice on a regular normal diet. In Tg mice, SFRP4 protein was overexpressed in the liver, as compared to wild-type littermates (non-Tg), and released into the blood. Moreover, the size of adipocytes was smaller in the visceral adipose tissue of Tg mice compared to controls. Additionally, SFRP4 overexpression affected the expression of genes related to adipocyte differentiation, causing the upregulation of adiponectin and glucose transporter 4, and the downregulation of CCAAT/enhancer-binding protein-β, in both visceral and subcutaneous adipose tissue. However, there was no difference in body weight or body composition between Tg and non-Tg mice. In summary, our data showed that SFRP4 overexpression altered adipocyte size and adipokine secretion, possibly affecting adipocyte differentiation, obesity, and glucose metabolism.
Collapse
Affiliation(s)
- Yali Zhang
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, ShaanXi, China
| | - Yu Fu
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Xin Wang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Liang Bai
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Centre, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| |
Collapse
|
27
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
28
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
29
|
Zhou X, Li CH, He P, Wu LF, Lu X, Lei SF, Deng FY. Abl interactor 1: A novel biomarker for osteoporosis in Chinese elderly men. J Proteomics 2019; 207:103440. [PMID: 31325607 DOI: 10.1016/j.jprot.2019.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 11/26/2022]
Abstract
Low bone mineral density (BMD) is a high-risk factor of osteoporosis (OP) and osteoporotic fracture (OF). Peripheral blood monocytes (PBM) can give birth to osteoclasts to resorb bone. Herein, we attempted to identify OP susceptible proteins in human PBM and characterize their functions in bone. Employing the label-free quantitative proteomics methodology (Easy-nLC1000 and Q-exactive) and traditional Western Blotting (WB), we discovered and validated that a key protein, i.e. Abl Interactor 1(ABI1), was significantly down-regulated in PBM in Chinese elderly men with extremely low vs. high BMD (n = 18, p < .05), as well as in OF patients vs. non-fractured (NF) subjects (n = 36, p < .05). The above down-regulation tendency was also observed in Chinese elderly women (n = 51, P < .05). For translational purpose, plasma ABI1 protein was assessed by ELISA in Chinese elderly men, which was found significantly down-regulated in OF (n = 20) vs. NF (n = 64) subjects (Mean: 0.41 vs. 1.03 ng/ml, FC = 0.39, p = .039), as well as in low (n = 32) vs. high (n = 32) BMD subjects (Mean: 0.5 vs. 1.57 ng/ml, FC = 0.32,p = .0012). ROC analyses in another independent study sample (n = 75) showed that the plasma ABI1 protein has superior performance in discriminating osteopenia and healthy subjects (AUC = 0.755, 95% CI: 0.632-0.877, p = .001). Follow-up cellular functional studies revealed that ABI1 protein significantly promoted osteoblast growth (optimal concentration 2.0 ng/ml), osteoblastic gene expression (OPN, ALP, COL1A1, p < .05) and osteoblast differentiation.ABI1 protein also significantly attenuated monocyte trans-endothelial migration and osteoclast differentiation and activity. In conclusion, ABI1 is a novel protein biomarker for OP in Chinese elderly. ABI1 protein, via promoting osteoblast growth, differentiation and activity, and attenuating monocyte trans-endothelial migration and osteoclast differentiation, influences BMD variation and fracture risk in humans. SIGNIFICANCE: Previous plentiful studies indicated that protein ABI1 played an essential role in the progression of several malignancies, including hepatoma, colon cancer and epithelial ovarian cancer. However, there was relatively limited understandings regarding its molecular and cellular functions relevant to bone phenotypes. Employing the label-free quantitative proteomics methodology (Easy-nLC1000 and Q-exactive) and traditional Western Blotting (WB), we discovered and validated that ABI1 was significantly down-regulated in PBM in Chinese elderly men with extremely low BMD as well as in OF patients. The down-regulation trend was consistent in plasma samples in Chinese elderly men. Follow-up cellular functional studies revealed that, on the one hand, ABI1 protein significantly promoted osteoblast growth, osteoblastic gene expression and osteoblast differentiation; on the other hand, it also significantly attenuated monocyte trans-endothelial migration and osteoclast differentiation and activity. It suggested that ABI1 is a promising biomarker with translational value.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Chun-Hui Li
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
30
|
Bukhari SA, Yasmin A, Zahoor MA, Mustafa G, Sarfraz I, Rasul A. Secreted frizzled‐related protein 4 and its implication in obesity and type‐2 diabetes. IUBMB Life 2019; 71:1701-1710. [DOI: 10.1002/iub.2123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - Aysha Yasmin
- Department of BiochemistryGovernment College University Faisalabad Pakistan
| | | | - Ghulam Mustafa
- Department of BiochemistryGovernment College University Faisalabad Pakistan
| | - Iqra Sarfraz
- Department of ZoologyGovernment College University Faisalabad Pakistan
| | - Azhar Rasul
- Department of ZoologyGovernment College University Faisalabad Pakistan
| |
Collapse
|
31
|
Sfrp4 repression of the Ror2/Jnk cascade in osteoclasts protects cortical bone from excessive endosteal resorption. Proc Natl Acad Sci U S A 2019; 116:14138-14143. [PMID: 31239337 DOI: 10.1073/pnas.1900881116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Loss-of-function mutations in the Wnt inhibitor secreted frizzled receptor protein 4 (SFRP4) cause Pyle's disease (OMIM 265900), a rare skeletal disorder characterized by wide metaphyses, significant thinning of cortical bone, and fragility fractures. In mice, we have shown that the cortical thinning seen in the absence of Sfrp4 is associated with decreased periosteal and endosteal bone formation and increased endocortical resorption. While the increase in Rankl/Opg in cortical bone of mice lacking Sfrp4 suggests an osteoblast-dependent effect on endocortical osteoclast (OC) activity, whether Sfrp4 can cell-autonomously affect OCs is not known. We found that Sfrp4 is expressed during bone marrow macrophage OC differentiation and that Sfrp4 significantly suppresses the ability of early and late OC precursors to respond to Rankl-induced OC differentiation. Sfrp4 deletion in OCs resulted in activation of canonical Wnt/β-catenin and noncanonical Wnt/Ror2/Jnk signaling cascades. However, while inhibition of canonical Wnt/β-catenin signaling did not alter the effect of Sfrp4 on OCgenesis, blocking the noncanonical Wnt/Ror2/Jnk cascade markedly suppressed its regulation of OC differentiation in vitro. Importantly, we report that deletion of Ror2 exclusively in OCs (CtskCreRor2 fl/fl ) in Sfrp4 null mice significantly reversed the increased number of endosteal OCs seen in these mice and reduced their cortical thinning. Altogether, these data show autocrine and paracrine effects of Sfrp4 in regulating OCgenesis and demonstrate that the increase in endosteal OCs seen in Sfrp4 -/- mice is a consequence of noncanonical Wnt/Ror2/Jnk signaling activation in OCs overriding the negative effect that activation of canonical Wnt/β-catenin signaling has on OCgenesis.
Collapse
|
32
|
Wang Y, Ma Z, Zheng Y, Liu B, Bao P, Wu X, Yu C, Wen Z, Ma T, Liu J, Liu C, Ma D, Wu H, Li J, Yuan Y, Lu N, Zhao H, Li Y, Yang S, Zhang R, Dai J, Hu M. Establishment of an osteoporosis model in tree shrews by bilateral ovariectomy and comprehensive evaluation. Exp Ther Med 2019; 17:3644-3654. [PMID: 30988748 PMCID: PMC6447825 DOI: 10.3892/etm.2019.7339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis (OP) treatment has always been challenging for elderly menopausal females. An animal model with a closer genetic association to human OP is essential for treatment research. Given its close genetic association to primates, the tree shrew is a suitable candidate for meeting the requirements for such an animal model. In the present study, a tree shrew OP model induced by ovariectomy (OVX), was established. Evaluation by multiple analysis methods, including blood biochemical indicators, uterus coefficients, micro-computed tomography analysis, histochemical analysis and scanning electron microscopic observation indicated that OVX was an appropriate method to establish the OP model in tree shrews. In addition, the biomolecular characteristics of OVX-induced osteoporosis were also assessed by transcriptome sequencing and bioinformatics analysis. The present study provides the methods used to confirm the successful establishment of the OP model in tree shrew, and suggests that the OP model is appropriate for human OP research.
Collapse
Affiliation(s)
- Yaolong Wang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Yuanyuan Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Baoling Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Pengfei Bao
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Xingfei Wu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Congtao Yu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Zhengqi Wen
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Tiekun Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jinxue Liu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Change Liu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Daiping Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Haiying Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ning Lu
- Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Hongbin Zhao
- Department of Orthopaedics, First People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| | - Suping Yang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China.,Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Rongping Zhang
- Department of Pharmacy, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan 650214, P.R. China
| |
Collapse
|
33
|
Tanabe K, Nakamura S, Moriyama-Hashiguchi M, Kitajima M, Ejima H, Imori C, Oku T. Dietary Fructooligosaccharide and Glucomannan Alter Gut Microbiota and Improve Bone Metabolism in Senescence-Accelerated Mouse. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:867-874. [PMID: 30632742 DOI: 10.1021/acs.jafc.8b05164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut microbiota improved using prebiotics may delay the onset of senescence-related health problems. We hypothesized that prolonged intake of prebiotics delays senile osteoporosis. Forty-five male senescence-accelerated mouse prone 6 (SAMP6) aged four weeks were raised on 5% fructooligosaccharide (FOS), 5% glucomannan (GM), or a control diet for 31 weeks. Gut microbiota were identified using culture-dependent analytical methods. Mineral content in femoral bone was analyzed using atomic absorption spectrophotometry. Bone metabolism and inflammatory markers were measured using enzyme-linked immunosorbent assay. The numbers of Lactobacillus and Bacteroides in cecal contents were significantly higher in the FOS than in the control group ( p < 0.05); the number of Clostridium was significantly higher in the GM than in the control group ( p < 0.05). Calcium content was significantly higher in the femoral bones of the FOS group (30.5 ± 0.8 mg) than in the control group (27.5 ± 1.5 mg) ( p < 0.05). There was no difference between the GM (29.1 ± 2.0 mg) and control groups. During senescence, urinary deoxypyridinoline and serum high-sensitivity C-reactive protein levels significantly decreased in the FOS (1.2 ± 0.2 nmol/3 d and 80 ± 6.1 ng/100 mL) and GM groups (1.2 ± 0.2 nmol/3 d and 80 ± 6.1 ng/100 mL) compared with the control group (1.8 ± 0.5 nmol/3 d and 93 ± 7.4 ng/100 mL) ( p < 0.05). Thus, dietary FOS and GM modified gut microbiota and reduced bone resorption by reducing systemic inflammation in SAMP6.
Collapse
Affiliation(s)
- Kenichi Tanabe
- Department of Food Science and Nutrition, Nagoya Women's University , 3-40 Shioji-cho , Mizuho-ku, Nagoya , Aichi 467-8610 , Japan
| | - Sadako Nakamura
- Institute of Food, Nutrition & Health , Jumonji University , 2-1-28 Sugasawa , Niiza , Saitama 352-8510 , Japan
| | | | | | | | | | - Tsuneyuki Oku
- Institute of Food, Nutrition & Health , Jumonji University , 2-1-28 Sugasawa , Niiza , Saitama 352-8510 , Japan
| |
Collapse
|
34
|
Oda Y, Sasaki H, Miura T, Takanashi T, Furuya Y, Yoshinari M, Yajima Y. Bone marrow stromal cells from low-turnover osteoporotic mouse model are less sensitive to the osteogenic effects of fluvastatin. PLoS One 2018; 13:e0202857. [PMID: 30142209 PMCID: PMC6108483 DOI: 10.1371/journal.pone.0202857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/12/2018] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the effects of fluvastatin on the differentiation of bone marrow stromal cells (BMSCs) into osteoblasts in senescence-accelerated mouse prone 6 (SAMP6) compared with that in the normal senescence-accelerated-resistant mouse (SAMR1) model. SAMP strains arose spontaneously from the AKR/J background and display shortened life span and an array of signs of accelerated aging, compared with control SAMR strains. The dose effects of fluvastatin were also evaluated. BMSCs were cultured with/without fluvastatin (0 μM, 0.1 μM, 0.5 μM, and 1.0 μM). WST-1-based colorimetry was performed to evaluate cell proliferation. To evaluate cell differentiation, gene expression levels of bmp2 and runx2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and protein expression levels were determined using enzyme-linked immunosorbent assay (BMP2) and immunofluorescence staining (BMP2 and Runx2). Alkaline phosphatase (ALP) activity assay and histochemical detection were determined; the effect of noggin, a BMP-specific antagonist, was examined using ALP histochemical detection. To assess for mature osteogenic marker, gene expression levels of bglap2 were determined by qRT-PCR and mineralization was determined by alizarin red staining. RhoA activity was also examined by Western blotting. In SAMP6, BMP2, Runx2 and Bglap2 mRNA and protein expressions were significantly increased by fluvastatin, and ALP activity was increased by BMP2 action. RhoA activity was also inhibited by fluvastatin. The concentration of fluvastatin sufficient to increase BMP2 and Runx2 expression and ALP activity was 0.5 μM in SAMP6 and 0.1 μM in SAMR1. In conclusion, the present study revealed that fluvastatin promoted BMSC differentiation into osteoblasts by RhoA-BMP2 pathway in SAMP6. BMSCs of SAMP6 are less sensitive to the osteogenic effects of fluvastatin than SAMR1.
Collapse
Affiliation(s)
- Yukari Oda
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
- * E-mail:
| | - Hodaka Sasaki
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Tadashi Miura
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Takuya Takanashi
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Yoshitaka Furuya
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Masao Yoshinari
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yasutomo Yajima
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
35
|
A specific haplotype in potential miRNAs binding sites of secreted frizzled-related protein 1 (SFRP1) is associated with BMD variation in osteoporosis. Gene 2018; 677:132-141. [PMID: 30055306 DOI: 10.1016/j.gene.2018.07.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
PURPOSE Osteoporosis is an important multifactorial disease which is largely influenced by Wnt signaling pathway. Considering regulatory single nucleotide polymorphisms in Wnt signaling pathway may pave the road of understanding the genetic basis of predisposition to osteoporosis. The aim of this study was to determine the possible association between variants of SFRP1 and WNT5b, and osteoporosis incidence risk. METHODS The study population comprised 186 osteoporotic patients and 118 normal subjects from Amirkola Health and Ageing Project. rs1127379 (c.1406A>G) and rs3242 (c.3132C>T) variants in 3'UTR of SFRP1 gene, and rs3803164 (c.236C>T) in 3'UTR and rs735890 (c.622-536A>G) in intron 4 of WNT5b gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Regression analyses were used to calculate the association of genotype frequencies with bone mineral density (BMD) and bone mineral content (BMC) values of participants. Bioinformatics algorithms were used to detect the effect of each SNP on the secondary structure of mRNA, and predict putative 3'UTR microRNA target sites and splicing sites changes by related SNPs. RESULTS WNT5b rs735890 was associated with lumbar spine BMD, BMC, and femoral neck BMC (P = 0.035, P = 0.007, and P = 0.038, respectively). WNT5b rs3803164, and SFRP1 rs3242 were significantly associated with lumbar spine BMD (P = 0.028 and P = 0.030, respectively). SFRP1 rs1127379 was associated with lumbar spine BMD in the male gender. Haplotype analysis showed a significant association of SFRP1 c.[1406A; 3132C] haplotype with lumbar spine BMD, and BMC (P = 0.019 and P = 0.030, respectively), and SFRP1 c.[1406G; 3132C] haplotype with lumbar spine BMC (P = 0.045). In silico analyses revealed that the G allele of SFRP1 rs1127379, and WNT5b rs3803164 appear as more possible target sites for many miRNAs. CONCLUSIONS This study is the first evidence of the association of WNT5b rs735890, and c.[1406A; 3132C] and c.[1406G; 3132C] haplotypes of SFRP1 with BMD variation in osteoporosis, probably by altering microRNA target sites, in elderly persons.
Collapse
|
36
|
Brommage R, Ohlsson C. Translational studies provide insights for the etiology and treatment of cortical bone osteoporosis. Best Pract Res Clin Endocrinol Metab 2018; 32:329-340. [PMID: 29779585 DOI: 10.1016/j.beem.2018.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing attention is being focused on the important contributions of cortical bone to bone strength, fractures and osteoporosis therapies. Recent progress in human genome wide association studies in combination with high-throughput mouse gene knockout phenotyping efforts of multiple genes and advanced conditional gene inactivation in mouse models have successfully identified genes with crucial roles in cortical bone homeostasis. Particular attention in this review is given to genes, such as WNT16, POSTN and SFRP4, that differentially affect cortical and trabecular bone architecture. We propose that animal models of cortical bone metabolism will substantially contribute to developing anabolic osteoporosis therapies that improve cortical bone mass and reduce non-vertebral fracture risk.
Collapse
Affiliation(s)
- Robert Brommage
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
37
|
Azuma K, Zhou Q, Kubo KY. Morphological and molecular characterization of the senile osteoporosis in senescence-accelerated mouse prone 6 (SAMP6). Med Mol Morphol 2018; 51:139-146. [PMID: 29619545 DOI: 10.1007/s00795-018-0188-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/31/2018] [Indexed: 12/16/2022]
Abstract
Although the understanding of the complex pathogenesis for osteoporosis is appreciable, the underlying mechanism is not yet fully elucidated. There is a great need to further characterize the available animal models in osteoporosis research. The senescence-accelerated mouse prone 6 (SAMP6) mice have been developed as the spontaneous experimental model for senile osteoporosis. Here, we provide a comprehensive overview of current research regarding the bone morphological and molecular alterations and the possible mechanisms involved in these changes. There were significant decrease in trabecular bone mass at the axial and appendicular skeletal sites, with no marked alterations of cortical bone. Decreased bone formation on the endosteal surface and trabecular bone, and increased bone marrow adiposity were observed in SAMP6 mice. The elevated expression level of proliferator activator gamma (PPARγ) in the bone marrow suggest that PPARγ might regulate osteoblastic bone formation negatively in SAMP6 mice. The expression level of secreted frizzled-related protein 4 (Sfrp4) was found to be higher in SAMP6 mice. Sfrp4 is considered to suppress osteoblastic proliferation mediated by inhibition of Wnt signaling pathway. These findings may help us to gain more insight into the potential mechanism of senile osteoporosis.
Collapse
Affiliation(s)
- Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kin-Ya Kubo
- Department of Food Science and Nutrition, Faculty of Human Life and Environmental Science, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8610, Japan
| |
Collapse
|
38
|
Ji Q, Zhang J, Du Y, Zhu E, Wang Z, Que B, Miao H, Shi S, Qin X, Zhao Y, Zhou Y, Huang F, Nie S. Human epicardial adipose tissue-derived and circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with coronary artery disease. Cardiovasc Diabetol 2017; 16:133. [PMID: 29037197 PMCID: PMC5644066 DOI: 10.1186/s12933-017-0612-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023] Open
Abstract
Background Previous studies have demonstrated that secreted frizzled-related protein 4 (SFRP4) is associated with impaired glucose and triglyceride metabolism in patients with stable coronary artery disease. In the present study, we investigated human epicardial adipose tissue (EAT)-derived and circulating SFRP4 levels in patients with coronary artery disease (CAD). Methods Plasma samples and adipose biopsies from EAT and subcutaneous adipose tissue (SAT) were collected from patients with CAD (n = 40) and without CAD (non-CAD, n = 30) during elective cardiac surgery. The presence of CAD was identified by coronary angiography. SFRP4 mRNA and protein expression levels in adipose tissue were detected by quantitative real-time PCR and immunohistochemistry, respectively. Plasma SFRP4 concentrations were measured by an enzyme-linked immunosorbent assay (ELISA). Correlation analysis and multivariate linear regression analysis were used to determine the association of SFRP4 expression with atherosclerosis as well as clinical risk factors. Results SFRP4 mRNA and protein expression levels were significantly lower in EAT than in paired SAT in patients with and without CAD (all P < 0.05). Compared to non-CAD patients, CAD patients had higher SFRP4 expression levels in EAT (both mRNA and protein levels) and in plasma. Multivariate linear regression analysis showed that CAD was an independent predictor of SFRP4 expression levels in EAT (beta = 0.442, 95% CI 0.030–0.814; P = 0.036) and in plasma (beta = 0.300, 95% CI 0.056–0.545; P = 0.017). SAT-derived SFRP4 mRNA levels were independently associated with fasting insulin levels (beta = 0.382, 95% CI 0.008–0.756; P = 0.045). In addition, plasma SFRP4 levels were positively correlated with BMI (r = 0.259, P = 0.030), fasting insulin levels (r = 0.306, P = 0.010) and homeostasis model assessment of insulin resistance (HOMA-IR) values (r = 0.331, P = 0.005). Conclusions EAT-derived and circulating SFRP4 expression levels were increased in patients with CAD. EAT SFRP4 mRNA levels and plasma SFRP4 concentrations were independently associated with the presence of CAD.
Collapse
Affiliation(s)
- Qingwei Ji
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Yu Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Enjun Zhu
- Department of Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Bin Que
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Huangtai Miao
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Shutian Shi
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Xiuchuan Qin
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, 100029, China
| | - Fangjun Huang
- Department of Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China. .,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
39
|
Zhu S, He H, Zhang C, Wang H, Gao C, Yu X, He C. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics 2017; 38:406-424. [PMID: 28665487 DOI: 10.1002/bem.22065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/05/2017] [Indexed: 02/05/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siyi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chi Zhang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Haiming Wang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengfei Gao
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
40
|
Li J, Bao Q, Chen S, Liu H, Feng J, Qin H, Li A, Liu D, Shen Y, Zhao Y, Zong Z. Different bone remodeling levels of trabecular and cortical bone in response to changes in Wnt/β-catenin signaling in mice. J Orthop Res 2017; 35:812-819. [PMID: 27306622 DOI: 10.1002/jor.23339] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Trabecular bone and cortical bone have different bone remodeling levels, and the underlying mechanisms are not fully understood. In the present study, the expression of Wnt/β-catenin signaling and its downstream molecules along with bone mass in trabecular and cortical bone were compared in wild-type mice, constitutive activation of β-catenin (CA-β-catenin) mice and β-catenin deletion mice. It was found that the expression level of most of the examined genes such as Wnt3a, β-catenin, osteocalcin and RANKL/OPG ratio were significantly higher in trabecular bone than in cortical bone in wild-type mice. CA-β-catenin resulted in up-regulated expression of the above-mentioned genes except for RANKL/OPG ratio, which were down-regulated. Also, CA-β-catenin led to increased number of osteoblasts, decreased number of osteoclasts and increased bone mass in both the trabecular bone and cortical bone compared with wild-type mice; however, the extent of changes was much greater in the trabecular bone than in the cortical bone. By contrast, null β-catenin led to down-regulated expression of the above-mentioned genes except for RANKL/OPG ratio. Furthermore, β-catenin deletion led to decreased number of osteoblasts, increased number of osteoclasts and decreased bone mass when compared with wild-type mice. Again, the extent of these changes was more significant in trabecular bone than cortical bone. Taken together, we found that the expression level of Wnt/β-catenin signaling and bone remodeling-related molecules were different in cortical bone and trabecular bone, and the trabecular bone was more readily affected by changes in the Wnt/β-catenin signaling pathway. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:812-819, 2017.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Quanwei Bao
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Sixu Chen
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Huayu Liu
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Jianquan Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Hao Qin
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Ang Li
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Daocheng Liu
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Yue Shen
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Yufeng Zhao
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| | - Zhaowen Zong
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, China
| |
Collapse
|
41
|
Shao J, Yu M, Jiang L, Wu F, Liu X. Sequencing and bioinformatics analysis of the differentially expressed genes in herniated discs with or without calcification. Int J Mol Med 2017; 39:81-90. [PMID: 27959380 PMCID: PMC5179188 DOI: 10.3892/ijmm.2016.2821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/01/2016] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study was to detect the differentially expressed genes between ossified herniated discs and herniated discs without ossification. In addition, we sought to identify a few candidate genes and pathways by using bioinformatics analysis. We analyzed 6 samples each of ossified herniated discs (experimental group) and herniated discs without ossification (control group). Purified mRNA and cDNA extracted from the samples were subjected to sequencing. The NOISeq method was used to statistically identify the differentially expressed genes (DEGs) between the 2 groups. An in-depth analysis using bioinformatics tools based on the DEGs was performed using Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein interaction network analysis. The top 6 DEGs were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 132 DEGs was detected. A total of 129 genes in the ossified group were upregulated and 3 genes were found to be downregulated as compared to the control group. The top 3 cellular components in GO ontologies analysis were extracellular matrix components. GO functions were mainly related to the glycoprotein in the cell membrane and extracellular matrix. The GO process was related to completing response to stimulus, immune reflex and defense. The top 5 KEGG enrichment pathways were associated with infection and inflammation. Three of the top 20 DEGs [sclerostin (SOST), WNT inhibitory factor 1 (WIF1) and secreted frizzled related protein 4 (SFRP4)] were related to the inhibition of the Wnt pathway. The ossified discs exhibited a higher expression of the top 6 DEGs [SOST, joining chain of multimeric IgA and IgM (IGJ; also known as JCHAIN), defensin alpha 4 (DEFA4), SFRP4, proteinase 3 (PRTN3) and cathepsin G (CTSG)], with the associated P-values of 0.045, 0.000, 0.008, 0.010, 0.015 and 0.002, respectively, as calculated by the independent sample t-test. The gene expression profiling of the 2 groups revealed differential gene expression. Thus, our data suggest that Wnt pathway abnormality and local inflammation may be related to disc ossification.
Collapse
Affiliation(s)
- Jia Shao
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Miao Yu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Liang Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Fengliang Wu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
42
|
Freudenthal B, Logan J, Croucher PI, Williams GR, Bassett JHD. Rapid phenotyping of knockout mice to identify genetic determinants of bone strength. J Endocrinol 2016; 231:R31-46. [PMID: 27535945 PMCID: PMC5064764 DOI: 10.1530/joe-16-0258] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
The genetic determinants of osteoporosis remain poorly understood, and there is a large unmet need for new treatments in our ageing society. Thus, new approaches for gene discovery in skeletal disease are required to complement the current genome-wide association studies in human populations. The International Knockout Mouse Consortium (IKMC) and the International Mouse Phenotyping Consortium (IMPC) provide such an opportunity. The IKMC generates knockout mice representing each of the known protein-coding genes in C57BL/6 mice and, as part of the IMPC initiative, the Origins of Bone and Cartilage Disease project identifies mutants with significant outlier skeletal phenotypes. This initiative will add value to data from large human cohorts and provide a new understanding of bone and cartilage pathophysiology, ultimately leading to the identification of novel drug targets for the treatment of skeletal disease.
Collapse
Affiliation(s)
- Bernard Freudenthal
- Molecular Endocrinology LaboratoryDepartment of Medicine, Imperial College London, London, UK
| | - John Logan
- Molecular Endocrinology LaboratoryDepartment of Medicine, Imperial College London, London, UK
| | - Peter I Croucher
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
| | - Graham R Williams
- Molecular Endocrinology LaboratoryDepartment of Medicine, Imperial College London, London, UK
| | - J H Duncan Bassett
- Molecular Endocrinology LaboratoryDepartment of Medicine, Imperial College London, London, UK
| |
Collapse
|
43
|
Osteogenesis induced by frizzled-related protein (FRZB) is linked to the netrin-like domain. J Transl Med 2016; 96:570-80. [PMID: 26927515 DOI: 10.1038/labinvest.2016.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Abnormal Wnt signaling is associated with bone mass disorders. Frizzled-related protein (FRZB, also known as secreted frizzled-related protein-3 (SFRP3)) is a Wnt modulator that contains an amino-terminal cysteine-rich domain (CRD) and a carboxy-terminal Netrin-like (NTN) motif. Frzb(-/-) mice show increased cortical thickness. However, the direct effect of FRZB on osteogenic differentiation and the involvement of the structural domains herein are not fully understood. In this study, we observed that stable overexpression of Frzb in MC3T3-E1 cells increased calcium deposition and osteoblast markers compared with control. Western blot analysis showed that the increased osteogenesis was associated with reduced canonical, but increased non-canonical Wnt signaling. On the contrary, loss of Frzb induced the opposite effects on osteogenesis and Wnt signaling. To translationally validate the positive effects of FRZB on primary human cells, we treated human periosteal and human bone marrow stromal cells with conditioned medium from MC3T3-E1 cells overexpressing Frzb and observed an increase in Alizarin red staining. We further studied the effect of the domains. FrzbNTN overexpression induced similar effects on osteogenesis as full-length Frzb, whereas FrzbCRD overexpressing cells mimicked loss of Frzb experiments. The CRD is considered as the Wnt binding domain, but the NTN domain also has important effects on bone biology. FRZB and other SFRPs or their specific domains may hold surprising potential as therapeutics for bone and joint disorders considering that excess of SFRPs has effects that are not expected under physiological, endogenous expression conditions.
Collapse
|
44
|
sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss. Sci Rep 2016; 6:25198. [PMID: 27117872 PMCID: PMC4846872 DOI: 10.1038/srep25198] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/13/2016] [Indexed: 01/24/2023] Open
Abstract
sFRP4 is an extracellular Wnt antagonist that fine-tunes its signal activity by direct binding to Wnts. Bone fragility under oxidative stress by diabetes and aging is partly related to the suppression of the Wnt signal through upregulated sFRP4. Here, to explore the functions of sFRP4 as a balancer molecule in bone development and remodeling, we analyzed the sFRP4 knock-in mouse strain. X-gal and immunohistochemically stained signals in sFRP4-LacZ heterozygous mice were detectable in restricted areas, mostly in osteoblasts and osteoclasts, of the femoral diaphysis after neonatal and postnatal stages. Histological and μCT analyses showed increased trabecular bone mass with alteration of the Wnt signal and osteogenic activity in sFRP4 mutants; this augmented the effect of the buildup of trabecular bone during the ageing period. Our results indicate that sFRP4 plays a critical role in bone development and remodeling by regulating osteoblasts and osteoclasts, and that its functional loss prevents age-related bone loss in the trabecular bone area. These findings imply that sFRP4 functions as a key potential endogenous balancer of the Wnt signaling pathway by efficiently having direct influence on both bone formation and bone absorption during skeletal bone development and maintenance through remodeling.
Collapse
|
45
|
Mastaitis J, Eckersdorff M, Min S, Xin Y, Cavino K, Aglione J, Okamoto H, Na E, Stitt T, Dominguez MG, Schmahl JP, Lin C, Gale NW, Valenzuela DM, Murphy AJ, Yancopoulos GD, Gromada J. Loss of SFRP4 Alters Body Size, Food Intake, and Energy Expenditure in Diet-Induced Obese Male Mice. Endocrinology 2015; 156:4502-10. [PMID: 26406932 DOI: 10.1210/en.2015-1257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Secreted frizzled-related protein 4 (SFRP4) is an extracellular regulator of the wingless-type mouse mammary tumor virus integration site family (WNT) pathway. SFRP4 has been implicated in adipocyte dysfunction, obesity, insulin resistance, and impaired insulin secretion in patients with type 2 diabetes. However, the exact role of SFRP4 in regulating whole-body metabolism and glucose homeostasis is unknown. We show here that male Sfrp4(-/-) mice have increased spine length and gain more weight when fed a high-fat diet. The body composition and body mass per spine length of diet-induced obese Sfrp4(-/-) mice is similar to wild-type littermates, suggesting that the increase in body weight can be accounted for by their longer body size. The diet-induced obese Sfrp4(-/-) mice have reduced energy expenditure, food intake, and bone mineral density. Sfrp4(-/-) mice have normal glucose and insulin tolerance and β-cell mass. Diet-induced obese Sfrp4(-/-) and control mice show similar impairments of glucose tolerance and a 5-fold compensatory expansion of their β-cell mass. In summary, our data suggest that loss of SFRP4 alters body length and bone mineral density as well as energy expenditure and food intake. However, SFRP4 does not control glucose homeostasis and β-cell mass in mice.
Collapse
Affiliation(s)
| | | | - Soo Min
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Katie Cavino
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Erqian Na
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | - Trevor Stitt
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | | | - Calvin Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| | | | | | | | | | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York 10591
| |
Collapse
|
46
|
Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Sci Rep 2015; 5:16018. [PMID: 26522007 PMCID: PMC4629186 DOI: 10.1038/srep16018] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/08/2015] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is a leading cause of cancer death amongst males. The main clinical dilemma in treating prostate cancer is the high number of indolent cases that confer a significant risk of overtreatment. In this study, we have performed gene expression profiling of tumor tissue specimens from 36 patients with prostate cancer to identify transcripts that delineate aggressive and indolent cancer. Key genes were validated using previously published data and by tissue microarray analysis. Two molecular subgroups were identified with a significant overrepresentation of tumors from patients with biochemical recurrence in one of the groups. We successfully validated key transcripts association with recurrence using two publically available datasets totaling 669 patients. Twelve genes were found to be independent predictors of recurrence in multivariate logistical regression analysis. SFRP4 gene expression was consistently up regulated in patients with recurrence in all three datasets. Using an independent cohort of 536 prostate cancer patients we showed SFRP4 expression to be an independent predictor of recurrence after prostatectomy (HR = 1.35; p = 0.009). We identified SFRP4 to be associated with disease recurrence. Prospective studies are needed in order to assess the clinical usefulness of the identified key markers in this study.
Collapse
|
47
|
Gou Y, Zhang T, Xu J. Transcription Factors in Craniofacial Development: From Receptor Signaling to Transcriptional and Epigenetic Regulation. Curr Top Dev Biol 2015; 115:377-410. [PMID: 26589933 DOI: 10.1016/bs.ctdb.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Craniofacial morphogenesis is driven by spatial-temporal terrains of gene expression, which give rise to stereotypical pattern formation. Transcription factors are key cellular components that control these gene expressions. They are information hubs that integrate inputs from extracellular factors and environmental cues, direct epigenetic modifications, and define transcriptional status. These activities allow transcription factors to confer specificity and potency to transcription regulation during development.
Collapse
Affiliation(s)
- Yongchao Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA; State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA.
| |
Collapse
|
48
|
Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S, Dharmarajan A. Multi-lineage differentiation of mesenchymal stem cells - To Wnt, or not Wnt. Int J Biochem Cell Biol 2015; 68:139-47. [PMID: 26410622 DOI: 10.1016/j.biocel.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rodney Dilley
- Ear Sciences Centre, University of Western Australia and Ear Science Institute Australia, Perth, Western Australia 6008, Australia
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
49
|
Zhang L, Chen P, Chen L, Weng T, Zhang S, Zhou X, Zhang B, Liu L. Inhibited Wnt signaling causes age-dependent abnormalities in the bone matrix mineralization in the Apert syndrome FGFR2(S252W/+) mice. PLoS One 2015; 10:e112716. [PMID: 25693202 PMCID: PMC4333342 DOI: 10.1371/journal.pone.0112716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/14/2014] [Indexed: 01/16/2023] Open
Abstract
Apert syndrome (AS) is a type of autosomal dominant disease characterized by premature fusion of the cranial sutures, severe syndactyly, and other abnormalities in internal organs. Approximately 70% of AS cases are caused by a single mutation, S252W, in fibroblast growth factor receptor 2 (FGFR2). Two groups have generated FGFR2 knock-in mice Fgfr2S252W/+ that exhibit features of AS. During the present study of AS using the Fgfr2S252W/+ mouse model, an age-related phenotype of bone homeostasis was discovered. The long bone mass was lower in 2 month old mutant mice than in age-matched controls but higher in 5 month old mutant mice. This unusual phenotype suggested that bone marrow-derived mesenchymal stem cells (BMSCs), which are vital to maintain bone homeostasis, might be involved. BMSCs were isolated from Fgfr2S252W/+ mice and found that S252W mutation could impair osteogenic differentiation BMSCs but enhance mineralization of more mature osteoblasts. A microarray analysis revealed that Wnt pathway inhibitors SRFP1/2/4 were up-regulated in mutant BMSCs. This work provides evidence to show that the Wnt/β-catenin pathway is inhibited in both mutant BMSCs and osteoblasts, and differentiation defects of these cells can be ameliorated by Wnt3a treatment. The present study suggested that the bone abnormalities caused by deregulation of Wnt pathway may underlie the symptoms of AS.
Collapse
Affiliation(s)
- Li Zhang
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Peng Chen
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
- Neurosurgery Department, PLA 324 Hospital, Chongqing, China
| | - Lin Chen
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Tujun Weng
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Shichang Zhang
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Xia Zhou
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Bo Zhang
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Luchuan Liu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
50
|
Simpson CA, Foer D, Lee GS, Bihuniak J, Sun B, Sullivan R, Belsky J, Insogna KL. Serum levels of sclerostin, Dickkopf-1, and secreted frizzled-related protein-4 are not changed in individuals with high bone mass causing mutations in LRP5. Osteoporos Int 2014; 25:2383-8. [PMID: 24927689 PMCID: PMC4659359 DOI: 10.1007/s00198-014-2767-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 12/17/2022]
Abstract
SUMMARY We compared circulating levels of Wnt inhibitors among patients with high bone mass mutations in LRP5, unaffected kindred, and unrelated normal controls. Inhibitors were unchanged in affected and unaffected kindred. We saw no meaningful differences between controls and affected individuals. LRP5 signaling may not influence circulating levels of these inhibitors. INTRODUCTION It is thought that gain-of-function mutations in LRP5 result in high bone mass syndromes because these allelic variants confer resistance to the actions of endogenous inhibitors of Wnt signaling. We therefore attempted to determine if circulating levels of Wnt inhibitors are altered in patients with gain-of-function mutations in LRP5. METHODS This is a cross-sectional study in a university research center. Serum was collected from consented volunteers known to have either the G171V or N198S gain-of-function mutations in LRP5, kindred members affected with either mutation, unrelated kindred, and unrelated normal age-matched controls. BMD was provided or measured on site. RESULTS There were no significant differences found in the serum levels of sclerostin (SOST), Dickkopf-1 (Dkk-1), or secreted frizzled-related protein-4 (SFRP-4) in affected vs. unaffected individuals from different kindreds or when compared to age-matched unrelated normal individuals. Mean serum SOST values in affected and unaffected kindred members and unrelated normal controls were 52.7 ± 6.1, 36.5 ± 9.6, and 54.8 ± 5.4, respectively. For Dkk-1, the values were 25.9 ± 3.4, 25.7 ± 3.0, and 17.3 ± 2.3 and for SFRP-4, 38.1 ± 2.3, 39.8 ± 3.6, and 28.5 ± 1.7. Serum levels of RANKL and osteoprotegerin (OPG) were not different in the three groups. CONCLUSIONS Circulating levels of endogenous Wnt inhibitors do not change in patients with gain-of-function mutations in LRP5 including Dkk1, which is suppressed by Wnt signaling. It may be that circulating levels of Wnt inhibitors do not reflect changes in target tissues. It is also possible that other mechanisms besides or in addition to resistance in Wnt inhibitors explains the skeletal effects of these mutations.
Collapse
Affiliation(s)
- C A Simpson
- Department of Medicine, Section of Endocrinology, Yale School of Medicine, 330 Cedar Street, P.O.Box 208020, New Haven, CT, 06520-8020, USA,
| | | | | | | | | | | | | | | |
Collapse
|