1
|
Miñambres I, Corcoy R, Weetman AP, Kemp EH. Autoimmune Hypercalcemia Due to Autoantibodies Against the Calcium-sensing Receptor. J Clin Endocrinol Metab 2020; 105:5822860. [PMID: 32311038 DOI: 10.1210/clinem/dgaa219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Autoimmune hypocalciuric hypercalcemia (AHH) is an acquired disorder caused by the presence of blocking autoantibodies against the calcium-sensing receptor (CaSR). Few cases of this condition have been described to date in the literature. OBJECTIVE The objectives of this study were to describe 2 patients in whom the presence of AHH was suspected and to assess the patients for the presence of CaSR antibodies. METHODS CaSR antibodies were detected and characterised by immunoprecipitation assays, CaSR peptide ELISAs, and functional assays based on the calcium-stimulated accumulation of inositol-1-phosphate in a mammalian cell line expressing the CaSR. RESULTS Both patients presented with an acquired form of hypocalciuric hypercalcemia. Mutational analyses of CASR, GNA11, and AP2S1 for familial hypocalciuric hypercalcemia were negative. According to the presence of Hashimoto's disease in 1 patient and latent autoimmune diabetes of adulthood and thyroid autoimmunity in the other, AHH was suspected. Immunoprecipitation assays detected CaSR antibodies in both patients. Analysis of the antibody binding sites revealed 2 main epitopes at amino acids 41-69 and 114-126. Preincubation with purified CaSR antibodies against epitope 114-126 resulted in a significant decrease in inositol-1-phophate accumulation upon calcium-stimulation of mammalian cells expressing the CaSR, suggesting that the antibodies had receptor-blocking activity. CONCLUSIONS AHH is to be suspected in patients with an acquired biochemical pattern of PTH-dependant hypocalciuric hypercalcemia, especially in those with other concomitant autoimmune diseases. Diagnosis by means of detecting CaSR antibodies may help to better characterise this probably under-reported condition.
Collapse
Affiliation(s)
- Inka Miñambres
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBER-DEM), Spain
| | - Rosa Corcoy
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Spain
| | - Anthony P Weetman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - E Helen Kemp
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Makita N, Ando T, Sato J, Manaka K, Mitani K, Kikuchi Y, Niwa T, Ootaki M, Takeba Y, Matsumoto N, Kawakami A, Ogawa T, Nangaku M, Iiri T. Cinacalcet corrects biased allosteric modulation of CaSR by AHH autoantibody. JCI Insight 2019; 4:126449. [PMID: 30996138 DOI: 10.1172/jci.insight.126449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Biased agonism is a paradigm that may explain the selective activation of a signaling pathway via a GPCR that activates multiple signals. The autoantibody-induced inactivation of the calcium-sensing receptor (CaSR) causes acquired hypocalciuric hypercalcemia (AHH). Here, we describe an instructive case of AHH in which severe hypercalcemia was accompanied by an increased CaSR antibody titer. These autoantibodies operated as biased allosteric modulators of CaSR by targeting its Venus flytrap domain near the Ca2+-binding site. A positive allosteric modulator of CaSR, cinacalcet, which targets its transmembrane domain, overcame this autoantibody effect and successfully corrected the hypercalcemia in this patient. Hence, this is the first study to our knowledge that identifies the interaction site of a disease-causing GPCR autoantibody working as its biased allosteric modulator and demonstrates that cinacalcet can correct the AHH autoantibody effects both in vitro and in our AHH patient. Our observations provide potentially new insights into how biased agonism works and how to design a biased allosteric modulator of a GPCR. Our observations also indicate that the diagnosis of AHH is important because the severity of hypercalcemia may become fatal if the autoantibody titer increases. Calcimimetics may serve as good treatment options for some patients with severe AHH.
Collapse
Affiliation(s)
- Noriko Makita
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takao Ando
- Division of Endocrinology and Metabolism, Nagasaki Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junichiro Sato
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Katsunori Manaka
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Koji Mitani
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Yasuko Kikuchi
- Department of Breast and Endocrine Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takayoshi Niwa
- Department of Breast and Endocrine Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Atsushi Kawakami
- Division of Endocrinology and Metabolism, Nagasaki Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihisa Ogawa
- Breast Center, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Masaomi Nangaku
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Taroh Iiri
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan.,Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
3
|
Habibullah M, Porter JA, Kluger N, Ranki A, Krohn KJE, Brandi ML, Brown EM, Weetman AP, Kemp EH. Calcium-Sensing Receptor Autoantibodies in Patients with Autoimmune Polyendocrine Syndrome Type 1: Epitopes, Specificity, Functional Affinity, IgG Subclass, and Effects on Receptor Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3175-3183. [PMID: 30381479 DOI: 10.4049/jimmunol.1701527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
A major manifestation of autoimmune polyendocrine syndrome type 1 (APS1) is hypoparathyroidism, which is suggested to result from aberrant immune responses against the parathyroid glands. The calcium-sensing receptor (CaSR), which plays a pivotal role in maintaining calcium homeostasis by sensing blood calcium levels and regulating release of parathyroid hormone (PTH), is an autoantibody target in APS1. In this study, the aim was to characterize the binding sites, specificity, functional affinity, IgG subclass, and functional effects of CaSR autoantibodies using phage-display technology, ELISA, and bioassays. The results indicated that CaSR autoantibody binding sites were at aa 41-69, 114-126, 171-195, and 260-340 in the extracellular domain of the receptor. Autoantibodies against CaSR epitopes 41-69, 171-195, and 260-340 were exclusively of the IgG1 subclass. Autoantibody responses against CaSR epitope 114-126 were predominantly of the IgG1 with a minority of the IgG3 subclass. Only autoantibodies recognizing CaSR epitopes 114-126 and 171-195 affected receptor activity; inositol-phosphate accumulation was increased significantly in HEK293-CaSR cells, and PTH secretion from PTH-C1 cells was reduced significantly when either were incubated with purified Ab and Ca2+ compared with Ca2+ alone. In conclusion, although the majority of APS1 patients do not have CaSR-stimulating autoantibodies, the hypoparathyroid state in a small minority of patients is the result of functional suppression of the parathyroid glands.
Collapse
Affiliation(s)
- Mahmoud Habibullah
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Julie A Porter
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki and Helsinki University Central Hospital, 00250 Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki and Helsinki University Central Hospital, 00250 Helsinki, Finland
| | - Kai J E Krohn
- Clinical Research Institute HUCH Ltd., 00250 Helsinki, Finland
| | - Maria L Brandi
- Department of Surgery and Translational Medicine, University of Florence, 50139 Florence, Italy; and
| | - Edward M Brown
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, MA 02115
| | - Anthony P Weetman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - E Helen Kemp
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom;
| |
Collapse
|
4
|
Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol 2016; 7:563. [PMID: 28018229 PMCID: PMC5156698 DOI: 10.3389/fphys.2016.00563] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Parathyroid hormone (PTH) defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well-established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR).
Collapse
Affiliation(s)
- Arthur D Conigrave
- Faculties of Science and Medicine, School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
5
|
Zhang C, Miller CL, Gorkhali R, Zou J, Huang K, Brown EM, Yang JJ. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor. Front Physiol 2016; 7:441. [PMID: 27746744 PMCID: PMC5043022 DOI: 10.3389/fphys.2016.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Ca2+-sensing receptors (CaSRs) play a central role in regulating extracellular calcium concentration ([Ca2+]o) homeostasis and many (patho)physiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids, and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT) domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR's cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs) in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | | | - Rakshya Gorkhali
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Juan Zou
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Kenneth Huang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Edward M Brown
- Center for Diagnostics and Therapeutics, Georgia State UniversityAtlanta, GA, USA; Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's HospitalBoston, MA, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| |
Collapse
|
6
|
van der Woning B, De Boeck G, Blanchetot C, Bobkov V, Klarenbeek A, Saunders M, Waelbroeck M, Laeremans T, Steyaert J, Hultberg A, De Haard H. DNA immunization combined with scFv phage display identifies antagonistic GCGR specific antibodies and reveals new epitopes on the small extracellular loops. MAbs 2016; 8:1126-35. [PMID: 27211075 PMCID: PMC4968103 DOI: 10.1080/19420862.2016.1189050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022] Open
Abstract
The identification of functional monoclonal antibodies directed against G-protein coupled receptors (GPCRs) is challenging because of the membrane-embedded topology of these molecules. Here, we report the successful combination of llama DNA immunization with scFv-phage display and selections using virus-like particles (VLP) and the recombinant extracellular domain of the GPCR glucagon receptor (GCGR), resulting in glucagon receptor-specific antagonistic antibodies. By immunizing outbred llamas with plasmid DNA containing the human GCGR gene, we sought to provoke their immune system, which generated a high IgG1 response. Phage selections on VLPs allowed the identification of mAbs against the extracellular loop regions (ECL) of GCGR, in addition to multiple VH families interacting with the extracellular domain (ECD) of GCGR. Identifying mAbs binding to the ECL regions of GCGR is challenging because the large ECD covers the small ECLs in the energetically most favorable 'closed conformation' of GCGR. Comparison of Fab with scFv-phage display demonstrated that the multivalent nature of scFv display is essential for the identification of GCGR specific clones by selections on VLPs because of avid interaction. Ten different VH families that bound 5 different epitopes on the ECD of GCGR were derived from only 2 DNA-immunized llamas. Seven VH families demonstrated interference with glucagon-mediated cAMP increase. This combination of technologies proved applicable in identifying multiple functional binders in the class B GPCR context, suggesting it is a robust approach for tackling difficult membrane proteins.
Collapse
Affiliation(s)
| | | | | | - Vladimir Bobkov
- Argenx BVBA, Zwijnaarde, Belgium
- AIMMS, Division Medicinal Chemistry, VU University Amsterdam, The Netherlands
| | - Alex Klarenbeek
- Dept. of Cell Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Jan Steyaert
- Confotherapeutics, Brussels, Belgium
- VIB Structural Biology Research Center, Brussels, Belgium
| | | | | |
Collapse
|
7
|
Weetman AP. Auto-immune hypoparathyroidism. ANNALES D'ENDOCRINOLOGIE 2015; 76:89-91. [PMID: 25913523 DOI: 10.1016/j.ando.2015.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Anthony P Weetman
- Department of Human Metabolism, University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
8
|
Zhang C, Miller CL, Brown EM, Yang JJ. The calcium sensing receptor: from calcium sensing to signaling. SCIENCE CHINA-LIFE SCIENCES 2015; 58:14-27. [DOI: 10.1007/s11427-014-4779-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
|
9
|
Betterle C, Garelli S, Presotto F. Diagnosis and classification of autoimmune parathyroid disease. Autoimmun Rev 2014; 13:417-22. [PMID: 24424178 DOI: 10.1016/j.autrev.2014.01.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 12/18/2022]
Abstract
Hypoparathyroidism (HP) is clinically characterized by the presence of hypocalcemia, usually associated with specific signs and symptoms that depend on how severe and chronic the disease becomes. HP is usually caused by surgical removal of all four parathyroids, while other forms are rarer. Autoimmune HP can occur as an isolated disease or as part of an autoimmune polyendocrine syndrome. Here we review what is known about parathyroid gland autoimmunity, focusing on recently-proposed parathyroid autoantibody markers, and particularly those directed against NACHT leucine-rich-repeat protein 5 and calcium-sensing receptor. We also describe the clinical characteristics of HP and design a diagnostic algorithm for autoimmune HP.
Collapse
Affiliation(s)
- Corrado Betterle
- Endocrine Unit, Department of Medicine, University of Padova, Via Ospedale Civile, 105-35128 Padova, Italy.
| | - Silvia Garelli
- Endocrine Unit, Department of Medicine, University of Padova, Via Ospedale Civile, 105-35128 Padova, Italy.
| | - Fabio Presotto
- Internal Medicine Unit, Mestre-Venice Ospedale dell'Angelo, Via Paccagnella, 11-30174 Mestre, Venezia, Italy.
| |
Collapse
|
10
|
Tomar N, Gupta N, Goswami R. Calcium-sensing receptor autoantibodies and idiopathic hypoparathyroidism. J Clin Endocrinol Metab 2013; 98:3884-91. [PMID: 23873991 DOI: 10.1210/jc.2013-2158] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Data on calcium-sensing receptor autoantibodies (CaSRAbs) in hypoparathyroidism are variable. OBJECTIVE We assessed the prevalence and significance of CaSRAbs in idiopathic hypoparathyroidism. DESIGN This was a case-control study. SUBJECTS One hundred forty-seven patients with idiopathic hypoparathyroidism treated during 1998-2011 in a tertiary care setting and 348 controls [healthy, n = 199; type 1 diabetes mellitus (T1DM), n = 99; and chronic lymphocytic thyroiditis (CLT), n = 50] participated in the study. METHODS CaSRAb assays included Western blot with CaSR protein expressed in Escherichia coli or human embryonic kidney (HEK)-293 cells, immunoprecipitation (IP) using in vitro-transcribed/translated protein, and indirect immunofluorescence on HEK293-CaSR. Functional significance was assessed by ERK1/2 phosphorylation. PTH and CaSR genes were sequenced for mutations. RESULTS E coli-Western blot assay revealed 16.3% CaSRAb positivity in idiopathic hypoparathyroidism, which was comparable with healthy subjects and CLT but significantly less than the T1DM controls. The prevalence of CaSRAbs on HEK293-Western blot (24.5%) against 150 kDa and/or 168 kDa protein in hypoparathyroidism was significantly higher than the healthy subjects, T1DM, and CLT. IP assay showed CaSRAbs in 12.9% of the hypoparathyroid patients but not in controls. The sensitivity and specificity of CaSRAbs in E coli and HEK-293-CaSR Western blot and IP assays were 16.3% and 83.1%, 24.5% and 88.9%, and 12.9% and 100%, respectively, and 42.1% of the cases detected were common in the IP assay and HEK293-Western blot. Duration of illness and coexistent autoimmunity were similar in patients with and without CaSRAbs. The CaSRAb-positive sera showed no immunofluorescence and phosphorylated ERK1/2 activity. The CaSR gene sequence was normal in all patients. One of the patients showed a novel p.Met1_Asp6del mutation in the signal peptide region of the PTH gene. CONCLUSION IP performed the best in detecting CaSRAbs in 12.9% of hypoparathyroid patients. Although CaSRAbs were functionally inert, its clinical relevance remains due to 100% specificity. Limited prevalence of CaSRAb suggests heterogeneity in the etiology of idiopathic hypoparathyroidism or the presence of CaSR epitopes other than those measured in the current study.
Collapse
Affiliation(s)
- Neeraj Tomar
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | |
Collapse
|
11
|
Kluger N, Ranki A, Krohn K. APECED: is this a model for failure of T cell and B cell tolerance? Front Immunol 2012; 3:232. [PMID: 22876245 PMCID: PMC3410439 DOI: 10.3389/fimmu.2012.00232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/15/2012] [Indexed: 11/13/2022] Open
Abstract
In APECED, the key abnormality is in the T cell defect that may lead to tissue destruction chiefly in endocrine organs. Besides, APECED is characterized by high-titer antibodies against a wide variety of cytokines that could partly be responsible for the clinical symptoms during APECED, mainly chronic mucocutaneous candidiasis, and linked to antibodies against Th17 cells effector molecules, IL-17 and IL-22. On the other hand, the same antibodies, together with antibodies against type I interferons may prevent the patients from other immunological diseases, such as psoriasis and systemic lupus erythematous. The same effector Th17 cells, present in the lymphocytic infiltrate of target organs of APECED, could be responsible for the tissue destruction. Here again, the antibodies against the corresponding effector molecules, anti-IL-17 and anti-IL-22 could be protective. The occurrence of several effector mechanisms (CD4(+) Th17 cell and CD8(+) CTL and the effector cytokines IL-17 and IL-22), and simultaneous existence of regulatory mechanisms (CD4(+) Treg and antibodies neutralizing the effect of the effector cytokines) may explain the polymorphism of APECED. Almost all the patients develop the characteristic manifestations of the complex, but temporal course and severity of the symptoms vary considerably, even among siblings. The autoantibody profile does not correlate with the clinical picture. One could speculate that a secondary homeostatic balance between the harmful effector mechanisms, and the favorable regulatory mechanisms, finally define both the extent and severity of the clinical condition in the AIRE defective individuals. The proposed hypothesis that in APECED, in addition to strong tissue destructive mechanisms, a controlling regulatory mechanism does exist, allow us to conclude that APECED could be treated, and even cured, with immunological manipulation.
Collapse
Affiliation(s)
- Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, Skin and Allergy Hospital, Helsinki University Central Hospital, University of Helsinki,Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, Skin and Allergy Hospital, Helsinki University Central Hospital, University of Helsinki,Helsinki, Finland
| | - Kai Krohn
- Clinical Research Institute HUCH Ltd,Helsinki, Finland
| |
Collapse
|
12
|
Breitwieser GE. Minireview: the intimate link between calcium sensing receptor trafficking and signaling: implications for disorders of calcium homeostasis. Mol Endocrinol 2012; 26:1482-95. [PMID: 22745192 DOI: 10.1210/me.2011-1370] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The calcium-sensing receptor (CaSR) regulates organismal Ca(2+) homeostasis. Dysregulation of CaSR expression or mutations in the CASR gene cause disorders of Ca(2+) homeostasis and contribute to the progression or severity of cancers and cardiovascular disease. This brief review highlights recent findings that define the CaSR life cycle, which controls the cellular abundance of CaSR and CaSR signaling. A novel mechanism, termed agonist-driven insertional signaling (ADIS), contributes to the unique hallmarks of CaSR signaling, including the high degree of cooperativity and the lack of functional desensitization. Agonist-mediated activation of plasma membrane-localized CaSR increases the rate of insertion of CaSR at the plasma membrane without altering the constitutive endocytosis rate, thereby acutely increasing the maximum signaling response. Prolonged CaSR signaling requires a large intracellular ADIS-mobilizable pool of CaSR, which is maintained by signaling-mediated increases in biosynthesis. This model provides a rational framework for characterizing the defects caused by CaSR mutations and the altered functional expression of wild-type CaSR in disease states. Mechanistic dissection of ADIS of CaSR should lead to optimized pharmacological approaches to normalize CaSR signaling in disorders of Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA.
| |
Collapse
|
13
|
Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev 2012; 11:754-65. [PMID: 22387972 DOI: 10.1016/j.autrev.2012.02.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases are heterogeneous with regard to prevalence, manifestations, and pathogenesis. The classification of autoimmune diseases has varied over time. Here, we have compiled a comprehensive up-to-date list of the autoimmune diseases, and have reviewed published literature to estimate their prevalence. We identified 81 autoimmune diseases. The overall estimated prevalence is 4.5%, with 2.7% for males and 6.4% for females. For specific diseases, prevalence ranges from 1% to <1/10(6). Considering all diseases in the class, the most common mean age-of-onset was 40-50 years. This list of autoimmune diseases has also yielded information about autoantigens. Forty-five autoimmune diseases have been associated with well-defined autoantigens. Of the diseases with known autoantigens, 33.3% had highly repetitive sequences, 35.6% had coiled-coil arrangements and 57.8% were associated with cellular membranes, which means that based on these structural motifs alone, autoantigens do not appear to be a random sample of the human proteome. Finally, we identified 19 autoimmune diseases that phenocopy diseases arising from germline mutations in the corresponding autoantigen. Collectively, our findings lead to a tentative proposal for criteria for assigning autoimmune pathogenesis to a particular disease.
Collapse
|
14
|
Pallais JC, Kemp EH, Bergwitz C, Kantham L, Slovik DM, Weetman AP, Brown EM. Autoimmune hypocalciuric hypercalcemia unresponsive to glucocorticoid therapy in a patient with blocking autoantibodies against the calcium-sensing receptor. J Clin Endocrinol Metab 2011; 96:672-80. [PMID: 21159843 PMCID: PMC3047232 DOI: 10.1210/jc.2010-1739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/04/2010] [Indexed: 12/24/2022]
Abstract
CONTEXT Autoantibodies directed against the calcium-sensing receptor (CaSR) have been reported in several individuals with various autoimmune disorders and PTH-mediated hypercalcemia. Previously, glucocorticoid treatment has been shown to decrease the CaSR autoantibody titers and normalize the hypercalcemia in a patient with autoimmune hypocalciuric hypercalcemia (AHH). OBJECTIVE The objective of the study was to evaluate a patient with AHH for the presence of blocking autoantibodies against the CaSR and to monitor her biochemical and serological responses to a trial of glucocorticoid therapy. RESULTS Glucocorticoid treatment had no effect on serum total or ionized calcium concentration or serum PTH levels, all of which remained at higher than normal levels. In contrast, on prednisone, urinary calcium excretion increased from overtly hypocalciuric levels to normal values. Anti-CaSR autoantibodies were detected at similar levels in the patient's serum before, during, and after glucocorticoid treatment. Functional testing of these antibodies showed that they inhibited the stimulatory effect of extracellular Ca(2+) on ERK1/2 but did not suppress the calcium-induced accumulation of inositol-1-phosphate. CONCLUSIONS We report a patient with AHH with frankly elevated PTH levels who was found to have autoantibodies against the CaSR. The hypercalcemia and CaSR autoantibody titers failed to respond to glucocorticoid therapy, unlike a previously reported patient with similar clinical and biochemical features. The anti-CaSR antibody-mediated inhibition of CaSR-stimulated ERK1/2 activity, but not of inositol-1-phosphate accumulation, suggests that ERK1/2 may mediate, at least in part, the regulation of PTH secretion and urinary calcium excretion by the CaSR.
Collapse
Affiliation(s)
- J Carl Pallais
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | |
Collapse
|