1
|
Wahyuningtyas ED, Triwardhani A, Ardani IGAW, Surboyo MDC. The Effect of Grape Seed Extract on the Alveolar, Jaw, and Skeletal Bone Remodeling: A Scoping Review. Eur J Dent 2024; 18:73-85. [PMID: 37311556 PMCID: PMC10959605 DOI: 10.1055/s-0043-1768975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Herbal medicine has an important part in promoting and maintaining human health. One of them was grape seed extract (GSE). Various potentials of GSE in human health have been explored, and its potential for maintaining bone health is promising. Some initial research has provided evidence that the GSE was able to affect bone remodeling (bone resorption and bone formation). This scoping review analyzed and discussed all the reports on the effect of GSE on bone healing and bone remodeling in animals in the alveolar bone, jaw bone, and skeletal bone. The further purpose is to give an opportunity to research and development of supplementation of GSE for humans.The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines were used to compose this scoping review through database on Scopus, PubMed, Science Direct, Web of Science, Embase, and manual search until December 2022. The inclusion criteria were a study that analyzed the effect of supplementation GSE on all bones.All included study was in vivo study with supplementation of GSE. The supplementation of GSE affects the alveolar bone, jaw bones, and skeletal bone by promoting bone formation and inhibiting bone resorption by suppressing inflammation, apoptosis pathways, and osteoclastogenesis. It not only supports bone remodeling in bone inflammation, osteonecrosis, osteoporosis, and arthritis but also the GSE increases bone health by increasing the density and mineral deposition in trabecula and cortical bone.The supplementation of GSE supports bone remodeling by interfering with the inflammation process and bone formation not only by preventing bone resorption but also by maintaining bone density.
Collapse
Affiliation(s)
| | - Ari Triwardhani
- Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - I Gusti Aju Wahju Ardani
- Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
2
|
Bowles-Welch AC, Jimenez AC, Stevens HY, Frey Rubio DA, Kippner LE, Yeago C, Roy K. Mesenchymal stromal cells for bone trauma, defects, and disease: Considerations for manufacturing, clinical translation, and effective treatments. Bone Rep 2023. [DOI: 10.1016/j.bonr.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
3
|
Inducing substances for chondrogenic differentiation of dental pulp stem cells in the conditioned medium of a novel chordoma cell line. Hum Cell 2022; 35:745-755. [DOI: 10.1007/s13577-021-00662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 01/14/2023]
|
4
|
Sox9-Increased miR-322-5p Facilitates BMP2-Induced Chondrogenic Differentiation by Targeting Smad7 in Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:9778207. [PMID: 34777504 PMCID: PMC8589527 DOI: 10.1155/2021/9778207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) induces effective chondrogenesis of mesenchymal stem cells (MSCs) by promoting Sox9 expression. However, BMP2 also induces chondrocyte hypertrophy and endochondral ossification by upregulating Smad7 expression, which leads to the disruption of chondrogenesis. In addition, Smad7 can be inhibited by Sox9. Therefore, the underlying mechanism is not clear. Currently, an increasing number of studies have shown that microRNAs play a pivotal role in chondrogenic and pathophysiological processes of cartilage. The purpose of this study was to determine which microRNA is increased by Sox9 and targets Smad7, thus assisting BMP2 in maintaining stable chondrogenesis. We found that miR-322-5p meets the requirement through next-generation sequencing (NGS) and bioinformatic analysis. The targeting relationship between miR-322-5p and Smad7 was confirmed by dual-luciferase reporter assays, qPCR, and western blotting (WB). The in vitro study indicated that overexpression of miR-322-5p significantly inhibited Smad7 expression, thus causing increased chondrogenic differentiation and decreased hypertrophic differentiation, while silencing of miR-322-5p led to the opposite results. Flow cytometry (FCM) analysis indicated that overexpression of miR-322-5p significantly decreased the rate of early apoptosis in BMP2-stimulated MSCs, while silencing of miR-322-5p increased the rate. A mouse limb explant assay revealed that the expression of miR-322-5p was negatively correlated with the length of the BMP2-stimulated hypertrophic zone of the growth plate. An in vivo study also confirmed that miR-322-5p assisted BMP2 in chondrogenic differentiation. Taken together, our results suggested that Sox9-increased miR-322-5p expression can promote BMP2-induced chondrogenesis by targeting Smad7, which can be exploited for effective tissue engineering of cartilage.
Collapse
|
5
|
Hsu TL, Tantoh DM, Chou YH, Hsu SY, Ho CC, Lung CC, Jan CF, Wang L, Liaw YP. Association between osteoporosis and menopause in relation to SOX6 rs297325 variant in Taiwanese women. Menopause 2020; 27:887-892. [PMID: 32187136 PMCID: PMC7386873 DOI: 10.1097/gme.0000000000001544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Osteoporosis, the most prevalent bone disorder in humans, is a global public health issue and its relationship with menopause is well-established. The interaction between menopause and genes on osteoporosis risk is, however, yet to be fully elucidated. We assessed the association between menopause and osteoporosis in relation to the SOX6 rs297325 variant in Taiwanese women. METHODS There were 7,581 female participants, aged 30 to 70 years old. Information on SOX6 rs297325 and menopause were obtained from the Taiwan Biobank Database while that on osteoporosis was obtained from the National Health Insurance Research Database. RESULTS Menopause but not SOX6 rs297325 was significantly associated with a higher risk of osteoporosis (odds ratio [OR] = 1.48; 95% confidence interval [CI] = 1.04-2.10). The interaction between menopause and rs297325 on osteoporosis was significant (P = 0.0216). After stratification by rs297325 genotypes, the risk of osteoporosis was significantly higher in menopausal women having the TT + CC genotype (OR = 2.02; 95% CI = 1.21-3.38). After stratification by menopausal status and rs297325 genotypes, the OR; 95% CI was 0.62; 0.38 to 0.99 in premenopausal women with the TC + CC genotype and 1.24; 0.82 to 1.88 in menopausal women with the TC + CC genotype. CONCLUSION SOX6 rs297325 was not significantly associated with osteoporosis but might have modulated the association between menopause and osteoporosis. The risk of osteoporosis was higher in menopausal women with the TC + CC genotype but lower in premenopausal women with the TC + CC genotype.
Collapse
Affiliation(s)
- Tzu-Liang Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, Tungs’ Taichung Metroharbor Hospital, Taichung City, Taiwan
| | - Disline Manli Tantoh
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Ying-Hsiang Chou
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City, Taiwan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung City, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Chi Lung
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Cheng-Feng Jan
- Office of Physical Education, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Lee Wang
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
6
|
Abstract
SOX transcription factors participate in the specification, differentiation and activities of many cell types in development and beyond. The 20 mammalian family members are distributed into eight groups based on sequence identity, and while co-expressed same-group proteins often have redundant functions, different-group proteins typically have distinct functions. More than a handful of SOX proteins have pivotal roles in skeletogenesis. Heterozygous mutations in their genes cause human diseases, in which skeletal dysmorphism is a major feature, such as campomelic dysplasia (SOX9), or a minor feature, such as LAMSHF syndrome (SOX5) and Coffin-Siris-like syndromes (SOX4 and SOX11). Loss- and gain-of-function experiments in animal models have revealed that SOX4 and SOX11 (SOXC group) promote skeletal progenitor survival and control skeleton patterning and growth; SOX8 (SOXE group) delays the differentiation of osteoblast progenitors; SOX9 (SOXE group) is essential for chondrocyte fate maintenance and differentiation, and works in cooperation with SOX5 and SOX6 (SOXD group) and other types of transcription factors. These and other SOX proteins have also been proposed, mainly through in vitro experiments, to have key roles in other aspects of skeletogenesis, such as SOX2 in osteoblast stem cell self-renewal. We here review current knowledge of well-established and proposed skeletogenic roles of SOX proteins, their transcriptional and non-transcriptional actions, and their modes of regulation at the gene, RNA and protein levels. We also discuss gaps in knowledge and directions for future research to further decipher mechanisms underlying skeletogenesis in health and diseases and identify treatment options for skeletal malformation and degeneration diseases.
Collapse
Affiliation(s)
- Véronique Lefebvre
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Zhang J. Bioinformatics analysis of novel transcription factors and related differentially regulated modules in non-union skeletal fractures. J Back Musculoskelet Rehabil 2018; 31:623-628. [PMID: 29578472 DOI: 10.3233/bmr-169596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study aimed to further clarify the underlying pathomechanism of non-union skeletal fractures. METHODS Gene expression profile dataset GSE494 obtained from six non-union skeletal fracture and six normal samples was downloaded from the Gene Expression Omnibus database. Overlapping genes in at least two platforms were analyzed, and differentially expressed genes (DEGs) between normal and disease groups were screened. Transcriptional regulatory relationships and differentially regulated modules of various transcription factors (TFs) were determined. Differentially regulated modules with unknown functions were subjected to functional enrichment analysis. RESULTS Overall, 4,252 overlapping genes in at least two platforms and 77 DEGs, including 31 up and 46 downregulated genes, were obtained. Overall, 64,623 transcriptional regulatory relationships, including 49 TFs and 3,900 target genes, and 9 significant modules for differential regulation were identified. Three modules with unknown functions regulated by TFs, including zinc finger, ZZ-type containing 3 (ZZZ3), nuclear TF Y, alpha (NFYA), and POU class 2 homeobox 2 (POU2F2), were identified. Enriched GO-BP terms of NFYA and POU2F2 modules included cell adhesion and related terms and those of ZZ3 included cell cycle, cell proliferation, and associated terms. CONCLUSION Three TFs, including ZZZ3, POU2F2, and NFYA, and their regulated modules may have important effects on non-union skeletal fractures. Cell proliferation may be related with ZZZ3; cell adhesion and its similar process may be related with POU2F2 and NFYA.
Collapse
|
8
|
MicroRNA-140 Suppresses Human Chondrocytes Hypertrophy by Targeting SMAD1 and Controlling the Bone Morphogenetic Protein Pathway in Osteoarthritis. Am J Med Sci 2018; 355:477-487. [DOI: 10.1016/j.amjms.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
|
9
|
Abstract
PURPOSE OF REVIEW Growing evidence supports the critical role of transcriptional mechanisms in promoting the spatial and temporal progression of bone healing. In this review, we evaluate and discuss new transcriptional and post-transcriptional regulatory mechanisms of secondary bone repair, along with emerging evidence for epigenetic regulation of fracture healing. RECENT FINDINGS Using the candidate gene approach has identified new roles for several transcription factors in mediating the reactive, reparative, and remodeling phases of fracture repair. Further characterization of the different epigenetic controls of fracture healing and fracture-driven transcriptome changes between young and aged fracture has identified key biological pathways that may yield therapeutic targets. Furthermore, exogenously delivered microRNA to post-transcriptionally control gene expression is quickly becoming an area with great therapeutic potential. Activation of specific transcriptional networks can promote the proper progression of secondary bone healing. Targeting these key factors using small molecules or through microRNA may yield effective therapies to enhance and possibly accelerate fracture healing.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, School of Medicine, Emory University, Atlanta, GA, USA
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - David N Paglia
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Hicham Drissi
- Department of Orthopaedics, School of Medicine, Emory University, Atlanta, GA, USA.
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA.
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA, 30033, USA.
| |
Collapse
|
10
|
Nesbitt A, Bhoj EJ, McDonald Gibson K, Yu Z, Denenberg E, Sarmady M, Tischler T, Cao K, Dubbs H, Zackai EH, Santani A. Exome sequencing expands the mechanism of SOX5-associated intellectual disability: A case presentation with review of sox-related disorders. Am J Med Genet A 2015; 167A:2548-54. [PMID: 26111154 DOI: 10.1002/ajmg.a.37221] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
The SOX5 haploinsufficiency syndrome is characterized by global developmental delay, intellectual disability, language and motor impairment, and distinct facial features. The smallest deletion encompassed only one gene, SOX5 (OMIM 604975), indicating that haploinsufficiency of SOX5 contributes to neuro developmental delay. Although multiple deletions of the SOX5 gene have been reported in patients, none are strictly intragenic point mutations. Here, we report the identification of a de novo loss of function variant in SOX5 identified through whole exome sequencing. The proband presented with moderate developmental delay, bilateral optic atrophy, mildly dysmorphic features, and scoliosis, which correlates with the previously-described SOX5-associated phenotype. These results broaden the diagnostic spectrum of SOX5-related intellectual disability. Furthermore it highlights the utility of exome sequencing in establishing an etiological basis in clinically and genetically heterogeneous conditions such as intellectual disability.
Collapse
Affiliation(s)
- Addie Nesbitt
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth J Bhoj
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kristin McDonald Gibson
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Zhenming Yu
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Denenberg
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tanya Tischler
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kajia Cao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Holly Dubbs
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H Zackai
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Avni Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Molecular Genetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
12
|
Safari M, Khoshnevisan A. An overview of the role of cancer stem cells in spine tumors with a special focus on chordoma. World J Stem Cells 2014; 6:53-64. [PMID: 24567788 PMCID: PMC3927014 DOI: 10.4252/wjsc.v6.i1.53] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells (CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis in tumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.
Collapse
|
13
|
Gao L, Sheu TJ, Dong Y, Hoak DM, Zuscik MJ, Schwarz EM, Hilton MJ, O'Keefe RJ, Jonason JH. TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages. J Cell Sci 2013; 126:5704-13. [PMID: 24144697 DOI: 10.1242/jcs.135483] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
TAK1 is a MAP3K that mediates non-canonical TGF-β and BMP signaling. During the embryonic period, TAK1 is essential for cartilage and joint development as deletion of Tak1 in chondro-osteo progenitor cells leads to severe chondrodysplasia with defects in both chondrocyte proliferation and maturation. We have investigated the role of TAK1 in committed chondrocytes during early postnatal development. Using the Col2a1-CreER(T2); Tak1(f/f) mouse model, we induced deletion of Tak1 at postnatal day 7 and characterized the skeletal phenotypes of these mice at 1 and 3 months of age. Mice with chondrocyte-specific Tak1 deletion exhibited severe growth retardation and reduced proteoglycan and type II collagen content in the extracellular matrix of the articular cartilage. We found reduced Col2a1 and Acan expression, but increased Mmp13 and Adamts5 expression, in Tak1-deficient chondrocytes along with reduced expression of the SOX trio of transcription factors, SOX9, SOX5 and SOX6. In vitro, BMP2 stimulated Sox9 gene expression and Sox9 promoter activity. These effects were reduced; however, following Tak1 deletion or treatment with a TAK1 kinase inhibitor. TAK1 affects both canonical and non-canonical BMP signal transduction and we found that both of these pathways contribute to BMP2-mediated Sox9 promoter activation. Additionally, we found that ATF2 directly binds the Sox9 promoter in response to BMP signaling and that this effect is dependent upon TAK1 kinase activity. These novel findings establish that TAK1 contributes to BMP2-mediated Sox9 gene expression and is essential for the postnatal development of normal growth plate and articular cartilages.
Collapse
Affiliation(s)
- Lin Gao
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Legendre F, Ollitrault D, Hervieu M, Baugé C, Maneix L, Goux D, Chajra H, Mallein-Gerin F, Boumediene K, Galera P, Demoor M. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods 2013; 19:550-67. [PMID: 23270543 DOI: 10.1089/ten.tec.2012.0508] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.
Collapse
Affiliation(s)
- Florence Legendre
- Laboratoire Microenvironnement Cellulaire et Pathologies, MILPAT, EA 4652, SFR ICORE 146, Université de Caen Basse-Normandie, UFR de Médecine, Caen, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang TL, Guo Y, Liu YJ, Shen H, Liu YZ, Lei SF, Li J, Tian Q, Deng HW. Genetic variants in the SOX6 gene are associated with bone mineral density in both Caucasian and Chinese populations. Osteoporos Int 2012; 23:781-7. [PMID: 21625884 PMCID: PMC4171834 DOI: 10.1007/s00198-011-1626-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 01/26/2023]
Abstract
SUMMARY Given the biological function of SOX6 and recent genome-wide association finding, we performed a fine-mapping association analyses to investigate the relationship between SOX6 and BMD both in Caucasian and Chinese populations. We identified many single-nucleotide polymorphisms (SNPs) within or near the SOX6 gene to be significantly associated with hip bone mineral density (BMD). INTRODUCTION SOX6 gene is an essential transcription factor in chondrogenesis and cartilage formation. Recent genome-wide association studies (GWAS) detected a SNP (rs7117858) located at the downstream of SOX6 significantly associated with hip BMD. METHODS Given the biological function of SOX6 and the GWAS finding, we considered SOX6 as a new candidate for BMD and osteoporosis. Therefore, in this study, we performed a fine-mapping association analyses to investigate the relationship between SNPs within and near the SOX6 gene and BMD at both hip and spine. A total of 301 SNPs were tested in two independent US Caucasian populations (2,286 and 1,000 unrelated subjects, respectively) and a Chinese population (1,627 unrelated Han subjects). RESULTS We confirmed that the previously reported rs7117858-A was associated with reduced hip BMD, with combined P value of 2.45 × 10(-4). Besides this SNP, we identified another 19 SNPs within or near the SOX6 gene to be significantly associated with hip BMD after false discovery rate adjustment. The most significant SNP was rs1347677 located at the intron 3 (P = 3.15 × 10(-7)). Seven additional SNPs in high linkage disequilibrium with rs1347677 were also significantly associated with hip BMD. SNPs in SOX6 showed significant skeletal site specificity since no SNP was detected to be associated with spine BMD. CONCLUSION Our study identified many SNPs in the SOX6 gene associated with hip BMD even across different ethnicities, which further highlighted the importance of the SOX6 gene influencing BMD variation and provided more information to the understanding of the genetic architecture of osteoporosis.
Collapse
Affiliation(s)
- T.-L. Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Y. Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Y.-J. Liu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - H. Shen
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Y.-Z. Liu
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - S.-F. Lei
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - J. Li
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Q. Tian
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - H.-W. Deng
- Institute of Bioscience and Biotechnology, School of Science, Beijing Jiaotong University, Beijing 100044, People’s Republic of China. School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Kim BJ, Hwang JY, Han BG, Lee JY, Lee JY, Park EK, Lee SH, Chung YE, Kim GS, Kim SY, Koh JM. Association of SMAD2 polymorphisms with bone mineral density in postmenopausal Korean women. Osteoporos Int 2011; 22:2273-82. [PMID: 21052639 DOI: 10.1007/s00198-010-1450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/24/2010] [Indexed: 01/18/2023]
Abstract
UNLABELLED In a candidate gene association study, we found that SMAD2 promoter alleles and haplotypes were significantly associated with bone mineral density (BMD) at the lumbar spine and various proximal femur sites. Our results suggest that SMAD2 polymorphisms may be one of genetic determinants of BMD in postmenopausal women. INTRODUCTION SMAD2, which is the specific intracellular transducer of TGF-ß, is thought to participate in bone metabolism by playing a critical role in the development and function of osteoclasts and osteoblasts. We performed association analyses of the genetic variation in SMAD2 to ascertain the contribution of this gene to BMD and risk of osteoporotic fracture. METHODS We selected three SMAD2 promoter single-nucleotide polymorphisms (SNPs) based on heterozygosity and validation status. Postmenopausal Korean women (n = 1,329) were genotyped for these SNPs, and their BMD and risk of fractures were assessed. BMD at the lumbar spine and proximal femur was measured using dual-energy X-ray absorptiometry. P values were corrected for multiple testing by the effective number of independent marker loci (P (cor)). RESULTS We found that SMAD2 -35302C>T, -34952A>G, and ht2 were significantly associated with BMD at both the lumbar spine and femur neck (P (cor) = 0.020-0.046), whereas SMAD2 -36201A>G and ht1 affected the femur neck BMD (P (cor) = 0.018-0.031). The genetic effects of these three polymorphisms on BMD at the lumbar spine and femur neck were risk-allele dependent in additive model. The three polymorphisms and two hts were also significantly associated with BMD at other proximal femur sites, such as the total femur, trochanter, and femur shaft (P (cor) = 0.001-0.046). However, none of the polymorphisms or hts was associated with an increased risk of fracture. CONCLUSIONS Our results suggest that SMAD2 polymorphisms may be one of genetic determinants of BMD in postmenopausal women.
Collapse
Affiliation(s)
- B-J Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Heinonen J, Taipaleenmäki H, Roering P, Takatalo M, Harkness L, Sandholm J, Uusitalo-Järvinen H, Kassem M, Kiviranta I, Laitala-Leinonen T, Säämänen AM. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes. Osteoarthritis Cartilage 2011; 19:1026-35. [PMID: 21624478 DOI: 10.1016/j.joca.2011.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/19/2011] [Accepted: 04/30/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Maintenance of chondrocyte phenotype is a major issue in prevention of degeneration and repair of articular cartilage. Although the critical pathways in chondrocyte maturation and homeostasis have been revealed, the in-depth understanding is deficient and novel modifying components and interaction partners are still likely to be discovered. Our focus in this study was to characterize a novel cartilage specific gene that was identified in mouse limb cartilage during embryonic development. METHODS Open access bioinformatics tools and databases were used to characterize the gene, predicted protein and orthologs in vertebrate species. Immunohistochemistry and mRNA expression methodology were used to study tissue specific expression. Fracture callus and limb bud micromass culture were utilized to study the effects of BMP-2 during experimental chondrogenesis. Fusion protein with C-terminal HA-tag was expressed in Cos7 cells, and the cell lysate was studied for putative glycosaminoglycan attachment by digestion with chondroitinase ABC and Western blotting. RESULTS The predicted molecule is a small, 121 amino acids long type I single-pass transmembrane chondroitin sulfate proteoglycan, that contains ER signal peptide, lumenal/extracellular domain with several threonines/serines prone to O-N-acetylgalactosamine modification, and a cytoplasmic tail with a Yin-Yang site prone to phosphorylation or O-N-acetylglucosamine modification. It is highly conserved in mammals with orthologs in all vertebrate subgroups. Cartilage specific expression was highest in proliferating and prehypertrophic zones during development, and in adult articular cartilage, expression was restricted to the uncalcified zone, including chondrocyte clusters in human osteoarthritic cartilage. Studies with experimental chondrogenesis models demonstrated similar expression profiles with Sox9, Acan and Col2a1 and up-regulation by BMP-2. Based on its cartilage specific expression, the molecule was named Snorc, (Small NOvel Rich in Cartilage). CONCLUSION A novel cartilage specific molecule was identified which marks the differentiating chondrocytes and adult articular chondrocytes with possible functions associated with development and maintenance of chondrocyte phenotype.
Collapse
Affiliation(s)
- J Heinonen
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Solem RC, Eames BF, Tokita M, Schneider RA. Mesenchymal and mechanical mechanisms of secondary cartilage induction. Dev Biol 2011; 356:28-39. [PMID: 21600197 DOI: 10.1016/j.ydbio.2011.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 12/21/2022]
Abstract
Secondary cartilage occurs at articulations, sutures, and muscle attachments, and facilitates proper kinetic movement of the skeleton. Secondary cartilage requires mechanical stimulation for its induction and maintenance, and accordingly, its evolutionary presence or absence reflects species-specific variation in functional anatomy. Avians illustrate this point well. In conjunction with their distinct adult mode of feeding via levered straining, duck develop a pronounced secondary cartilage at the insertion (i.e., enthesis) of the mandibular adductor muscles on the lower jaw skeleton. An equivalent cartilage is absent in quail, which peck at their food. We hypothesized that species-specific pattern and a concomitant dissimilarity in the local mechanical environment promote secondary chondrogenesis in the mandibular adductor enthesis of duck versus quail. To test our hypothesis we employed two experimental approaches. First, we transplanted neural crest mesenchyme (NCM) from quail into duck, which produced chimeric "quck" with a jaw complex resembling that of quail, including an absence of enthesis secondary cartilage. Second, we modified the mechanical environment in embryonic duck by paralyzing skeletal muscles, and by blocking the ability of NCM to support mechanotransduction through stretch-activated ion channels. Paralysis inhibited secondary cartilage, as evidenced by changes in histology and expression of genes that affect chondrogenesis, including members of the FGF and BMP pathways. Ion channel inhibition did not alter enthesis secondary cartilage but caused bone to form in place of secondary cartilage at articulations. Thus, our study reveals that enthesis secondary cartilage forms through mechanisms that are distinct from those regulating other secondary cartilage. We conclude that by directing the musculoskeletal patterning and integration of the jaw complex, NCM modulates the mechanical forces and molecular signals necessary to control secondary cartilage formation during development and evolution.
Collapse
Affiliation(s)
- R Christian Solem
- Department of Orthopaedic Surgery, 513 Parnassus Avenue, University of California San Francisco, CA 94143-0514, USA
| | | | | | | |
Collapse
|
19
|
Hagiwara N. Sox6, jack of all trades: a versatile regulatory protein in vertebrate development. Dev Dyn 2011; 240:1311-21. [PMID: 21495113 DOI: 10.1002/dvdy.22639] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2011] [Indexed: 12/27/2022] Open
Abstract
Approximately 20,000 genes are encoded in our genome, one tenth of which are thought to be transcription factors. Considering the complexity and variety of cell types generated during development, many transcription factors likely play multiple roles. Uncovering the versatile roles of Sox6 in vertebrate development sheds some light on how an organism efficiently utilizes the limited resources of transcription factors. The structure of the Sox6 gene itself may dictate its functional versatility. First, Sox6 contains no known regulatory domains; instead, it utilizes various cofactors. Second, Sox6 has a long 3'-UTR that contains multiple microRNA targets, thus its protein level is duly adjusted by cell type-specific microRNAs. Just combining these two characteristics alone makes Sox6 extremely versatile. To date, Sox6 has been reported to regulate differentiation of tissues of mesoderm, ectoderm, and endoderm origins, making Sox6 a truly multifaceted transcription factor.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California 95616, USA.
| |
Collapse
|
20
|
Shintaku Y, Murakami T, Yanagita T, Kawanabe N, Fukunaga T, Matsuzaki K, Uematsu S, Yoshida Y, Kamioka H, Takano-Yamamoto T, Takada K, Yamashiro T. Sox9 Expression during Fracture Repair. Cells Tissues Organs 2011; 194:38-48. [DOI: 10.1159/000322557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2010] [Indexed: 01/25/2023] Open
|
21
|
Tan L, Liu R, Lei S, Pan R, Yang T, Yan H, Pei Y, Yang F, Zhang F, Pan F, Zhang Y, Hu H, Levy S, Deng H. A genome-wide association analysis implicates SOX6 as a candidate gene for wrist bone mass. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1065-72. [PMID: 21104366 DOI: 10.1007/s11427-010-4056-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/15/2010] [Indexed: 10/18/2022]
Abstract
Osteoporosis is a highly heritable common bone disease leading to fractures that severely impair the life quality of patients. Wrist fractures caused by osteoporosis are largely due to the scarcity of wrist bone mass. Here we report the results of a genome-wide association study (GWAS) of wrist bone mineral density (BMD). We examined ∼500000 SNP markers in 1000 unrelated homogeneous Caucasian subjects and found a novel allelic association with wrist BMD at rs11023787 in the SOX6 (SRY (sex determining region Y)-box 6) gene (P=9.00×10(-5)). Subjects carrying the C allele of rs11023787 in SOX6 had significantly higher mean wrist BMD values than those with the T allele (0.485:0.462 g cm(-2) for C allele vs. T allele carriers). For validation, we performed SOX6 association for BMD in an independent Chinese sample and found that SNP rs11023787 was significantly associated with wrist BMD in the Chinese sample (P=6.41×10(-3)). Meta-analyses of the GWAS scan and the replication studies yielded P-values of 5.20×10(-6) for rs11023787. Results of this study, together with the functional relevance of SOX6 in cartilage formation, support the SOX6 gene as an important gene for BMD variation.
Collapse
Affiliation(s)
- LiJun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cucchiarini M, Terwilliger EF, Kohn D, Madry H. Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer. J Cell Mol Med 2010; 13:2476-2488. [PMID: 18705695 DOI: 10.1111/j.1582-4934.2008.00474.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Compensating for the loss of extracellular cartilage matrix, as well as counteracting the alterations of the chondrocyte phenotype in osteoarthritis are of key importance to develop effective therapeutic strategies against this disorder. In the present study, we analysed the benefits of applying a potent gene combination to remodel human osteoarthritic (OA) cartilage. We employed the promising recombinant adeno-associated virus (rAAV) vector to deliver the mitogenic fibroblast growth factor 2 (FGF-2) factor, alone or simultaneously with the transcription factor Sox9 as a key activator of matrix synthesis, to human normal and OA articular chondrocytes. We evaluated the effects of single (FGF-2) or combined (FGF-2/SOX9) transgene expression upon the regenerative activities of chondrocytes in three dimensional cultures in vitro and in cartilage explants in situ. Single overexpression of FGF-2 enhanced the survival and proliferation of both normal and OA chondrocytes, without stimulating the matrix synthetic processes in the increased pools of cells. The mitogenic properties of FGF-2 were maintained when SOX9 was co-overexpressed and concomitant with an increase in the production of proteoglycans and type-II collagen, suggesting that the transcription factor was capable of counterbalancing the effects of FGF-2 on matrix accumulation. Also important, expression of type-X collagen, a marker of hypertrophy strongly decreased following treatment by the candidate vectors. Most remarkably, the levels of activities achieved in co-treated human OA cartilage were similar to or higher than those observed in normal cartilage. The present findings show that combined expression of candidate factors in OA cartilage can re-establish key features of normal cartilage and prevent the pathological shift of metabolic homeostasis. These data provide further motivation to develop coupled gene transfer approaches via rAAV for the treatment of human OA.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Ernest F Terwilliger
- Division of Experimental Medicine, Harvard Institutes of Medicine and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dieter Kohn
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
23
|
van der Kraan PM, Blaney Davidson EN, van den Berg WB. Bone morphogenetic proteins and articular cartilage: To serve and protect or a wolf in sheep clothing's? Osteoarthritis Cartilage 2010; 18:735-41. [PMID: 20211748 DOI: 10.1016/j.joca.2010.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/02/2010] [Accepted: 03/01/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Alterations in chondrocyte differentiation and matrix remodeling play a central role in osteoarthritis (OA). Chondrocyte differentiation and remodeling are amongst others regulated by the so-called Bone Morphogenetic Proteins (BMPs). Although BMPs are considered protective for articular cartilage these factors can also be involved in chondrocyte hypertrophy and matrix degradation. This review is focused on these opposed roles of BMPs in OA development and progression. METHODS Peer reviewed publications published prior to August 2009 were searched in the Pubmed database. Articles that were relevant for the role of endogenous BMPs in OA were selected. Since good quality reviews on the application of BMP supplementation in cartilage tissue engineering have been described this subject has not been covered in this review. RESULTS BMPs can stimulate both chondrocyte matrix synthesis and chondrocyte terminal differentiation. The latter results in elevated matrix metalloproteinase-13 (MMP-13) production. Stimulation of matrix synthesis will be protective for cartilage while elevated MMP-13 activity will drive matrix degradation. What action of BMPs is dominant in OA is not yet elucidated and their role might be different in patient subgroups. CONCLUSION BMPs can be protective for articular cartilage but can, due to their effect on chondrocyte differentiation, have harmful effects on articular cartilage and contribute to OA progression.
Collapse
Affiliation(s)
- P M van der Kraan
- Experimental Rheumatology & Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
24
|
Hwang JY, Lee SH, Kim GS, Koh JM, Go MJ, Kim YJ, Kim HC, Kim TH, Hong JM, Park EK, Lee JY, Kim SY. HSD11B1 polymorphisms predicted bone mineral density and fracture risk in postmenopausal women without a clinically apparent hypercortisolemia. Bone 2009; 45:1098-103. [PMID: 19651257 DOI: 10.1016/j.bone.2009.07.080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/16/2009] [Accepted: 07/28/2009] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Endogenous glucocorticoid (GC) may participate in bone physiology, even in subjects with no glucocorticoid excess. 11beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) is a primary regulator catalyzing the reduction of inactive cortisone to active cortisol. To elucidate genetic relevance of HSD11B1 variants to vertebral fracture and osteoporosis, we investigated the potential involvement of six HSD11B1 SNPs in postmenopausal women. METHODS All exons, their boundaries and the promoter region (approximately 1.5 kb) were directly sequenced in 24 individuals. Six polymorphisms were selected and genotyped in all study participants (n=1329). BMD was measured using dual-energy X-ray absorptiometry. RESULTS HSD11B1 +16374C>T and +27447G>C were associated with reduced vertebral fracture risk (p=0.016 and 0.032, respectively). Two of these (LD block2) in intron 5 (rs1000283 and rs932335) were significantly associated with bone mineral density (BMD) at the femoral neck (p=0.00005 and 0.0002, respectively). Specifically, HSD11B1 +16374C>T and +27447G>C polymorphisms were associated with higher BMD values of the femoral neck in multiple comparison (p=0.0002 and 0.0004, respectively) and Bonferroni corrected significance level (97% power). Consistent with these results, HSD11B1-ht21 and -ht22 comprising both SNPs also showed the evidence of association with BMD values of the femoral neck (p(domiant)=0.0002 and p(recessive)=0.00005, respectively). CONCLUSION Our results provide preliminary evidence supporting an association of HSD11B1 with osteoporosis in postmenopausal women. Also, these findings demonstrate that +16374C>T polymorphism may be useful genetic markers for bone metabolism.
Collapse
Affiliation(s)
- Joo-Yeon Hwang
- The Center for Genome Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul, 122-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Thrombospondin-2 (TSP2) is a matricellular protein with increased expression during growth and regeneration. TSP2-null mice show accelerated dermal wound healing and enhanced bone formation. We hypothesized that bone regeneration would be enhanced in the absence of TSP2. Closed, semistabilized transverse fractures were created in the tibias of wildtype (WT) and TSP2-null mice. The fractures were examined 5, 10, and 20 days after fracture using microCT, histology, immunohistochemistry, quantitative RT-PCR, and torsional mechanical testing. Ten days after fracture, TSP2-null mice showed 30% more bone by microCT and 40% less cartilage by histology. Twenty days after fracture, TSP2-null mice showed reduced bone volume fraction and BMD. Mice were examined 5 days after fracture during the stage of neovascularization and mesenchymal cell influx to determine a cellular explanation for the phenotype. TSP2-null mice showed increased cell proliferation with no difference in apoptosis in the highly cellular fracture callus. Although mature bone and cartilage is minimal 5 days after fracture, TSP2-null mice had reduced expression of collagen IIa and Sox9 (chondrocyte differentiation markers) but increased expression of osteocalcin and osterix (osteoblast differentiation markers). Importantly, TSP2-null mice had a 2-fold increase in vessel density that corresponded with a reduction in vascular endothelial growth factor (VEGF) and Glut-1 (markers of hypoxia inducible factor [HIF]-regulated transcription). Finally, by expressing TSP2 using adenovirus starting 3 days after fracture, chondrogenesis was restored in TSP2-null mice. We hypothesize that TSP2 expressed by cells in the fracture mesenchyme regulates callus vascularization. The increase in vascularity increases tissue oxemia and decreases HIF; thus, undifferentiated cells in the callus develop into osteoblasts rather than chondrocytes. This leads to an alternative strategy for achieving fracture healing with reduced endochondral ossification and enhanced appositional bone formation. Controlling the ratio of cartilage to bone during fracture healing has important implications for expediting healing or promoting regeneration in nonunions.
Collapse
|
26
|
[Roles of TGF-b superfamily in the genesis, development and maintenance of cartilage]. YI CHUAN = HEREDITAS 2009; 30:953-9. [PMID: 18779142 DOI: 10.3724/sp.j.1005.2008.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transforming growth factor beta (TGF-beta) superfamily is composed of TGF-beta subfamily and bone morphogenetic protein (BMP) subfamily. The ligands, ligand antagonists, receptors and intracellular transductors that engage in the TGF-beta superfamily signaling pathway play their unique roles during endochondral ossification via regulating the lineage differentiation, proliferation, maturation, apoptosis and mineralization of chondrocytes. BMP signaling dominates chondro-genesis through initiating the chondrocytic commitment of mesenchymal cells and maintaining the chondrocytic phenotype. During the development of growth plate, BMP signaling promotes the maturation of chondrocytes to facilitate ossification, whereas TGF-beta signaling inhibits the hypertrophic differentiation to preserve adequate chondrocytes within the growth plate. Both TGF-beta signaling and BMP signaling are indispensable for the maintenance and repair of articular cartilage. Therefore, it indicates that TGF-beta superfamily may function essentially all throughout the development of skeletons.
Collapse
|
27
|
Yukata K, Matsui Y, Shukunami C, Takimoto A, Goto T, Nishizaki Y, Nakamichi Y, Kubo T, Sano T, Kato S, Hiraki Y, Yasui N. Altered fracture callus formation in chondromodulin-I deficient mice. Bone 2008; 43:1047-56. [PMID: 18793763 DOI: 10.1016/j.bone.2008.08.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/31/2008] [Accepted: 08/06/2008] [Indexed: 11/26/2022]
Abstract
Chondromodulin-I (Chm-I) is a glycoprotein that stimulates the growth of chondrocytes and inhibits angiogenesis in vitro. Mice lacking the Chm1 gene show abnormal bone metabolism and pathological angiogenesis in cardiac valves in the mature stage although they develop normally without aberrations in endochondral bone formation during embryogenesis or in cartilage development during growth. These findings indicate that Chm-I is critical under conditions of stress such as bone repair through endochondral ossification of a fracture callus. We carried out the present study to examine the expression and role of Chm-I in bone repair using a stabilized tibial fracture model, and compared fracture healing in Chm1 knockout (Chm1(-/-)) mice with that in wild-type mice. Chm-I mRNA and protein localized in the external cartilaginous callus in the reparative phase of fracture healing. Radiological examination showed a delayed union in Chm1(-/-) mice although the fracture site was covered with both external and internal calluses. Chm1 null mutation reduced external cartilaginous callus formation as judged by marked decrease of type X collagen alpha 1 (Col10a1) expression and the total amount of cartilage matrix. Interestingly, the majority of chondrocytes in the periosteal callus failed to differentiate into mature chondrocytes in Chm1(-/-) mice, while the hypertrophic maturation of chondrocytes between the cortices was not affected. These results suggest that Chm-I is involved in hypertrophic maturation of periosteal chondrocytes. Although a direct effect of Chm-I on bones is still unclear, bony callus formation was increased while external cartilaginous callus decreased in Chm1(-/-) mice. We conclude that in the absence of Chm1, predominant primary bone healing occurs due to an indirect effect induced by reduction of cartilaginous callus rather than to a direct effect on osteogenic function, resulting in a delayed union.
Collapse
Affiliation(s)
- Kiminori Yukata
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ruebel KH, Leontovich AA, Tanizaki Y, Jin L, Stilling GA, Zhang S, Coonse K, Scheithauer BW, Lombardero M, Kovacs K, Lloyd RV. Effects of TGFbeta1 on gene expression in the HP75 human pituitary tumor cell line identified by gene expression profiling. Endocrine 2008; 33:62-76. [PMID: 18401765 DOI: 10.1007/s12020-008-9060-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/07/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
The pathogenesis of pituitary adenomas and many of the genes influencing growth of these tumors are unknown. TGFbeta is known to inhibit proliferation of cultured anterior pituitary cells and anterior pituitary tumors, but the signal transduction pathways involved in the inhibition of growth are unclear. We treated the human HP75 pituitary cell line with 10(-9) M TGFbeta1 for 4, 24, and 96 h and performed global gene expression profiling by Affymetrix GeneChip microarray analysis. Quantitative PCR validation of specific genes involved in the TGFbeta1-induced regulation of pituitary cell growth was also done. Of the 15,000 genes queried, there were 37 genes up-regulated and 48 genes down-regulated twofold or more after 4 h of TGFbeta1 treatment. There were 121 genes up-regulated and 109 genes down-regulated twofold or more after 24 h of TGFbeta1 treatment and 112 genes up-regulated and 43 genes down-regulated twofold or more after 96 h of TGFbeta1 treatment. Galectin-3 (Gal-3) protein was decreased by TGFbeta1 treatment and several genes which interacted with Gal-3 including RUNX1 and WNT5B were up-regulated after TGFbeta1 treatment. SOX4 was also up-regulated by TGFbeta1 treatment. SMAD3, which is directly involved in the TGFbeta signal transduction pathway, was down-regulated by TGFbeta1 treatment. These findings highlight the diverse gene networks and pathways through which TGFbeta operates in its effects on pituitary tumor cells.
Collapse
Affiliation(s)
- Katharina H Ruebel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Grässel S, Ahmed N. [Use of bone marrow mesenchymal stem cells for ex vivo cartilage regeneration]. DER ORTHOPADE 2007; 36:227-35. [PMID: 17333068 DOI: 10.1007/s00132-007-1058-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Articular cartilage disorders and injuries often result in lifelong chronic pain and compromised quality of life. When it comes to local articular cartilage defects, modern medicine is limited to short-term pain relief and inflammation control. In extreme cases the affected tissue is surgically removed and replaced by a synthetic prosthesis of limited durability. Cell-based therapies to regenerate articular cartilage have been in use since 1994. Such therapies provide a healthy population of cells to the injured site and require differentiated chondrocytes from the uninjured site as base material. Their usage often leads to donor site morbidity and they generate rigid fibrous cartilage where more flexible hyaline cartilage is required. The major restrictive factors for such methods are inadequate number and limited proliferation capacity of chondrocytes in vitro. Tissue engineering of adult marrow stromal cells/mesenchymal stem cells (MSCs) with their almost unlimited proliferation potential and proven capability to differentiate into chondrocytes for ex vivo generation of cartilage tissue still remains a vision. For optimal harnessing of MSCs as chondroprogenitor cells, basic background information regarding commitment to the lineage, cartilage differentiation and the regulatory factors and molecules involved is essential.
Collapse
Affiliation(s)
- S Grässel
- Abteilung Experimentelle Orthopädie, Orthopädische Universitätsklinik Regensburg, Kaiser-Karl-V.-Allee 3, 93077, Bad Abbach.
| | | |
Collapse
|
30
|
Melichar H, Kang J. Integrated morphogen signal inputs in gammadelta versus alphabeta T-cell differentiation. Immunol Rev 2007; 215:32-45. [PMID: 17291277 DOI: 10.1111/j.1600-065x.2006.00469.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphogens, a class of secreted proteins that regulate gene expression in a concentration-dependent manner, are responsible for directing nearly all lineage fate choices during embryogenesis. In the thymus, morphogen signal pathways consisting of WNT, Hedgehog, and the transforming growth factor-beta superfamily are active and have been implicated in various developmental processes including proliferation, survival, and differentiation of maturing thymocytes. Intriguingly, it has been inferred that some of these morphogen signal pathways differentially affect gammadelta and alphabeta T-cell development or maintenance, but their role in T-cell lineage commitment has not been directly probed. We have recently identified a modulator of morphogen signaling that significantly influences binary gammadelta versus alphabeta T-cell lineage diversification. In this review, we summarize functions of morphogens in the thymus and provide a highly speculative model of integrated morphogen signals, potentially directing the gammadelta versus alphabeta T-cell fate determination process.
Collapse
Affiliation(s)
- Heather Melichar
- Department of Pathology University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
31
|
Kaback LA, Soung DY, Naik A, Smith N, Schwarz EM, O'Keefe RJ, Drissi H. Osterix/Sp7 regulates mesenchymal stem cell mediated endochondral ossification. J Cell Physiol 2007; 214:173-82. [PMID: 17579353 DOI: 10.1002/jcp.21176] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the expression and regulation of the zinc finger protein Osterix (Osx) during endochondral ossification in mice. In studies to determine the temporal and spatial regulation of Osx mRNA and protein during embryogenesis we found it to be present throughout development, but its expression is restricted to the immature chondro/osteoprogenitor cells and mature osteoblasts, excluding hypertrophic chondrocytes. Using a fracture model, we show a consistent pattern of Osx protein expression in mesenchymal progenitor cells in the periosteum and immature chondrocytes and osteoblasts embedded in the fracture callus. In contrast, hypertrophic chondrocytes, vessels and fibrous tissue were devoid of Osx expression. Additionally, using RNA isolated from fracture callus throughout the healing process, we observe that Osx transcripts parallel that of Runx2 and differentially overlap both cartilage and bone phenotypic markers. Furthermore, using limb bud-derived MLB13MYC Clone 17 cells, we show that PTHrP inhibited chondrocyte maturation while it enhanced mRNA levels of Osx in these chondro/osteoprogenitor cells. Gain and loss of function of Osx function experiments with these cells demonstrated that Osx serves as an inhibitor of chondrogenesis and chondrocyte maturation, while it promotes osteoblast maturation. Together, our findings provide the first demonstration of the molecular mechanisms underlying Osx inhibition of chondrocyte differentiation, and further suggest a role for this transcription factor in mediating endochondral ossification during bone repair.
Collapse
Affiliation(s)
- Lee A Kaback
- The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Tsiridis E, Giannoudis PV. Transcriptomics and proteomics: advancing the understanding of genetic basis of fracture healing. Injury 2006; 37 Suppl 1:S13-9. [PMID: 16616752 DOI: 10.1016/j.injury.2006.02.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fracture healing is a complex physiological post-natal process, which involves the coordination of several different cell types. Exploring the orchestration of events and the simultaneous activation of osteogenesis and chondrogenesis that recapitulates mammalian embryological skeletal development seems to be not only sophisticated but also challenging. A large number of genes involved in the above process are known, but many more remain to be discovered. The functional characterisation of these genes promises to elucidate the repair process as well as skeletal abnormalities and aging. We here review the current knowledge on early and late gene expression during fracture healing, the genes so far associated with osteoblast and osteoclast differentiation, the BMP antagonists, and the Wnts signalling pathway.
Collapse
Affiliation(s)
- Eleftherios Tsiridis
- Trauma & Orthopaedic Surgery, School of Medicine, University of Leeds, and St. James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | |
Collapse
|
33
|
Hagiwara N, Ma B, Ly A. Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn 2006; 234:301-11. [PMID: 16124007 DOI: 10.1002/dvdy.20535] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have previously demonstrated that p100H mutant mice, which lack a functional Sox6 gene, exhibit skeletal and cardiac muscle degeneration and develop cardiac conduction abnormalities soon after birth. To understand the role of Sox6 in skeletal muscle development, we identified muscle-specific genes differentially expressed between wild-type and p100H mutant skeletal muscles and investigated their temporal expression in the mutant muscle. We found that, in the mutant skeletal muscle, slow fiber and cardiac isoform genes are expressed at significantly higher levels, whereas fast fiber isoform genes are expressed at significantly lower levels than wild-type. Onset of this aberrant fiber type-specific gene expression in the mutant coincides with the beginning of the secondary myotube formation, at embryonic day 15-16 in mice. Together with our earlier report, demonstrating early postnatal muscle defects in the Sox6 null-p100H mutant, the present results suggest that Sox6 likely plays an important role in muscle development.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine, Rowe Program in Genetics, Davis, CA 95616, USA
| | | | | |
Collapse
|
34
|
Välimäki VV, Yrjans JJ, Vuorio E, Aro HT. Combined effect of BMP-2 gene transfer and bioactive glass microspheres on enhancement of new bone formation. J Biomed Mater Res A 2005; 75:501-9. [PMID: 16116592 DOI: 10.1002/jbm.a.30236] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenovirus-mediated recombinant human BMP-2 (RAdBMP-2) gene transfer has been found to have significant osteoinductive properties. The hypothesis of the current study was that bioactive glass surface could provide favorable osteoconductive conditions for cellular action of osteoinductive RAdBMP-2 gene transfer. In the rat proximal tibia, a portion of the medullary cavity was evacuated and filled with bioactive glass microspheres and injected with adenovirus carrying the human BMP-2 gene (BG/RAdBMP-2). Control defects filled with BG microspheres were injected with adenovirus carrying the LacZ reporter gene (BG/RAdLacZ) or saline (BG). Empty control defects were also used. Bone healing response was analyzed at 4 days, and at 2 and 8 weeks by radiography, peripheral quantitative computed tomography (pQCT), histomorphometry, and backscattered electron imaging of scanning electron microscopy (BEI-SEM) equipped with energy dispersive X-ray analysis (EDXA). In empty controls, the amount of intramedullary new bone peaked at 2 weeks, whereas defects filled with bioactive glass with and without RAdBMP-2 gene transfer showed a constant time-related increase of intramedullary new bone. At 8 weeks, there was significantly more new bone in defects treated with BG and RAdBMP-2 than in defects left to heal without filling (p < 0.001). Compared with the other controls (BG only or BG/RAdLacZ), the difference was not significant. In the current model, the osteopromotive effect of bioactive glass microspheres appears synergistic with the osteoinductive action of BMP-2 gene transfer, or one overshadows the other, as no additive effect was observed.
Collapse
Affiliation(s)
- V-V Välimäki
- Department of Orthopaedic Surgery and Traumatology, University of Turku, Kiinamyllynkatu 4-8, FIN-20520 Turku, Finland
| | | | | | | |
Collapse
|
35
|
Abstract
Sox proteins are transcriptional regulators with a high-mobility-group domain as sequence-specific DNA-binding domain. For function, they generally require other transcription factors as partner proteins. Sox proteins furthermore affect DNA topology and may shape the conformation of enhancer-bound multiprotein complexes as architectural proteins. Recent studies suggest that Sox proteins are tightly regulated in their expression by many signalling pathways, and that their transcriptional activity is subject to post-translational modification and sequestration mechanisms. Sox proteins are thus ideally suited to perform their many different functions as transcriptional regulators throughout mammalian development. Their unique properties also cause Sox proteins to escape detection in many standard transcription assays. In melanocytes, studies have so far focused on the Sox10 protein which functions both during melanocyte specification and at later times in the melanocyte lineage. During specification, Sox10 activates the Mitf gene as the key regulator of melanocyte development. At later stages, it ensures cell-type specific expression of melanocyte genes such as Dopachrome tautomerase. Both activities require cooperation with transcriptional partner proteins such as Pax-3, CREB and eventually Mitf. If predictions can be made from other cell lineages, further functions of Sox proteins in melanocytes may still lie ahead.
Collapse
Affiliation(s)
- Michael Wegner
- Institut für Biochemie, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| |
Collapse
|
36
|
Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 2005; 13:527-36. [PMID: 15922187 DOI: 10.1016/j.joca.2005.02.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 02/06/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE According to recent reports, the synovial membrane may contain mesenchymal stem cells with the potential to differentiate into chondrocytes under appropriate conditions. In order to assess the usefulness of synovium-derived progenitor cells for the purposes of cartilage tissue engineering, we explored their requirements for the expression of chondrocyte-specific genes after expansion in vitro. DESIGN Mesenchymal progenitor cells were isolated from the synovial membranes of bovine shoulder joints and expanded in two-dimensions on plastic surfaces. They were then seeded either as micromass cultures or as single cells within alginate gels, which were cultured in serum-free medium. Under these three-dimensional conditions, chondrogenesis is known to be supported and maintained. Cell cultures were exposed either to bone morphogenetic protein-2 (BMP-2) or to isoforms of transforming growth factor-beta (TGF-beta). The levels of mRNA for Sox9, collagen types I and II and aggrecan were determined by RT-PCR. RESULTS When transferred to alginate gel cultures, the fibroblast-like synovial cells assumed a rounded form. BMP-2, but not isoforms of TGF-beta, stimulated, in a dose-dependent manner, the production of messenger RNAs (mRNAs) for Sox9, type II collagen and aggrecan. Under optimal conditions, the expression levels of cartilage-specific genes were comparable to those within cultured articular cartilage chondrocytes. However, in contrast to cultured articular cartilage chondrocytes, synovial cells exposed to BMP-2 continued to express the mRNA for alpha1(I) collagen. CONCLUSIONS This study demonstrates that bovine synovium-derived mesenchymal progenitor cells can be induced to express chondrocyte-specific genes. However, the differentiation process is not complete under the chosen conditions. The stimulation conditions required for full transformation must now be delineated.
Collapse
Affiliation(s)
- Y Park
- ITI Research Institute for Dental and Skeletal Biology, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Välimäki VV, Yrjans JJ, Vuorio EI, Aro HT. Molecular Biological Evaluation of Bioactive Glass Microspheres and Adjunct Bone Morphogenetic Protein 2 Gene Transfer in the Enhancement of New Bone Formation. ACTA ACUST UNITED AC 2005; 11:387-94. [PMID: 15869418 DOI: 10.1089/ten.2005.11.387] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bioactive glass is a promising osteoconductive silica-based biomaterial for guidance of new bone growth. On the basis of several in vitro studies, the material appears able to promote osteoblast functions. In our in vivo study, the osteopromotive effect of bioactive glass microspheres seemed to surpass the osteoinductive action of direct adenovirus-mediated human bone morphogenetic protein 2 (BMP-2) gene transfer in a noncritical size bone defect model. The current study was initiated to elucidate the molecular mechanism behind bioactive glass action with or without adjunct BMP-2 gene transfer. A standardized bone defect of the rat tibia was filled with bioactive glass microspheres and injected with adenovirus carrying the human BMP-2 gene (RAdBMP-2). Control defects were left empty or filled with bioactive glass microspheres with injection of adenovirus carrying the lacZ reporter gene or saline. Quantitative polymerase chain reaction confirmed the expression of the transferred human BMP-2 gene at the defect area at 4 days, but not in intact reference tissues. Bone matrix components (collagens I, II, and III, osteocalcin, osteonectin, and osteopontin) and resorption markers (cathepsin K and MMP-9), determined by Northern analysis, showed a completely different pattern of gene expression in defects filled with bioactive glass compared with control defects left to heal without filling. Bioactive glass induced a long-lasting production of bone matrix with concurrent upregulation of osteoclastic markers, a sign of high bone turnover. Combining RAdBMP-2 gene transfer with bioactive glass decelerated the high turnover, but did not influence the balance of synthesis and resorption. This molecular analysis confirmed not only the highly osteopromotive effect of bioactive glass microspheres, but also the accelerated rate of new bone resorption on its surface. At least in noncritical size defects this impact of bioactive glass seems to saturate new bone formation on its surface and thereby overshadow the effect of BMP-2 gene transfer.
Collapse
Affiliation(s)
- Ville-Valtteri Välimäki
- Orthopedic Research Unit, Department of Orthopedic Surgery and Traumatology, University of Turku, Finland
| | | | | | | |
Collapse
|
38
|
Fujii T, Ueno T, Kagawa T, Sugahara T, Yamamoto T. Immunohistochemical analysis of Sox9 expression in periosteum of tibia and calvaria after surgical release of the periosteum. Acta Histochem 2005; 106:427-37. [PMID: 15707652 DOI: 10.1016/j.acthis.2004.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/27/2004] [Accepted: 10/06/2004] [Indexed: 11/20/2022]
Abstract
Sox9 is a transcription factor belonging to the SRY family of high-mobility box proteins, and plays a major role in endochondral ossification. Sox9 is a potent activator of the type-2 collagen pheno-type marker of articular cartilage. Regulation of osteogenic molecular signals in periosteal bone formation has not yet been elucidated yet. The purpose of the present study was to analyze histologically the bone formation in surgically released and repositioned periosteum, and to determine expression of Sox9 and type-2 collagen in periosteal bone formation of tibia and calvaria. After surgery, the released tibial periosteum formed ectopic cartilage. At 7 days, a combination of endochondral and intramembranous ossification was apparent. Some fibroblasts derived from the released periosteum showed Sox9 expression. Chondrocytes and cartilage matrix both displayed type-2 collagen expression. At 7 days, an additional new bone was formed on the calvaria. Osteoblasts and fibroblasts derived from released calvarial periosteum did not express Sox9 or type-2 collagen. Sox9 was not expressed throughout the process periosteal bone formation on the calvaria. It is concluded that we revealed Sox9 and type-2 collagen expression in periosteal cells after periosteum release and that the generative potential of periosteal cells of calvaria is different from that of tibia.
Collapse
Affiliation(s)
- Takashi Fujii
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Dental School, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| | | | | | | | | |
Collapse
|
39
|
Uusitalo H, Rantakokko J, Vuorio E, Aro HT. Bone defect repair in immobilization-induced osteopenia: a pQCT, biomechanical, and molecular biologic study in the mouse femur. Bone 2005; 36:142-9. [PMID: 15664012 DOI: 10.1016/j.bone.2004.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2004] [Revised: 09/06/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The present study was carried out to determine whether immobilization-induced (Im) osteopenic bone possesses the same reparative capacity as normal healthy bone. Furthermore, the effects of mechanical loading versus immobilization on bone defect healing were studied. Three-week cast-immobilization was used to induce local osteopenia in mice. A standardized metaphyseal bone defect of the distal femur was created unilaterally both in immobilization-induced (Im) osteopenic mice and in nonimmobilized (Mo) age-matched control animals. After creation of the bone defect, the animals in both groups were further divided into two groups: 3-week cast-immobilization (Im-Im and Mo-Im) groups, and unrestricted weight-bearing (Im-Mo and Mo-Mo) groups. The healing process was followed up to 3 weeks using RNA analysis, histomorphometry, biomechanical testing, and pQCT measurements. At 3 weeks of healing without immobilization, bone mineral density (BMD), as well as bone bending stiffness and strength were higher in normal (Mo-Mo) than in osteopenic (Im-Mo) bone. Although the levels of mRNAs characteristic to chondrocytes (Sox9 and type II collagen), hypertrophic chondrocytes (Type X collagen), osteoblasts (type I collagen and osteocalcin), and osteoclasts (cathepsin K) during the bone defect healing exhibited similarities in their expression profiles, mechanical loading conditions also caused characteristic differences. Mechanical loading during healing (Mo-Mo group) induced stronger expression of cartilage- and bone-specific genes and resulted in higher BMD than that seen in the cast-immobilized group (Mo-Im). In biomechanical analysis, increased bending stiffness and strength were also observed in animals that were allowed weight-bearing during healing. Thus, our study shows that bone healing follows the same molecular pathway both in osteopenic and normal bones and presents evidence for reduced or delayed regeneration of noncritical size defects in immobilization-induced osteopenic bone.
Collapse
Affiliation(s)
- H Uusitalo
- Skeletal Research Program, Department of Medical Biochemistry and Molecular Biology, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
40
|
Ihanamäki T, Pelliniemi LJ, Vuorio E. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res 2004; 23:403-34. [PMID: 15219875 DOI: 10.1016/j.preteyeres.2004.04.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The three-dimensional structure of the eye plays an important role in providing a correct optical environment for vision. Much of this function is dependent on the unique structural features of ocular connective tissue, especially of the collagen types and their supramolecular structures. For example, the organization of collagen fibrils is largely responsible for transparency and refraction of cornea, lens and vitreous body, and collagens present in the sclera are largely responsible for the structural strength of the eye. Phylogenetically, most of the collagens are highly conserved between different species, which suggests that collagens also share similar functions in mice and men. Despite considerable differences between the mouse and the human eye, particularly in the proportion of the different tissue components, the difficulty of performing systematic histologic and molecular studies on the human eye has made mouse an appealing alternative to studies addressing the role of individual genes and their mutations in ocular diseases. From a genetic standpoint, the mouse has major advantages over other experimental animals as its genome is better known than that of other species and it can be manipulated by the modern techniques of genetic engineering. Furthermore, it is easy, quick and relatively cheap to produce large quantities of mice for systematic studies. Thus, transgenic techniques have made it possible to study consequences of specific mutations in genes coding for structural components of ocular connective tissues in mice. As these changes in mice have been shown to resemble those in human diseases, mouse models are likely to provide efficient tools for pathogenetic studies on human disorders affecting the extracellular matrix. This review is aimed to clarify the role of collagenous components in the mouse and human eye with a closer look at the new findings of the collagens in the cartilage and the eye, the so-called "cartilage collagens".
Collapse
Affiliation(s)
- Tapio Ihanamäki
- Department of Ophthalmology, Helsinki University Central Hospital, PO Box 220, FIN-00029 HUS Helsinki, Finland.
| | | | | |
Collapse
|
41
|
Shimoaka T, Kamekura S, Chikuda H, Hoshi K, Chung UI, Akune T, Maruyama Z, Komori T, Matsumoto M, Ogawa W, Terauchi Y, Kadowaki T, Nakamura K, Kawaguchi H. Impairment of Bone Healing by Insulin Receptor Substrate-1 Deficiency. J Biol Chem 2004; 279:15314-22. [PMID: 14736890 DOI: 10.1074/jbc.m312525200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Insulin receptor substrate-1 (IRS-1) is an essential molecule for intracellular signaling of insulin-like growth factor (IGF)-I and insulin, both of which are potent anabolic regulators of bone and cartilage metabolism. To investigate the role of IRS-1 in bone regeneration, fracture was introduced in the tibia, and its healing was compared between wild-type (WT) mice and mice lacking the IRS-1 gene (IRS-1(-/-) mice). Among 15 IRS-1(-/-) mice, 12 remained in a non-union state even at 10 weeks after the operation, whereas all 15 WT mice showed a rigid bone union at 3 weeks. This impairment was because of the suppression of callus formation with a decrease in chondrocyte proliferation and increases in hypertrophic differentiation and apoptosis. Reintroduction of IRS-1 to the IRS-1(-/-) fractured site using an adenovirus vector significantly restored the callus formation. In the culture of chondrocytes isolated from the mouse growth plate, IRS-1(-/-) chondrocytes showed less mitogenic ability and Akt phosphorylation than WT chondrocytes. An Akt inhibitor decreased the IGF-I-stimulated DNA synthesis of chondrocytes more potently in the WT culture than in the IRS-1(-/-) culture. We therefore conclude that IRS-1 deficiency impairs bone healing at least partly by inhibiting chondrocyte proliferation through the phosphatidylinositol 3-kinase/Akt pathway, and we propose that IRS-1 can be a target molecule for bone regenerative medicine.
Collapse
Affiliation(s)
- Takashi Shimoaka
- Departments of Orthopaedic Surgery, Tissue Engineering, and Metabolic Diseases, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cohen-Barak O, Yi Z, Hagiwara N, Monzen K, Komuro I, Brilliant MH. Sox6 regulation of cardiac myocyte development. Nucleic Acids Res 2004; 31:5941-8. [PMID: 14530442 PMCID: PMC219484 DOI: 10.1093/nar/gkg807] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A mouse mutation (p100H/p100H) has been identified that is associated with cardioskeletal myopathy, heart block, delayed growth and early postnatal death. The gene that is disrupted in this mutation encodes the transcription factor Sox6. P19CL6 cells were used as an in vitro cardiomyocyte differentiation system and revealed that Sox6 is expressed exclusively when the cells are committed to differentiate to beating cardiac myocytes. We used the yeast two-hybrid system to identify the Prtb (Proline-rich transcript of the brain) protein as a Sox6 interactor, and subsequently confirmed the interaction by co-immunoprecipitation. Prtb expression in P19CL6 cells increased with differentiation to beating cardiomyocytes. Using the P19CL6 cells stably transfected with noggin, an antagonist of BMP (Bone Morphogenic Protein), we found that BMP expression is required for Sox6 expression in cardiomyocyte differentiation. Surprisingly, the expression of the alpha1c-subunit gene of the L-type Ca2+ channel decreased in P19CL6 cells as they differentiated to beating cardiac cells. Ectopic expression of Sox6 or Prtb alone in P19CL6 cells caused down-regulation of L-type Ca2+ alpha1c expression, but when Sox6 and Prtb were co-transfected to the cells, L-type Ca2+ alpha1c remained at basal levels. A similar relationship of Sox6 and L-type Ca2+ alpha1c expression was seen in vivo (comparing wild-type and p(100H)/p(100H) mutant mice). Thus, Sox6 is within the BMP pathway in cardiac differentiation, interacts with Prtb and may play a critical role in the regulation of a cardiac L-type Ca2+ channel.
Collapse
Affiliation(s)
- Orit Cohen-Barak
- Department of Pediatrics, The University of Arizona College of Medicine, Steele Memorial Children's Research Center 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ito T, Tokunaga K, Maruyama H, Kawashima H, Kitahara H, Horikoshi T, Ogose A, Hotta Y, Kuwano R, Katagiri H, Endo N. Coxsackievirus and adenovirus receptor (CAR)-positive immature osteoblasts as targets of adenovirus-mediated gene transfer for fracture healing. Gene Ther 2003; 10:1623-8. [PMID: 12907955 DOI: 10.1038/sj.gt.3302060] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenovirus vectors are expected to be a powerful tool for gene therapy to treat severe fractures. Adenovirus invades cells through binding to the coxsackievirus and adenovirus receptor (CAR) on the cell membrane. CAR expression is low in normal adult animals, but it is induced on regenerating cells in some experimental models. We made a rib fracture model in mice and evaluated the histological changes and CAR mRNA expression by RT-PCR 1, 5, 10, 14, and 21 days after the fracture. CAR mRNA was expressed exclusively in the fractured ribs at each time point, but not in the normal ribs. We detected the CAR protein immunohistochemically in fibroblast-like cells in the fracture callus on days 10 and 14 after fracture. In situ hybridization showed that these fibroblast-like cells expressed mRNA of type I collagen and osteopontin, but not osteocalcin, defining the cells as immature osteoblasts. We then transferred small doses (10(4)-10(8) PFU) of lacZ-expressing adenovirus vector into immature osteoblasts on day 14. beta-galactosidase was detected only on the immature osteoblasts at every dose. Immature osteoblasts play an important role in the matrix replacement step in fracture healing. CAR-mediated gene transfer into immature osteoblasts can be reasonable for adenovirus-mediated treatment of fracture healing.
Collapse
Affiliation(s)
- T Ito
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rahkonen O, Savontaus M, Abdelwahid E, Vuorio E, Jokinen E. Expression patterns of cartilage collagens and Sox9 during mouse heart development. Histochem Cell Biol 2003; 120:103-10. [PMID: 12883905 DOI: 10.1007/s00418-003-0549-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2003] [Indexed: 01/29/2023]
Abstract
A majority of congenital heart defects are due to abnormal development of the valves and membranous septa, i.e., connective tissue components of the heart. During development, an interesting feature of cardiac connective tissue is transient expression of collagens typical for cartilage. To better understand the role of these collagens in the heart, we have performed a systematic study on the temporospatial expression of type II and IX collagen isoforms during mouse heart development employing northern hybridization and RNase protection assay. The mRNAs for alpha1(II) and alpha1(IX) collagens were expressed transiently between embryonic days 10.5 and 14.5 in embryonic mouse heart. RNase protection assays revealed that for both transcripts the embryonic ("prechondrogenic") variants of the alternatively spliced mRNA isoforms dominated. Immunohistochemistry demonstrated that type IIA collagen and Sox9, its key transcriptional regulator, were expressed in the epithelial-mesenchymal areas of the developing heart, with partially overlapping patterns particularly in valvular and septal regions. In addition, Sox9 expression was detected widely in the developing heart. These observations support the hypothesis that cartilage collagens, especially the long isoform of type II collagen, participate in the morphogenesis of cardiac valves and septa.
Collapse
Affiliation(s)
- Otto Rahkonen
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
45
|
Kinkel MD, Horton WE. Coordinate down-regulation of cartilage matrix gene expression in Bcl-2 deficient chondrocytes is associated with decreased SOX9 expression and decreased mRNA stability. J Cell Biochem 2003; 88:941-53. [PMID: 12616533 DOI: 10.1002/jcb.10442] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The anti-apoptotic protein Bcl-2 has been shown to function in roles unrelated to apoptosis in a variety of cell types. We have previously reported that loss of Bcl-2 expression alters chondrocyte morphology and modulates aggrecan expression via an apoptosis-independent pathway. Here we show that Bcl-2 is required for chondrocytes to maintain expression of a variety of cartilage-specific matrix proteins. Using quantitative, real-time PCR, we demonstrate that Bcl-2-deficient chondrocytes coordinately down-regulate genes coding for hyaline cartilage matrix proteins including collagen II, collagen IX, aggrecan, and link protein. The decrease in steady-state level of these mRNA transcripts results, in part, from decreased mRNA stability in Bcl-2-deficient chondrocytes. Transcriptional regulation is also likely involved because chondrocytes with decreased Bcl-2 levels show decreased expression of SOX9, a transcription factor necessary for expressing the major cartilage matrix proteins. In contrast, chondrocytes constitutively expressing Bcl-2 have a stable phenotype when subjected to loss of serum factor signaling. These cells maintain high levels of SOX9, as well as the SOX9 targets collagen II and aggrecan. These results suggest that Bcl-2 is involved in a pathway important for maintaining a stable chondrocyte phenotype.
Collapse
Affiliation(s)
- Mary D Kinkel
- Department of Anatomy, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA.
| | | |
Collapse
|
46
|
Schaefer JF, Millham ML, de Crombrugghe B, Buckbinder L. FGF signaling antagonizes cytokine-mediated repression of Sox9 in SW1353 chondrosarcoma cells. Osteoarthritis Cartilage 2003; 11:233-41. [PMID: 12681949 DOI: 10.1016/s1063-4584(02)00354-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The Sox9 transcription factor has emerged as an important determinant of chondrocyte differentiation, including the regulation of type II collagen (Col2) and aggrecan gene expression. We sought to identify a human cell line model that conserves the Sox9 regulatory pathways identified in the mouse. DESIGN The SW1353 chondrosarcoma cell line was considered to be a candidate for Sox9 studies. The activity of a Sox9 regulated Col2a1 enhancer reporter gene was analyzed in response to treating cells with known regulators of murine Sox9 expression/activity. The effect of treatment on expression of the endogenous Sox9 gene was analyzed by real-time PCR and Western blot. RESULTS Col2 enhancer activity was stimulated by fibroblast growth factors (FGF-1 and -2) and repressed by inflammatory cytokines (IL-1beta and TNFalpha) in SW1353 cells. These effects correlated with changes in Sox9 mRNA and protein levels. In addition, FGF-9 was shown to stimulate enhancer activity and Sox9 expression. Cotreatment studies demonstrated that FGFs functionally antagonize the cytokine-mediated repression of Sox9 expression and Col2 enhancer activity. CONCLUSIONS SW1353 cells represent a useful human cell model as they conserve many Sox9 signaling pathways previously demonstrated in mouse chondrocytes. We identify FGF-9 as a particularly potent Sox9 agonist. The antagonism between FGFs and cytokines on Sox9 expression and Col2 enhancer activity suggests that Sox9 integrates the opposing activities of FGFs and cytokines. We also find that SW1353 cells respond to very low doses of IL-1 with Col2 enhancer activation, while increasing doses lead to repression.
Collapse
Affiliation(s)
- J F Schaefer
- Pfizer Global Research and Development, Discovery-Inflammation Biology, Groton, CT 06340-8220, USA
| | | | | | | |
Collapse
|
47
|
Hadjiargyrou M, Lombardo F, Zhao S, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT. Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 2002; 277:30177-82. [PMID: 12055193 DOI: 10.1074/jbc.m203171200] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The healing of skeletal fractures is essentially a replay of bone development, involving the closely regulated, interdependent processes of chondrogenesis and osteogenesis. Using a rat femur model of bone healing to determine the degree of transcriptional complexity of these processes, suppressive subtractive hybridization (SSH) was performed between RNA isolated from intact bone to that of callus from post-fracture (PF) days 3, 5, 7, and 10 as a means of identifying up-regulated genes in the regenerative process. Analysis of 3,635 cDNA clones revealed 588 known genes (65.8%, 2392 clones) and 821 expressed sequence tags (ESTs) (31%, 1,127). The remaining 116 cDNAs (3.2%) yielded no homology and presumably represent novel genes. Microarrays were then constructed to confirm induction of expression and determine the temporal profile of all isolated cDNAs during fracture healing. These experiments confirmed that approximately 90 and approximately 80% of the subtracted known genes and ESTs are up-regulated (> or = 2.5-fold) during the repair process, respectively. Clustering analysis revealed subsets of genes, both known and unknown, that exhibited distinct expression patterns over 21 days (PF), indicating distinct roles in the healing process. Additionally, this transcriptional profiling of bone repair revealed a host of activated signaling molecules and even pathways (i.e. Wnt). In summary, the data demonstrate, for the fist time, that the healing process is exceedingly complex, involves thousands of activated genes, and indicates that groups of genes rather than individual molecules should be considered if the regeneration of bone is to be accelerated exogenously.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York 11794, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lieberman JR, Ghivizzani SC, Evans CH. Gene transfer approaches to the healing of bone and cartilage. Mol Ther 2002; 6:141-7. [PMID: 12161179 DOI: 10.1006/mthe.2000.0663] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jay R Lieberman
- Department of Orthopaedic Surgery, The David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | | | | |
Collapse
|
49
|
Söderström M, Böhling T, Ekfors T, Nelimarkka L, Aro HT, Vuorio E. Molecular profiling of human chondrosarcomas for matrix production and cancer markers. Int J Cancer 2002; 100:144-51. [PMID: 12115562 DOI: 10.1002/ijc.10457] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondrosarcoma is the second most common malignant bone tumor, characterized by production of abundant extracellular matrix resembling hyaline cartilage. To better understand the molecular pathogenesis of chondrosarcoma, we analyzed 12 chondrosarcomas for their production of connective tissue components and SOX9, a key regulator of normal chondrocyte differentiation. Furthermore, 10 chondrosarcoma samples were screened for additional changes in gene expression using cDNA array analysis. In Northern analysis, several tumors were found to express type II collagen mRNA at levels comparable to fetal cartilage used as a control. Interestingly, the highest levels of type II collagen mRNA were seen in 2 of the 3 grade 3 chondrosarcomas, which also exhibited the highest mRNA levels of SOX9 and "prechondrogenic" pro alpha 1(IIA) collagen. Expression of SOX9 in human chondrosarcomas is novel and suggests that chondrosarcomas originate from a multipotent stem cell committed to differentiation along the chondrogenic pathway. Results of the cDNA array analyses emphasize the heterogeneous nature of chondrosarcoma as no single transcript was systematically up- or downregulated in all tumors analyzed. Among the interesting changes observed was upregulation of decorin mRNA in 7 of the 10 tumors analyzed. Further studies are needed to determine whether decorin plays a role in the pathogenesis of chondrosarcoma. The cDNA arrays also revealed discrepancies from Northern and RNase protection analyses in transcript levels of matrix components, emphasizing the need to validate cDNA array data with other techniques.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Blotting, Northern
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Differentiation/physiology
- Chondrosarcoma/genetics
- Chondrosarcoma/metabolism
- Chondrosarcoma/pathology
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- High Mobility Group Proteins/biosynthesis
- High Mobility Group Proteins/genetics
- Humans
- Immunoenzyme Techniques
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/metabolism
- RNA, Neoplasm/isolation & purification
- SOX9 Transcription Factor
- Sequence Analysis, DNA
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/physiology
Collapse
Affiliation(s)
- Mirva Söderström
- Skeletal Research Program, Department of Medical Biochemistry and Molecular Biology, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|