1
|
Ng MY, Lin T, Chao SC, Chu PM, Yu CC. Potential Therapeutic Applications of Natural Compounds in Diabetes-Associated Periodontitis. J Clin Med 2022; 11:jcm11133614. [PMID: 35806899 PMCID: PMC9267692 DOI: 10.3390/jcm11133614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yi-lan, Luodong 265501, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: ; Tel.: +886-4-2471-8668
| |
Collapse
|
2
|
Gun Bilgic D, Hatipoglu OF, Cigdem S, Bilgic A, Cora T. NF-ĸβ upregulates ADAMTS5 expression by direct binding after TNF-α treatment in OUMS-27 chondrosarcoma cell line. Mol Biol Rep 2020; 47:4215-4223. [PMID: 32415504 DOI: 10.1007/s11033-020-05514-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Inflammation caused-aggrecan degradation is a critical event in the pathogenesis of osteoarthritis (OA). The aggrecanases like a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) are assumed to be key players in the aggrecan destruction. To develop the comprehensive therapy method for OA, it is essential to elucidate the activation mechanism of ADAMTS5 gene after stimulation of inflammatory cytokines like tumor necrosis factor-α (TNF-α). The cell lines of human chondrosarcoma (OUMS-27) and embryonic kidney (HEK293T) were incubated with tumor necrosis factor-α (TNF-α) for certain time periods, and the expression level of ADAMTS5 was measured in both mRNA and protein levels. Tissue-specific ADAMTS5 activation was founded to be induced after TNF-α treatment. Then, the constructs for the promoter region of ADAMTS5 were prepared and luciferase assay was conducted to understand the involvement mechanism of nuclear factor-kappa beta (NF-ĸβ) in ADAMTS5 activation. It was demonstrated that NF-ĸβ induces the ADAMTS5 expression level by directly binding the promoter region of ADAMTS5. Although the TNF-α blocker is used for OA treatment, the development of a more comprehensive treatment strategy is an urgent need. Our experimental data contributes in terms of selecting NF-ĸβ as a target molecule. Up to date, NF-ĸβ has been proven to involve in the ADAMTS5 up-regulation after several pro-inflammatory cytokines stimulation. In conclusion, our findings make important contributions to the knowledge about the roles of NF-ĸβ in ADAMTS5 activation under inflammatory conditions. So, NF-ĸβ could be considered to be a potential target for OA treatment.
Collapse
Affiliation(s)
- Dilek Gun Bilgic
- Department of Medical Genetics, Manisa Celal Bayar University Medical Faculty, Manisa, Turkey.
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Sadık Cigdem
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Abdulkadir Bilgic
- Department of Orthopedics and Traumatology, Manisa City Hospital, Manisa, Turkey
| | - Tulin Cora
- Department of Medical Genetics, Selcuk University Medical Faculty, Konya, Turkey
| |
Collapse
|
3
|
Kjelgaard-Petersen CF, Sharma N, Kayed A, Karsdal MA, Mobasheri A, Hägglund P, Bay-Jensen AC, Thudium CS. Tofacitinib and TPCA-1 exert chondroprotective effects on extracellular matrix turnover in bovine articular cartilage ex vivo. Biochem Pharmacol 2018; 165:91-98. [PMID: 30059674 DOI: 10.1016/j.bcp.2018.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Currently, there are no disease-modifying osteoarthritis drugs (DMOADs) approved for osteoarthritis. It is hypothesized that a subtype of OA may be driven by inflammation and may benefit from treatment with anti-inflammatory small molecule inhibitors adopted from treatments of rheumatoid arthritis. This study aimed to investigate how small molecule inhibitors of intracellular signaling modulate cartilage degradation and formation as a pre-clinical model for structural effects. DESIGN Bovine cartilage explants were cultured with oncostatin M (OSM) and tumour necrosis factor α (TNF-α) either alone or combined with the small molecule inhibitors: SB203580 (p38 inhibitor), R406 (Spleen tyrosine kinase (Syk) inhibitor), TPCA-1 (Inhibitor of κB kinase (Ikk) inhibitor), or Tofacitinib (Tofa) (Janus kinases (Jak) inhibitor). Cartilage turnover was assessed with the biomarkers of degradation (AGNx1 and C2M), and type II collagen formation (PRO-C2) using ELISA. Explant proteoglycan content was assessed by Safranin O/Fast Green staining. RESULTS R406, TPCA-1 and Tofa reduced the cytokine-induced proteoglycan loss and decreased AGNx1 release 3.7-, 43- and 32-fold, respectively. SB203580 showed no effect. All inhibitors suppressed C2M at a concentration of 3 µM. TPCA-1 and Tofa increased the cytokine reduced PRO-C2 3.5 and 3.7-fold, respectively. CONCLUSION Using a pre-clinical model we found that the inhibitors TPCA-1 and Tofa inhibited cartilage degradation and rescue formation of type II collagen under inflammatory conditions, while R406 and SB203580 only inhibited cartilage degradation, and SB203580 only partially. These pre-clinical data suggest that TPCA-1 and Tofa preserve and help maintain cartilage ECM under inflammatory conditions and could be investigated further as DMOADs for inflammation-driven osteoarthritis.
Collapse
Affiliation(s)
- Cecilie F Kjelgaard-Petersen
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark; Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Neha Sharma
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | - Ashref Kayed
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | - Morten A Karsdal
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | - Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences University of Surrey, Guildford GU2 7AL, United Kingdom.
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | - Christian S Thudium
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| |
Collapse
|
4
|
Mohn CE, Troncoso GR, Bozzini C, Conti MI, Fernandez Solari J, Elverdin JC. Changes in PGE2 signaling after submandibulectomy alter post-tooth extraction socket healing. Wound Repair Regen 2018. [PMID: 29524350 DOI: 10.1111/wrr.12625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Claudia Ester Mohn
- Department of Physiology, School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
- National Council for Scientific and Technological Research; Buenos Aires Argentina
| | - Gastón Rodolfo Troncoso
- Department of Physiology, School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| | - Clarisa Bozzini
- Department of Physiology, School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| | - María Inés Conti
- Department of Physiology, School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| | - Javier Fernandez Solari
- Department of Physiology, School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
- National Council for Scientific and Technological Research; Buenos Aires Argentina
| | - Juan Carlos Elverdin
- Department of Physiology, School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
5
|
Elburki MS, Rossa C, Guimarães-Stabili MR, Lee HM, Curylofo-Zotti FA, Johnson F, Golub LM. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis. Inflammation 2018; 40:1436-1449. [PMID: 28534138 DOI: 10.1007/s10753-017-0587-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.
Collapse
Affiliation(s)
- Muna S Elburki
- Department of Periodontics, Faculty of Dentistry, University of Benghazi, Jamal Abdel Nasser Street, Benghazi, Libya.
| | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | | | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Fabiana A Curylofo-Zotti
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | - Francis Johnson
- Department of Chemistry and Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, SUNY at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
6
|
Sun EY, Fleck AKM, Abu-Hakmeh AE, Kotsakis A, Leonard GR, Wan LQ. Cartilage Metabolism is Modulated by Synovial Fluid Through Metalloproteinase Activity. Ann Biomed Eng 2018; 46:810-818. [PMID: 29589167 DOI: 10.1007/s10439-018-2010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
Abstract
Synovial fluid (SF) contains various cytokines that regulate chondrocyte metabolism and is dynamically associated with joint disease. The objective of this study was to investigate the effects of diluted normal SF on catabolic metabolism of articular cartilage under inflammatory conditions. For this purpose, SF was isolated from healthy bovine joints, diluted, and added to cartilage explant cultures stimulated with interleukin-1 (IL-1) for 12 days. The kinetic release of sulfated glycosaminoglycan (sGAG) and collagen, as well as nitric oxide and gelatinase matrix metalloproteinases were analyzed in the supernatant. Chondrocyte survival and matrix integrity in the explants were evaluated with Live/Dead and histological staining. Diluted synovial fluid treatment suppressed sGAG and collagen release, downregulated the production of nitric oxide and matrix metalloproteinases, reduced IL-1-induced chondrocyte death, and rescued matrix depletion. Our results demonstrate that normal SF can counteract inflammation-driven cartilage catabolism. This study reports on the protective function of healthy SF and the therapeutic potential of recapitulation of SF for cartilage repair.
Collapse
Affiliation(s)
- Eric Y Sun
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Allison K M Fleck
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Ahmad E Abu-Hakmeh
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Alexandra Kotsakis
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Garrett R Leonard
- Division of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Leo Q Wan
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA. .,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA. .,Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA. .,Laboratory for Tissue Engineering and Morphogenesis, Rensselaer Polytechnic Institute, Biotech 2147, 110 8th Street, Troy, NY, 12180, USA.
| |
Collapse
|
7
|
Wang Y, Guan PP, Yu X, Guo YS, Zhang YJ, Wang ZY, Wang P. COX-2 metabolic products, the prostaglandin I 2 and F 2α, mediate the effects of TNF-α and Zn 2+ in stimulating the phosphorylation of Tau. Oncotarget 2017; 8:99296-99311. [PMID: 29245902 PMCID: PMC5725093 DOI: 10.18632/oncotarget.21853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Although the roles of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) in regulating amyloid precursor protein (APP) cleavage and β-amyloid protein (Aβ) production have been the subjects of numerous investigations, their effects on tau phosphorylation have been largely overlooked. Using human TauP301S transgenic (Tg) mice as in vivo model, our results demonstrated that PGI2 and PGF2α mediated the effects of tumor necrosis factor α (TNF-α) and Zinc ions (Zn2+) on upregulating the phosphorylation of tau via the PI3-K/AKT, ERK1/2 and JNK/c-Jun signaling pathways. Specifically, we initially found that high level of Zn2+ upregulates the expression of COX-2 via stimulating the activity of TNF-α in a zinc transporter 3 (ZnT3)-dependent mechanism. COX-2 upregulation then stimulates the phosphorylation of tau at both Ser 202 and Ser 400/Thr 403/Ser 404 via PGI2 and F2α treatment either in i.c.v.-injected mice or in n2a cells. Using n2a cells as in vitro model, we further revealed critical roles for the PI3-K/AKT, ERK1/2 and JNK/c-Jun pathways in mediating the effects of PGI2 and F2α in the phosphorylation of tau. Finally, NS398 treatment delayed the onset of cognitive decline in TauP301S Tg mice according to the nest construction or limb clasping test.
Collapse
Affiliation(s)
- Yue Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China.,Department of Tissue Culture, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Yan-Su Guo
- Key laboratory of Hebei Neurology, Hebei Medical University, Shijiazhuang, P.R. China.,Institute of Cardiocerebrovascular Disease, Hebei Medical University, Shijiazhuang, P.R. China
| | - Ying-Jie Zhang
- College of Biology, Hunan University, Changsha, P.R. China.,Shenzhen Institute, Hunan University, Shenzhen, P.R. China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| |
Collapse
|
8
|
Li Y, Wang J, Song X, Bai H, Ma T, Zhang Z, Li X, Jiang R, Wang G, Fan X, Liu X, Gao L. Effects of baicalein on IL-1β-induced inflammation and apoptosis in rat articular chondrocytes. Oncotarget 2017; 8:90781-90795. [PMID: 29207603 PMCID: PMC5710884 DOI: 10.18632/oncotarget.21796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/21/2017] [Indexed: 01/15/2023] Open
Abstract
In osteoarthritis (OA), activated synoviocytes and articular chondrocytes produce pro-inflammatory cytokines, such as IL-1β, that promote chondrocyte apoptosis and activate the NF-κB signaling pathway to induce catabolic factors. In this study, we examined the anti-inflammatory and anti-apoptotic effect of baicalein on IL-1β signaling and NF-κB-regulated gene products in rat chondrocytes. Rat chondrocytes were pretreated with 10 ng/ml IL-1β for 24 h and then co-treated with 10 ng/ml IL-1β and 50 μM baicalein for 0, 12, 24, 36 and 48h. The expression levels of poly(ADP-ribose) polymerase (PARP), Bcl-2, caspase-3, matrix metalloproteinase (MMP)-9, MMP-3, cyclooxygenase (COX)-2 and SOX-9 were detected by Western blot and quantitative reverse transcription-PCR (qPCR). The effects of baicalein on the translocation and phosphorylation of the NF-κB system were studied by Western blotting and immunofluorescence. Baicalein stimulated the expression of anti-apoptotic genes and reduced the pro-apoptotic and pro-inflammatory gene products in chondrocytes. Baicalein promoted SOX-9 expression in a time-dependent manner in chondrocytes. Baicalein inhibited the NF-κB activation that was induced by IL-1β in a time-dependent manner in chondrocytes. Our results suggest that the anti-inflammatory and anti-apoptotic effects of baicalein are mediated through the inhibition of the translocation of phosphorylated p65 to the nucleus.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Jinglu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Xiaopeng Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Hui Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Zhiheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Xinran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Renli Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Guanying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Xiaojing Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Xu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
9
|
Ye W, Zhong Z, Zhu S, Zheng S, Xiao J, Song S, Yu H, Wu Q, Lin Z, Chen J. Advanced oxidation protein products induce catabolic effect through oxidant-dependent activation of NF-κ B pathway in human chondrocyte. Int Immunopharmacol 2016; 39:149-157. [DOI: 10.1016/j.intimp.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 01/23/2023]
|
10
|
Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation? Mediators Inflamm 2015; 2015:257471. [PMID: 26424967 PMCID: PMC4573893 DOI: 10.1155/2015/257471] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/13/2015] [Indexed: 01/11/2023] Open
Abstract
The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell-cell transfer of metabolic and electric signals. GJs are formed by connexin (Cx) proteins of which Cx43 is most widespread in the human body. Beyond its role in direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs) in the plasma membrane that mediate the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43. Matrix metalloproteases (MMPs) are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from cleavage can contribute to the acute inflammatory response during tissue injury.
Collapse
|
11
|
Abstract
The progressive nature of osteoarthritis is manifested by the dynamic increase of degenerated articular cartilage, which is one of the major characteristics of this debilitating disease. As articular chondrocytes become exposed to inflammatory stress they enter a pro-catabolic state, which leads to the secretion and activation of a plethora of proteases. In aim to detect the disease before massive areas of cartilage are destroyed, various protein and non-protein biomarkers have been examined in bodily fluids and correlated with disease severity. This review will discuss the widely research extracellular degraded products as well as products generated by affected cellular pathways upon increased protease activity. While extracellular components could be more abundant, cleaved cellular proteins are less abundant and are suggested to possess a significant effect on cell metabolism and cartilage secretome. Subtle changes in cell secretome could potentially act as indicators of the chondrocyte metabolic and biological state. Therefore, it is envisioned that combined biomarkers composed of both cell and extracellular-degraded secretome could provide a valuable platform for testing drug efficacy to halt disease progression at its early stages.
Collapse
Affiliation(s)
- Mona Dvir-Ginzberg
- a Laboratory of Cartilage Biology , Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| | - Eli Reich
- a Laboratory of Cartilage Biology , Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
12
|
Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceutricals for joint health. Int J Mol Sci 2012; 13:4202-4232. [PMID: 22605974 PMCID: PMC3344210 DOI: 10.3390/ijms13044202] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 01/21/2023] Open
Abstract
Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods.
Collapse
|
13
|
Montaseri A, Busch F, Mobasheri A, Buhrmann C, Aldinger C, Rad JS, Shakibaei M. IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One 2011; 6:e28663. [PMID: 22194879 PMCID: PMC3237481 DOI: 10.1371/journal.pone.0028663] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/12/2011] [Indexed: 01/24/2023] Open
Abstract
Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Azadeh Montaseri
- Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Franziska Busch
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ali Mobasheri
- Division of Veterinary Medicine, School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Constanze Buhrmann
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Constance Aldinger
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
14
|
Asano K, Sakai M, Matsuda T, Tanaka H, Fujii K, Hisamitsu T. Suppression of matrix metalloproteinase production from synovial fibroblasts by meloxicam in-vitro. J Pharm Pharmacol 2010; 58:359-66. [PMID: 16536903 DOI: 10.1211/jpp.58.3.0010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
The aim of this study was to evaluate the influence of meloxicam on the production of both matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) from human synovial fibroblasts by TNF-α stimulation in-vitro. Synovial fibroblasts (2 times 104 cells/mL) derived from patients with osteoarthritis were stimulated with 20.0 ng mL−1 TNF-α in the presence of various concentrations of meloxicam. After 24 h, the culture supernatants were obtained and assayed for MMP-1, MMP-2, MMP-3, MMP-13, TIMP-1 and TIMP-2 by ELISA. mRNA expression for MMPs and TIMPs in 4-h-cultured cells were examined by real-time polymerase chain reaction. Transcriptional factor (NF-κB and AP-1) activation in 2-h-cultured cells was also examined by ELISA. Meloxicam could suppress MMP production in a dose-dependent manner. The minimum concentration of the agent that showed significant suppression was 0.6 times 10−6 m for MMP-1, MMP-2 and MMP-3, and 1.3 times 10−6 m for MMP-13. The ability of synovial fibroblasts to produce TIMPs was also suppressed by meloxicam as in the case of MMP production. Addition of meloxicam into synovial fibroblast cultures inhibited dose-dependently mRNA expression for MMPs and TIMPs, which were increased by TNF-α stimulation, through the suppression of NF-κB and AP-1 activation. The suppressive effect of meloxicam on the production of MMPs and TIMPs may partly be involved in attenuation of the clinical conditions of osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Kazuhito Asano
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Schett G, Stolina M, Dwyer D, Zack D, Uderhardt S, Krönke G, Kostenuik P, Feige U. Tumor necrosis factor α and RANKL blockade cannot halt bony spur formation in experimental inflammatory arthritis. ACTA ACUST UNITED AC 2009; 60:2644-54. [DOI: 10.1002/art.24767] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Shimpo H, Sakai T, Kondo S, Mishima S, Yoda M, Hiraiwa H, Ishiguro N. Regulation of prostaglandin E(2) synthesis in cells derived from chondrocytes of patients with osteoarthritis. J Orthop Sci 2009; 14:611-7. [PMID: 19802674 DOI: 10.1007/s00776-009-1370-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 05/21/2009] [Indexed: 01/30/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a disorder that causes pain and degeneration of the joint over a chronic time course. Chondrocytes in OA play important roles in maintaining the homeostasis of the joint while they produce many cytokines and pathological mediators, including interleukin-1beta (IL-1beta), cyclooxygenases (COX), and prostaglandin E(2) (PGE(2)). To elucidate the mechanisms of pain due to OA, the pathway of PGE(2) synthesis was analyzed using cells derived from chondrocytes obtained from patients with OA. METHODS Chondrocytes were isolated from cartilage samples obtained at the time of joint replacement surgery from patients with OA. The chondrocytes at the second passage were cultured with or without IL-1beta, dexamethasone (DEX), or COX inhibitors such as NS-398, meloxicam, and indomethacin. Reverse transcription-polymerase chain reaction and Western blotting analysis were performed to study the levels of mRNA and protein, respectively. An enzyme-linked immunosorbent assay was performed to investigate the translocation of nuclear factor-kappaB (NF-kappaB) to the nucleus, and Western blotting analysis was performed to study the phosphorylation of mitogen-activated protein kinases. RESULTS IL-1beta markedly enhanced the expression of COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) at both the mRNA and protein levels. The up-regulation was suppressed by DEX or COX inhibitors. IL-1beta strongly increased the translocation of NF-kappaB to the nucleus and the phosphorylation of extracellular-signal-regulated kinase, p38, and c-Jun amino-terminal kinase; but the up-regulation was not inhibited by DEX or COX inhibitors. Interestingly, in a dose-dependent manner, PGE(2) recovered mPGES-1 expression from suppression by DEX, whereas it did not restore the expression of COX-2 in the presence of DEX and IL-1beta. CONCLUSIONS These results suggested that in cells derived from OA chondrocytes different mechanisms of regulation exist between mPGES-1 and COX-2, and the expression of mPGES-1 was, at least partially, regulated through the autocrine positive feedback by PGE(2).
Collapse
Affiliation(s)
- Hisashi Shimpo
- Department of Orthopedic Surgery, Tokoname Municipal Hospital, Tokoname, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Xiao C, Zhou J, He Y, Jia H, Zhao L, Zhao N, Lu A. Effects of triptolide from Radix Tripterygium wilfordii (Leigongteng) on cartilage cytokines and transcription factor NF-kappaB: a study on induced arthritis in rats. Chin Med 2009; 4:13. [PMID: 19570240 PMCID: PMC2709898 DOI: 10.1186/1749-8546-4-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022] Open
Abstract
Background Triptolide, an active compound of Radix Tripterygium wilfordii, is immunosuppressive, cartilage protective and anti-inflammatory both in human and animal studies of various inflammatory and autoimmune diseases, including rheumatoid arthritis, but its therapeutic mechanism remains unclear. The aim of this study is to investigate the effects of triptolide on cartilage cytokines in the CIA model. Methods Sprague Dawley rats were immunized with type II collagen and orally administered with triptolide. The arthritic scores and incidence changes of the rats were observed. The expression of TNF-α, IL-6, COX-2 and NF-κB in paw cartilage was studied with immunohistochemical staining. Results Triptolide, at both high and low doses, significantly lowered the arthritic scores, delayed the onset of arthritis and lowered the arthritis incidence. Triptolide treatment at both high and low doses lowered the expression of TNF-α, IL-6, COX-2 and NF-κB in paw cartilage in arthritic rats. Conclusion Triptolide lowers the arthritic scores, delays the onset of collagen induced arthritis and reduces the expressions of TNF-α, IL-6, NF-κB and COX-2 in paw cartilage in arthritic rats.
Collapse
Affiliation(s)
- Cheng Xiao
- Institute of Clinical Medicine Research, China-Japan Friendship Hospital, Beijing, PR China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sutton S, Clutterbuck A, Harris P, Gent T, Freeman S, Foster N, Barrett-Jolley R, Mobasheri A. The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J 2009; 179:10-24. [PMID: 17911037 DOI: 10.1016/j.tvjl.2007.08.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is one of the most common and disabling chronic joint disorders affecting horses, dogs and humans. Synovial inflammation or synovitis is a frequently observed phenomenon in osteoarthritic joints and contributes to the pathogenesis of OA through formation of various catabolic and pro-inflammatory mediators altering the balance of cartilage matrix degradation and repair. Catabolic mediators produced by the inflamed synovium include pro-inflammatory cytokines, nitric oxide, prostaglandin E(2) and several neuropeptides, which further contribute to the pathogenesis of OA by increasing cartilage degradation. Recent studies suggest that substance P, corticotropin-releasing factor, urocortin and vasoactive intestinal peptide may also be involved in OA development, but the precise role of these neuropeptides in the pathogenesis of OA is not known. Since increased production of matrix metalloproteinases by the synovium is stimulated by pro-inflammatory cytokines, future anti-inflammatory therapies should focus on the synovium as a means of controlling subsequent inflammatory damage.
Collapse
Affiliation(s)
- Saski Sutton
- Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 7ZJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Awasthi N, Wang-Su ST, Wagner BJ. Downregulation of MMP-2 and -9 by proteasome inhibition: a possible mechanism to decrease LEC migration and prevent posterior capsular opacification. Invest Ophthalmol Vis Sci 2008; 49:1998-2003. [PMID: 18436832 DOI: 10.1167/iovs.07-0624] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The proliferation, epithelial-mesenchymal transition (EMT), and migration of residual lens epithelial cells (LECs) after cataract surgery leads to the development of posterior capsular opacification (PCO). The authors have shown that proteasome inhibition suppresses LEC proliferation and EMT. The present study investigates the prevention of LEC migration by proteasome inhibition through the suppression of matrix metalloproteinase (MMP) expression and activity. METHODS HLE B-3 and primary human LEC migration assays were performed using polycarbonate membrane inserts and 20% fetal bovine serum (FBS) as chemoattractant. Cultured cells were treated with 1 ng TGF-beta(2), with or without MG132 (proteasome inhibitor) or GM 6001 (MMP inhibitor). Capsular bags with intraocular lenses (IOLs) were prepared from human donor eyes and cultured in serum-free DMEM. The capsular bags were then treated with 1 or 10 ng/mL TGF-beta(2), with or without MG132 (2.5 or 10 muM, respectively). The medium was sampled and replaced every 2 days and analyzed for MMP-2 and -9 activities by SDS-PAGE zymography. Protein and RNA expression were analyzed by Western blotting and RT-PCR, respectively. RESULTS Proteasome inhibition blocks LEC migration in HLE B-3 and primary human LECs. To further evaluate the mechanism of decrease in LEC migration by proteasome inhibition, the authors measured MMP-2 mRNA and protein expression and MMP-2 and -9 activities. In HLE B-3 cells, TGF-beta(2) increased MMP-2 mRNA and protein levels; these increases were inhibited by MG132 cotreatment. Medium from HLE B-3 cultures showed MMP-2 and -9 activities, which were induced by TGF-beta(2) treatment and inhibited by MG132 co-treatment. TGF-beta(2) treatment also increased MMP-2 and -9 activities in IOL capsular bag cultures; these were progressively decreased by proteasome inhibition. CONCLUSIONS Proteasome inhibition decreases LEC migration. This inhibition is correlated with decreased MMP-2 and -9 activities, observed both with and without TGF-beta(2) treatment. These findings support proteasome inhibition as a therapeutic strategy to prevent PCO.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Departments of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA.
| | | | | |
Collapse
|
20
|
Healy ZR, Zhu F, Stull JD, Konstantopoulos K. Elucidation of the signaling network of COX-2 induction in sheared chondrocytes: COX-2 is induced via a Rac/MEKK1/MKK7/JNK2/c-Jun-C/EBPβ-dependent pathway. Am J Physiol Cell Physiol 2008; 294:C1146-57. [DOI: 10.1152/ajpcell.00542.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shear stress is a pathophysiologically relevant mechanical signal in cartilage biology and tissue engineering. Cyclooxygenase-2 (COX-2) is a pivotal proinflammatory enzyme, which is induced by mechanical loading-derived shear stress in chondrocytes. In the present study, we investigated the transcriptional machinery and signaling pathway regulating shear-induced COX-2 expression in human chondrocytic cells. Deletion and mutation analyses of the human cox-2 promoter reveal that the CCAAT/enhancer-binding protein (C/EBP) and activator protein-1 (AP-1) predominantly contribute to the shear-induced cox-2 promoter activity. Supershift assays disclose that C/EBPβ, but not C/EBPα or C/EBPδ, binds to the C/EBP site, whereas c-Jun binds to AP-1. Individual gene knockdown experiments demonstrate the direct regulation of C/EBPβ expression by c-Jun, and the critical roles of both c-Jun and C/EBPβ in shear-induced COX-2 synthesis. Our studies also indicate that Rac and, to a lesser extent, Cdc42 transactivate MEKK1, which is, in turn, responsible for activation of mitogen-activated protein kinase kinase 7 (MKK7). MKK7 regulates c-Jun NH2-terminal kinase 2 activation, which, in turn, triggers the phosphorylation of c-Jun that controls shear-mediated COX-2 upregulation in chondrocytes. Reconstructing the signaling network regulating shear-induced COX-2 expression and inflammation may provide insights to optimize conditions for culturing artificial cartilage in bioreactors and for developing therapeutic interventions for arthritic disorders.
Collapse
|
21
|
Sato S, Kitagawa M, Sakamoto K, Iizuka S, Kudo Y, Ogawa I, Miyauchi M, Chu EY, Foster BL, Somerman MJ, Takata T. Enamel Matrix Derivative Exhibits Anti-Inflammatory Properties in Monocytes. J Periodontol 2008; 79:535-40. [DOI: 10.1902/jop.2008.070311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol Cell Biol 2008; 28:2391-413. [PMID: 18172013 DOI: 10.1128/mcb.01288-07] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinase 3 (MMP3) is well known as a secretory endopeptidase that degrades extracellular matrices. Recent reports indicated the presence of MMPs in the nucleus (A. J. Kwon et al., FASEB J. 18:690-692, 2004); however, its function has not been well investigated. Here, we report a novel function of human nuclear MMP3 as a trans regulator of connective tissue growth factor (CCN2/CTGF). Initially, we cloned MMP3 cDNA as a DNA-binding factor for the CCN2/CTGF gene. An interaction between MMP3 and transcription enhancer dominant in chondrocytes (TRENDIC) in the CCN2/CTGF promoter was confirmed by a gel shift assay and chromatin immunoprecipitation. The CCN2/CTGF promoter was activated by overexpressed MMP3, whereas a TRENDIC mutant promoter lost the response. Also, the knocking down of MMP3 suppressed CCN2/CTGF expression. By cytochemical and histochemical analyses, MMP3 was detected in the nuclei of chondrocytic cells in culture and also in the nuclei of normal and osteoarthritic chondrocytes in vivo. The nuclear translocation of externally added recombinant MMP3 and six putative nuclear localization signals in MMP3 also were shown. Furthermore, we determined that heterochromatin protein gamma coordinately regulates CCN2/CTGF by interacting with MMP3. The involvement of this novel role of MMP3 in the development, tissue remodeling, and pathology of arthritic diseases through CCN2/CTGF regulation thus is suggested.
Collapse
|
23
|
Shakibaei M, John T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem Pharmacol 2007; 73:1434-45. [PMID: 17291458 DOI: 10.1016/j.bcp.2007.01.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/22/2006] [Accepted: 01/03/2007] [Indexed: 11/19/2022]
Abstract
Pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) play a key role in the pathogenesis of osteoarthritis (OA). Anti-inflammatory agents capable of suppressing the production and catabolic actions of these cytokines may have therapeutic potential in the treatment of OA and a range of other osteoarticular disorders. The purpose of this study was to examine the effects of curcumin (diferuloylmethane), a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in human articular chondrocytes maintained in vitro. The effects of curcumin were studied in cultures of human articular chondrocytes treated with IL-1beta and TNF-alpha for up to 72h. Expression of collagen type II, integrin beta1, cyclo-oxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) was monitored by western blotting. The effects of curcumin on the expression, phosphorylation and nuclear translocation of protein components of the NF-kappaB system were studied by western blotting and immunofluorescence, respectively. Treatment of chondrocytes with curcumin suppressed IL-1beta-induced NF-kappaB activation via inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation and p65 nuclear translocation. Curcumin inhibited the IL-1beta-induced stimulation of up-stream protein kinase B Akt. These events correlated with down-regulation of NF-kappaB targets including COX-2 and MMP-9. Similar results were obtained in chondrocytes stimulated with TNF-alpha. Curcumin also reversed the IL-1beta-induced down-regulation of collagen type II and beta1-integrin receptor expression. These results indicate that curcumin has nutritional potential as a naturally occurring anti-inflammatory agent for treating OA through suppression of NF-kappaB mediated IL-1beta/TNF-alpha catabolic signalling pathways in chondrocytes.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
24
|
Fushimi K, Nakashima S, You F, Takigawa M, Shimizu K. Prostaglandin E2 downregulates TNF-α-induced production of matrix metalloproteinase-1 in HCS-2/8 chondrocytes by inhibiting Raf-1/MEK/ERK cascade through EP4 prostanoid receptor activation. J Cell Biochem 2007; 100:783-93. [PMID: 17031853 DOI: 10.1002/jcb.21099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1, collagenase-1) plays a pivotal role in the process of joint destruction in degenerative joint diseases. We have examined the regulation of MMP-1 production in human chondrocytic HCS-2/8 cells stimulated by tumor necrosis factor-alpha (TNF-alpha). In response to TNF-alpha, MMP-1 is induced and actively released from HCS-2/8 cells. The induction of MMP-1 expression correlates with activation of ERK1/2, MEK, and Raf-1, and is potently prevented by U0126, a selective inhibitor of MEK1/2 activation. In contrast, SB203580, a selective p38 mitogen-activated protein kinases (MAPK) inhibitor, had no effects on TNF-alpha-induced MMP-1 release. A serine/threonine kinase, Akt was not activated in TNF-alpha-stimulated HCS-2/8 cells. TNF-alpha stimulated the production of PGE(2) in addition to MMP-1 in HCS-2/8 cells. Exogenously added PGE(2) potently inhibited TNF-alpha-induced both MMP-1 production and activation of ERK1/2. The effects of PGE(2) were mimicked by ONO-AE1-329, a selective EP4 receptor agonist but not by butaprost, a selective EP2 agonist. In contrast, blockade of endogenously produced PGE(2) signaling by ONO-AE3-208, a selective EP4 receptor antagonist, enhanced TNF-alpha-induced MMP-1 production. Furthermore, the suppression of MMP-1 production by exogenously added PGE(2) was reversed by ONO-AE3-208. Activation of EP4 receptor resulted in cAMP-mediated phosphorylation of Raf-1 on Ser259, a negative regulatory site, and blocked activation of Raf-1/MEK/ERK cascade. Taken together, these findings indicate that Raf-1/MEK/ERK signaling pathway plays a crucial role in the production of MMP-1 in HCS-2/8 cells in response to TNF-alpha, and that the produced PGE(2) downregulates the expression of MMP-1 by blockage of TNF-alpha-induced Raf-1 activation through EP4-PGE(2) receptor activation.
Collapse
Affiliation(s)
- Kazunari Fushimi
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | | | | | | | | |
Collapse
|
25
|
Ohori J, Ushikai M, Sun D, Nishimoto K, Sagara Y, Fukuiwa T, Matsune S, Kurono Y. TNF-alpha upregulates VCAM-1 and NF-kappaB in fibroblasts from nasal polyps. Auris Nasus Larynx 2006; 34:177-83. [PMID: 16934424 DOI: 10.1016/j.anl.2006.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/25/2006] [Accepted: 05/26/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Lung and synovial fibroblasts produce VCAM-1 in response to TNF-alpha. However, the massive infiltration of eosinophils, the effects of the increased amount of TNF-alpha and the production of VCAM-1 in human nasal polyp fibroblasts are not yet fully understood. The present study examines the role of VCAM-1 and the molecular mechanism of its expression in nasal fibroblasts. METHODS Nasal fibroblasts were isolated from human nasal polyps and after four passages, the cells were stimulated with TNF-alpha and VCAM-1 expression was examined by ELISA, flow cytometry, and RT-PCR. The activation of NF-kappaB induced by TNF-alpha was determined by electrophoretic mobility shift assays and the influence on the expression of VCAM-1 was investigated. RESULTS VCAM-1 protein and mRNA were expressed in unstimulated controls and remarkably increased by TNF-alpha stimulation. NF-kappaB activity was enhanced by TNF-alpha stimulation and remarkably suppressed by NF-kappaB proteasome inhibitor. CONCLUSIONS The present study discovered that nasal fibroblasts produce VCAM-1 protein and mRNA and that production is increased by TNF-alpha stimulation. Furthermore, VCAM-1 expression in nasal fibroblasts is induced through an NF-kappaB-dependent pathway. These findings might provide a rationale for using NF-kappaB inhibitors as a treatment for nasal inflammatory diseases such as polyps.
Collapse
Affiliation(s)
- Junichiro Ohori
- Department of Otolaryngology, Field of Sensory Organology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Séguin CA, Bojarski M, Pilliar RM, Roughley PJ, Kandel RA. Differential regulation of matrix degrading enzymes in a TNFalpha-induced model of nucleus pulposus tissue degeneration. Matrix Biol 2006; 25:409-18. [PMID: 16934445 DOI: 10.1016/j.matbio.2006.07.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/05/2006] [Accepted: 07/07/2006] [Indexed: 01/07/2023]
Abstract
Intervertebral disc degeneration occurs commonly and is linked to persistent back pain and the development of disc herniation. The mechanisms responsible for tissue catabolism have not yet been fully elucidated. Previously we characterized an in vitro model of TNFalpha-induced nucleus pulposus degeneration, which demonstrates decreased expression of matrix macromolecules, increased expression of matrix degrading enzymes, and the activation of aggrecanase-mediated proteoglycan degradation [Seguin, C.A., Pilliar, R.M., Roughley, P.J., and Kandel, R.A. 2005. Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30: 1940-1948]. This study explores the intracellular pathways activated during TNFalpha-induced matrix degradation. We demonstrate that in nucleus pulposus cells, the p38 and JNK pathways regulate induction of MMP-1 and -3; p38, JNK, and NF-kappaB regulate the induction of MMP-13; and ERK regulates the up-regulation of MT1-MMP mRNA in response to TNFalpha. Induction of ADAMTS-4 and -5 mRNA occurred downstream of NF-kappaB activation. Depletion of tissue proteoglycans was mediated by ERK and NF-kappaB-dependent "aggrecanase" activity, suggesting MT1-MMP and ADAMTS-4 and -5 as effectors of TNFalpha-induced tissue catabolism.
Collapse
Affiliation(s)
- Cheryle A Séguin
- BioEngineering of Skeletal Tissues Team, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Tan Y, Peng X, Wang F, You Z, Dong Y, Wang S. Effects of tumor necrosis factor-alpha on the 26S proteasome and 19S regulator in skeletal muscle of severely scalded mice. J Burn Care Res 2006; 27:226-33. [PMID: 16566573 DOI: 10.1097/01.bcr.0000203378.85736.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The negative nitrogen balance after burns is an important factor in the rehabilitation and treatment of burn injury. It is known that the 26s protesome system plays a key role in the protein breakdown of skeletal muscle in some pathological situations, including burns, although the mechanism of which remains poorly understood. The present study surveyed the effect of tumor necrosis factor-alpha (TNF-alpha) on the 26S proteasome sysytem after burn injury, which is thought to be principally responsible for the proteolysis. The means of immuno-precipitation-deduction and enzyme-linked immunosorbent assay were used to test the change of activities and contents of 26S proteasome and 19S regulator in skeletal muscle of mice inflicted with 30% TBSA third-degree burns. The genes expression of 19S regulator's subunits Psmc2, Psmc5, Psmd1, and Psmd2 were examined by the use of reverse-transcription polymerase chain reaction. The results showed that TNF-alpha and burn can markedly increased the activities and contents of 26S proteasome and 19S regulator in mice skeletal muscle. In addition, the expression levels of the 19S regulator's subunits also were remarkably increased. The monoclonal antibody to TNF-alpha obviously can diminish the increment of the activities and contents of 26S proteasome and 19S regulator as much as the expression levels of the 19S regulator's subunits. The results suggested that TNF-alpha can activate the 26S proteasome system in skeletal muscle, thus enhancing the degradation of protein, which is associated with the development of negative nitrogen balance after scald.
Collapse
Affiliation(s)
- Yinling Tan
- Institute of Burn, Southwestern Hospital, Chongqing, China
| | | | | | | | | | | |
Collapse
|
28
|
Brochhausen C, Neuland P, Kirkpatrick CJ, Nüsing RM, Klaus G. Cyclooxygenases and prostaglandin E2 receptors in growth plate chondrocytes in vitro and in situ--prostaglandin E2 dependent proliferation of growth plate chondrocytes. Arthritis Res Ther 2006; 8:R78. [PMID: 16646980 PMCID: PMC1526634 DOI: 10.1186/ar1948] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 03/16/2006] [Accepted: 03/28/2006] [Indexed: 11/10/2022] Open
Abstract
Prostaglandin E2 (PGE2) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE2 pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE2 receptors) is essential. We therefore examined the production of PGE2 in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE2 on cell proliferation. Furthermore, we analysed the expression and spatial distribution of cyclooxygenase (COX)-1 and COX-2 and PGE2 receptor types EP1, EP2, EP3 and EP4 in the growth plate in situ and in vitro. PGE2 synthesis was determined by mass spectrometry, cell proliferation by DNA [3H]-thymidine incorporation, mRNA expression of cyclooxygenases and EP receptors by RT-PCR on cultured cells and in homogenized growth plates. To determine cellular expression, frozen sections of rat tibial growth plate and primary chondrocyte cultures were stained using immunohistochemistry with polyclonal antibodies directed towards COX-1, COX-2, EP1, EP2, EP3, and EP4. Cultured growth plate chondrocytes transiently secreted PGE2 into the culture medium. Although both enzymes were expressed in chondrocytes in vitro and in vivo, it appears that mainly COX-2 contributed to PGE2-dependent proliferation. Exogenously added PGE2 stimulated DNA synthesis in a dose-dependent fashion and gave a bell-shaped curve with a maximum at 10-8 M. The EP1/EP3 specific agonist sulprostone and the EP1-selective agonist ONO-D1-004 increased DNA synthesis. The effect of PGE2 was suppressed by ONO-8711. The expression of EP1, EP2, EP3, and EP4 receptors in situ and in vitro was observed; EP2 was homogenously expressed in all zones of the growth plate in situ, whereas EP1 expression was inhomogenous, with spared cells in the reserve zone. In cultured cells these four receptors were expressed in a subset of cells only. The most intense staining for the EP1 receptor was found in polygonal cells surrounded by matrix. Expression of receptor protein for EP3 and EP4 was observed also in rat growth plates. In cultured chrondrocytes, however, only weak expression of EP3 and EP4 receptor was detected. We suggest that in growth plate chondrocytes, COX-2 is responsible for PGE2 release, which stimulates cell proliferation via the EP1 receptor.
Collapse
Affiliation(s)
| | - Pia Neuland
- Department of Pediatrics, Philipps-University, Marburg, Germany
| | | | - Rolf M Nüsing
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | - Günter Klaus
- Department of Pediatrics, Philipps-University, Marburg, Germany
| |
Collapse
|
29
|
Fineschi S, Reith W, Guerne PA, Dayer JM, Chizzolini C. Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts. FASEB J 2006; 20:562-4. [PMID: 16410344 DOI: 10.1096/fj.05-4870fje] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue fibrosis results when dysregulation of extracellular matrix (ECM) turnover favors deposition of collagen and other ECM proteins over degradation. Fibrosis may then lead to organ dysfunction and pathology as observed in systemic sclerosis (SSc). In the present study, we investigated the antifibrotic properties of proteasome blockade. A dose- and time-dependent reduction in type-I collagen and tissue inhibitor of metalloproteinase-1 (TIMP-1) production was observed in normal fibroblasts exposed to proteasome inhibitors (PI). In the same culture conditions, metalloproteinase-1 (MMP-1) protein and the collagenolytic activity on type I collagen was increased. The steady-state mRNA levels of COL1A1, TIMP-1, and MMP-1 paralleled protein levels. These effects were dominant over the profibrotic properties of TGF-beta and were observed with fibroblasts generated from normal and SSc skin. PI decreased type I collagen mRNA levels with kinetics similar to those observed with DRB, a specific RNA polymerase II inhibitor, thus indicating transcriptional inhibition. Of interest, PI induced c-Jun phosphorylation and c-Jun nuclear accumulation. The specific N-terminal Jun-kinase inhibitor SP-600125 selectively abrogated c-Jun phosphorylation and, in a dose-dependent fashion, the up-regulated synthesis of MMP-1 induced by PI. Finally, PI did not affect fibroblast viability. Thus, the coordinated down-regulation of collagen and TIMP-1 and up-regulation of MMP-1 renders proteasome blockade an attractive strategy for treating conditions as SSc, characterized by excessive fibrosis.
Collapse
Affiliation(s)
- Serena Fineschi
- Immunology and Allergy, Department of Internal Medicine, Geneva University Hospital, Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Recklies AD, Ling H, White C, Bernier SM. Inflammatory Cytokines Induce Production of CHI3L1 by Articular Chondrocytes. J Biol Chem 2005; 280:41213-21. [PMID: 16234240 DOI: 10.1074/jbc.m510146200] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Elevated levels of CHI3L1 (chitinase-3-like protein 1) are associated with disorders exhibiting increased connective tissue turnover, such as rheumatoid arthritis, osteoarthritis, scleroderma, and cirrhosis of the liver. This secreted protein is not synthesized in young healthy cartilage, but is produced in cartilage from old donors or patients with osteoarthritis. The molecular processes governing the induction of CHI3L1 are currently unknown. To elucidate the molecular events involved in CHI3L1 synthesis, we investigated two models of articular chondrocytes: neonatal rat chondrocytes, which do not express CHI3L1, and human chondrocytes, which express CHI3L1 constitutively. In neonatal rat chondrocytes, the inflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 potently induced steady-state levels of CHI3L1 mRNA and protein secretion. Treatment of chondrocytes with TNF-alpha for as little as 1 h was sufficient for sustained induction up to 72 h afterward. Using inhibitors selective for the major signaling pathways implicated in mediating the effects of TNF-alpha and interleukin-1, only inhibition of NF-kappaB activation was effective in curtailing cytokine-induced expression, including after removal of the cytokine, indicating that induction and continued production of CHI3L1 are controlled mainly by this transcription factor. Inhibition of NF-kappaB signaling also abolished constitutive expression by human chondrocytes. Thus, induction and continued secretion of CHI3L1 in chondrocytes require sustained activation of NF-kappaB. Selective induction of CHI3L1 by cytokines acting through NF-kappaB coupled with the known restriction of the catabolic responses by CHI3L1 in response to these inflammatory cytokines represents a key regulatory feedback process in controlling connective tissue turnover.
Collapse
Affiliation(s)
- Anneliese D Recklies
- Joint Diseases Laboratory, Shriners Hospital for Children, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
31
|
FACCHINI ANNALISA, BORZÌ ROSAMARIA, MARCU KENNETHB, STEFANELLI CLAUDIO, OLIVOTTO ELEONORA, GOLDRING MARYB, FACCHINI ANDREA, FLAMIGNI FLAVIO. Polyamine depletion inhibits NF-kappaB binding to DNA and interleukin-8 production in human chondrocytes stimulated by tumor necrosis factor-alpha. J Cell Physiol 2005; 204:956-63. [PMID: 15828019 PMCID: PMC1226412 DOI: 10.1002/jcp.20368] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The activation of the NF-kappaB pathway by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFalpha), can be an important contributor for the re-programming of chondrocyte gene expression, thereby making it a therapeutic target in articular diseases. To search for new approaches to limit cartilage damage, we investigated the requirement of polyamines for NF-kappaB activation by TNFalpha in human C-28/I2 chondrocytes, using alpha-difluoromethylornithine (DFMO), a specific polyamine biosynthesis inhibitor. The NF-kappaB pathway was dissected by using pharmacological inhibitors or by expressing a transdominant IkappaBalpha super repressor. Treatment of C-28/I2 chondrocytes with TNFalpha resulted in a rapid enhancement of nuclear localization and DNA binding activity of the p65 NF-kappaB subunit. TNFalpha also increased the level and extracellular release of interleukin-8 (IL-8), a CXC chemokine that can have a role in arthritis, in an NF-kappaB-dependent manner. Pre-treatment of chondrocytes with DFMO, while causing polyamine depletion, significantly reduced NF-kappaB DNA binding activity. Moreover, DFMO also decreased IL-8 production without affecting cellular viability. Restoration of polyamine levels by the co-addition of putrescine circumvented the inhibitory effects of DFMO. Our results show that the intracellular depletion of polyamines inhibits the response of chondrocytes to TNFalpha by interfering with the DNA binding activity of NF-kappaB. This suggests that a pharmacological and/or genetic approach to deplete the polyamine pool in chondrocytes may represent a useful way to reduce NF-kappaB activation by inflammatory cytokines in arthritis without provoking chondrocyte apoptosis.
Collapse
Affiliation(s)
- ANNALISA FACCHINI
- Dipartimento di Biochimica “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - ROSA MARIA BORZÌ
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla Putti, I.O.R., Bologna, Italy
| | - KENNETH B. MARCU
- Department of Biochemistry and Cell Biology, SUNY @ Stony Brook, Stony Brook, NY, USA
- CRBA Laboratory, S. Orsola University Hospital, University of Bologna, Bologna, Italy
| | - CLAUDIO STEFANELLI
- Dipartimento di Biochimica “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - ELEONORA OLIVOTTO
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla Putti, I.O.R., Bologna, Italy
| | - MARY B. GOLDRING
- Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA, USA
| | - ANDREA FACCHINI
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla Putti, I.O.R., Bologna, Italy
- Dipartimento di Medicina interna e Gastroenterologia, University of Bologna, Bologna, Italy
| | - FLAVIO FLAMIGNI
- Dipartimento di Biochimica “G. Moruzzi”, University of Bologna, Bologna, Italy
- Correspondence to: Flavio Flamigni, Dipartimento di Biochimica “G. Moruzzi”, University of Bologna, Via Irnerio 48, 40126 - Bologna, Italy. Tel.: +39-051-2091216; fax: +39-051-2091224. E-mail:
| |
Collapse
|
32
|
Mannello F, Tonti GAM, Bagnara GP, Papa S. Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells 2005; 24:475-81. [PMID: 16150919 DOI: 10.1634/stemcells.2005-0333] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Matrix metalloproteinases (MMPs), known as matrixins, are Ca- and Zn-dependent endoproteinases involved in a wide variety of developmental and disease-associated processes, proving to be crucial protagonists in many physiological and pathological mechanisms. The ability of MMPs to alter, by limited proteolysis and through the fine control of tissue inhibitors of metalloproteinases, the activity or function of numerous proteins, enzymes, and receptors suggests that they are also involved in various important cellular functions during development. In this review, we focus on the differentiation of mesenchymal stem cells (including those of the myoblastic, osteoblastic, chondroblastic, neural, and apidoblastic lineages) and the possible, if unexpected, biological significance of MMPs in its regulation. The MMP system has been implicated in several differentiation events that suggests that it mediates the proliferative and prodifferentiating effect of the matrixin proteolytic cascade. We summarize these regulatory effects of MMPs on the differentiation of mesenchymal stem cells and hypothesize on the function of MMPs in the stem cell differentiation processes.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Institute of Histology and Laboratory Analysis, Center of Cytometry, University Carlo Bo of Urbino, Italy.
| | | | | | | |
Collapse
|
33
|
Schulze-Tanzil G, Mobasheri A, Sendzik J, John T, Shakibaei M. Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1beta-stimulated chondrocytes. Ann N Y Acad Sci 2005; 1030:578-86. [PMID: 15659840 DOI: 10.1196/annals.1329.067] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Curcumin (diferuloylmethane) is a nontoxic dietary pigment in tumeric and curry and a potent inhibitor of the common transcription factor Nuclear Factor kappaB (NF-kappaB) in several cell types. It is well established that some of the catabolic effects of the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha in osteoarthritis are regulated by the activation of NF-kappaB. Therefore, the aim of this study was to determine whether curcumin modifies the catabolic response of chondrocytes to IL-1beta. Human articular chondrocytes were prestimulated with 10 ng/mL IL-1beta for 0, 4, 8, 12, or 24 h and then cotreated with 50 microM curcumin for 0, 12, 24, 36, or 48 h. Synthesis of the cartilage-specific collagen type II and matrix-degrading enzyme matrix metalloproteinase-3 (MMP-3) was investigated in chondrocytes by Western blot analysis. Activation and nuclear translocation of NF-kappaB were observed by immunofluorescence microscopy. IL-1beta induced a decrease in collagen type II and upregulation of MMP-3 in a time-dependent manner. Upregulation of MMP-3 was inhibited by curcumin in a time-dependent manner. In addition, IL-1beta-induced a decrease in type II collagen, which was relieved by curcumin treatment. In response to IL-1beta, NF-kappaB translocated to the nucleus, but translocation was inhibited by curcumin, as revealed by immunofluorescence microscopy. Taken together, these results confirmed an IL-1beta-mediated upregulation of proinflammatory MMP-3 in chondrocytes via an NF-kappaB activation mechanism. Curcumin protected chondrocytes from the catabolic effects of IL-1beta, such as MMP-3 upregulation, and interestingly also relieved cytokine-induced suppression of matrix protein synthesis. Therefore, curcumin antagonizes crucial catabolic effects of IL-1beta signaling that are known to contribute to the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Charité University Medical School Berlin, Institute of Anatomy, Department of Cell and Neurobiology, Campus Benjamin Franklin, Königin-Luise-Strasse 15, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
A 21-year-old West Point cadet presented to our institution with a history of chronic left lateral ankle instability. The initial injury occurred 5 years earlier. Physical examination results and stress radiographs were consistent with lateral instability. The patient underwent an ankle arthroscopy and lateral ankle ligament reconstruction. Arthroscopic findings included moderate synovitis, grade II anterolateral chondrosis, and an anterior talar osteophyte. The patient had an uneventful postoperative course and returned to activity. Eleven months after surgery he presented with increased left ankle pain. On physical examination he had a stable ankle, but radiographs revealed marked loss of ankle joint space. Significant diffuse fraying and thinning of the articular cartilage noted on repeat arthroscopy were consistent with chondrolysis.
Collapse
Affiliation(s)
- John A Bojescul
- Orthopaedic Surgery Service, Keller Army Community Hospital, West Point, New York, USA
| | | | | |
Collapse
|
35
|
Saas J, Lindauer K, Bau B, Takigawa M, Aigner T. Molecular phenotyping of HCS-2/8 cells as an in vitro model of human chondrocytes. Osteoarthritis Cartilage 2004; 12:924-34. [PMID: 15501409 DOI: 10.1016/j.joca.2004.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 08/11/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cultures of primary articular chondrocytes for studying chondrocyte biology are notoriously difficult to handle. One alternative is the use of chondrocytic cell lines. Because the HCS-2/8 cells are the most widely used cell line in cartilage research, we investigated the molecular phenotype of these cells by mRNA-expression profiling. DESIGN Monolayers of HCS-2/8 cells were cultured to sub-confluence, confluence and over-confluence; primary human chondrocytes were grown in monolayer culture and alginate-bead cultures and several other chondrocytic cell lines were cultured as monolayers. RNA was isolated and analyzed by cDNA array profiling using Affymetrix GeneChips (U95A/U95Av2) and quantitative PCR. RESULTS Important similarities, but also remarkable differences between the HCS-2/8 cells and adult human articular chondrocytes were detected: Aggrecan and several cartilage typical collagens as well as SOX9 transcripts were strongly expressed in HCS-2/8 cells, whereas HCS-2/8 cells expressed hardly any chondrocyte-typical cartilage matrix degrading enzymes. Of all culturing conditions, clustering analysis showed that HCS-2/8 cultured at confluence are most closely related to primary chondrocytes. CONCLUSION Our study confirms how careful one needs to be in choosing in vitro model systems for investigating effects of interest. The major issue of chondrocyte cell lines appears to be that they mainly proliferate and show less expression of genes of matrix synthesis and turnover. A successful approach will have to select suitable chondrocyte cell lines and to validate findings obtained using primary chondrocytes. This allows to establish a reproducible in vitro model showing the property of interest and subsequently to relate back the obtained results to the physiologic situation.
Collapse
Affiliation(s)
- J Saas
- Aventis Pharma Deutschland GmbH, Disease Group Osteoarthritis and Department of Bioinformatics Frankfurt, Germany
| | | | | | | | | |
Collapse
|
36
|
Meiners S, Hocher B, Weller A, Laule M, Stangl V, Guenther C, Godes M, Mrozikiewicz A, Baumann G, Stangl K. Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome. Hypertension 2004; 44:471-7. [PMID: 15337735 DOI: 10.1161/01.hyp.0000142772.71367.65] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myocardial remodeling is an adaptive response of the myocardium to several forms of stress culminating in cardiac fibrosis, left ventricular dilation, and loss of contractility. The remodeling processes of the extracellular matrix are controlled by matrix metalloproteinases, which are in turn regulated by growth factors and inflammatory cytokines. The inflammatory transcription factor nuclear factor kappaB has been implicated in the transcriptional regulation of several matrix metalloproteinases. Because activation of nuclear factor kappaB in turn is essentially controlled by the ubiquitin-proteasome system, we investigated the hypothesis that inhibition of the proteasome may prevent activation of matrix metalloproteinases. We demonstrate here that inhibition of the proteasome in rat cardiac fibroblasts suppressed not only expression of matrix metalloproteinases 2 and 9, but also expression of collagen Ialpha1, Ialpha2, and IIIalpha1 as determined by in-gel zymography and real-time reverse transcription-polymerase chain reaction. Moreover, myocardial expression of matrix metalloproteinases and collagens was effectively suppressed by systemic treatment of spontaneously hypertensive rats over 12 weeks with the proteasome inhibitor MG132, which resulted in a marked reduction of cardiac fibrosis (-38%) compared with control animals. We conclude that inhibition of the ubiquitin-proteasome system may provide a new and attractive tool to interfere with collagen and matrix metalloproteinase expression, and therefore might be of possible use in the therapy of myocardial remodeling.
Collapse
Affiliation(s)
- Silke Meiners
- Medizinische Klinik, Kardiologie and Center for Cardiovascular Research, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pillinger MH, Dinsell V, Apsel B, Tolani SN, Marjanovic N, Chan ESL, Gomez P, Clancy R, Chang LF, Abramson SB. Regulation of metalloproteinases and NF-kappaB activation in rabbit synovial fibroblasts via E prostaglandins and Erk: contrasting effects of nabumetone and 6MNA. Br J Pharmacol 2004; 142:973-82. [PMID: 15210577 PMCID: PMC1575112 DOI: 10.1038/sj.bjp.0705864] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
1 Nabumetone is a prodrug that is converted in vivo into 6-methoxy-2-naphthylacetic acid (6MNA), a cyclooxygenase inhibitor with anti-inflammatory properties. We tested the effects of nabumetone and 6MNA on the inflammatory responses of synovial fibroblasts (SFs). 2 Brief exposures to 6MNA (50-150 microm) had no effect on IL-1beta/TNF-alpha (each 20 ng ml(-1))-stimulated Erk activation. Longer exposures depleted prostaglandin E1 (PGE1) as much as 70%, and stimulated Erk as much as 300%. Nabumetone (150 microm) inhibited Erk activation by 60-80%. 6MNA (50-150 microm) stimulated (approximately 200%) and nabumetone (150 microm) inhibited (approximately 50%) matrix metalloproteinase (MMP)-1, but not MMP-13 secretion from SFs. 3 6MNA stimulation of MMP-1 secretion was inhibited approximately 30% by PGE1 (1 microm) and approximately 80% by the Erk pathway inhibitor UO126 (10 microm), confirming that PGE depletion and Erk activation mediate MMP-1 secretion by 6MNA. 4 Consistent with its role as an Erk inhibitor, nabumetone (150 microm) abrogated 6MNA enhancement of MMP-1 secretion. 5 UO126 (10 microm) and nabumetone (150 microm) inhibited (approximately 70 and 40%, respectively), but 6MNA (150 microm) enhanced (approximately 40%), NF-kappaB activation. 6 Our data indicate that 6MNA shares with other COX inhibitors several proinflammatory effects on synovial fibroblasts. In contrast, nabumetone demonstrates anti-inflammatory and potentially arthroprotective effects that have not been previously appreciated.
Collapse
Affiliation(s)
- Michael H Pillinger
- The Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Samoto H, Shimizu E, Matsuda-Honjo Y, Saito R, Yamazaki M, Kasai K, Furuyama S, Sugiya H, Sodek J, Ogata Y. TNF-alpha suppresses bone sialoprotein (BSP) expression in ROS17/2.8 cells. J Cell Biochem 2004; 87:313-23. [PMID: 12397613 DOI: 10.1002/jcb.10301] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a major mediator of inflammatory responses in many diseases that inhibits bone formation and stimulates bone resorption. To determine molecular mechanisms involved in the suppression of bone formation we have analyzed the effects of TNF-alpha on BSP gene expression. Bone sialoprotein (BSP) is a mineralized tissue-specific protein that appears to function in the initial mineralization of bone. Previous studies have demonstrated that BSP mRNA expression is essentially restricted to fully-differentiated cells of mineralized connective tissues and that the expression of BSP is developmentally regulated. Treatment of rat osteosarcoma ROS 17/2.8 cells with TNF-alpha (10 ng/ml) for 24 h caused a marked reduction in BSP mRNA levels. The addition of antioxidant N-acetylcysteine (NAC; 20 mM) 30 min prior to stimulation with TNF-alpha attenuated the inhibition of BSP mRNA levels. Transient transfection analyses, using chimeric constructs of the rat BSP gene promoter linked to a luciferase reporter gene, revealed that TNF-alpha (10 ng/ml) suppressed expression in all constructs, including a short construct (pLUC3; nts -116 to +60), transfected into ROS17/2.8 cells. Further deletion analysis of the BSP promoter showed that a region within nts -84 to -60 was targeted by TNF-alpha, the effects which were inhibited by NAC and the tyrosine kinase inhibitor, herbimycin A (HA). Introduction of 2bp mutations in the inverted CCAAT box (ATTGG; nts -50 and -46), a putative cAMP response element (CRE; nts -75 to -68), and a FGF response element (FRE; nts -92 to -85) showed that the TNF-alpha effects were mediated by the CRE. These results were supported by gel mobility shift assays, using a radiolabeled double-stranded CRE oligonucleotide, which revealed decreased binding of a nuclear protein from TNF-alpha-stimulated ROS 17/2.8 cells. Further, the inhibitory effect of TNF-alpha on CRE DNA-protein complex was completely abolished by NAC or HA treatment. These studies, therefore, show that TNF-alpha suppresses BSP gene transcription through a tyrosine kinase-dependent pathway that generates reactive oxygen species and that the TNF-alpha effects are mediated by a CRE element in the proximal BSP gene promoter.
Collapse
Affiliation(s)
- Hiroshi Samoto
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jung YK, Jeong JH, Ryoo HM, Kim HN, Kim YJ, Park EK, Si HJ, Kim SY, Takigawa M, Lee BH, Park RW, Kim IS, Choi JY. Gene expression profile of human chondrocyte HCS-2/8 cell line by EST sequencing analysis. Gene 2004; 330:85-92. [PMID: 15087127 DOI: 10.1016/j.gene.2004.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/22/2003] [Accepted: 01/08/2004] [Indexed: 11/23/2022]
Abstract
Large-scale single-pass sequencing of randomly selected cDNA clones from cell type specific libraries has proven to be a powerful approach for the discovery of novel gene functions, identification of novel gene family members, and definition of gene expression profiles. HCS-2/8 chondrocyte has been used as a cell culture model to study chondrocyte differentiation. Here we performed 3350 single-pass sequencing reactions obtained from the 5' ends of cDNAs from HCS-2/8 cells. To define the expression profiles of HCS-2/8 chondrocytes, we analyzed the identity of these representative cDNA sequences using database searches (BLAST). The sequences represent 1927 unique genes with known function (i.e., unigene clusters), 38 transcripts that are similar to genes with known function, 739 expressed genes with unknown function (i.e., expressed sequence tags), and 18 cDNAs which have not previously been sequenced. Interestingly, many transcripts were expressed from chromosome 12 compared with total genes, while the fewer numbers of cDNAs were derived from genes on chromosomes 14, 18 and Y. The chondrocytic phenotype of HCS-2/8 cells is reflected by abundant expression of genes related to cell structure and motility and the 20 most frequently expressed unigenes reflect a chondrocyte-related gene expression signature. Thus, our data establish a representative set of more than 2000 genes expressed in a chondrocytic cell line. This finding provides a framework for understanding cell growth and differentiation of chondrocytes and their metabolic function in the formation and remodeling of cartilage.
Collapse
Affiliation(s)
- Youn-Kwan Jung
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu 700-422, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Petty DH, Jazrawi LM, Estrada LS, Andrews JR. Glenohumeral chondrolysis after shoulder arthroscopy: case reports and review of the literature. Am J Sports Med 2004; 32:509-15. [PMID: 14977682 DOI: 10.1177/0363546503262176] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Damon H Petty
- Petty Orthopaedics and Sports Medicine, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
41
|
Cho TJ, Lehmann W, Edgar C, Sadeghi C, Hou A, Einhorn TA, Gerstenfeld LC. Tumor necrosis factor α activation of the apoptotic cascade in murine articular chondrocytes is associated with the induction of metalloproteinases and specific pro-resorptive factors. ACTA ACUST UNITED AC 2003; 48:2845-54. [PMID: 14558090 DOI: 10.1002/art.11390] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Tumor necrosis factor alpha (TNFalpha) blockade provides substantive reduction of the symptoms of rheumatoid arthritis (RA). While the biologic actions of TNFalpha have been well characterized in immune and synovial cells, which are known to be major contributors to the progression of cartilage destruction in RA, the current studies were designed to assess the direct effects of TNFalpha on chondrocytes. METHODS We examined the expression of several groupings of messenger RNA (mRNA) that define key biologic pathways that have previously been associated with either the general actions of TNFalpha or cartilage destruction, in murine articular chondrocytes isolated from wild-type mice and TNFalpha receptor-null (p55/p75(-/-)) mice. RESULTS TNFalpha induced the expression of multiple mRNA that facilitate apoptosis and lead to apoptosis-induced cell death. The induction of apoptosis was accompanied by the increased expression of several factors involved in the regulation of skeletal tissue proteolysis and resorption. Quantitative increases from 2-fold to >10-fold were seen for inducible nitric oxide synthase, matrix metalloproteinase 3, macrophage colony-stimulating factor, and osteoprotegerin mRNA expression. The dependence of the induction of these mRNA on TNFalpha was confirmed by comparison with the effects of TNFalpha on chondrocytes isolated from receptor-null mice. CONCLUSION These findings demonstrate that TNFalpha alters the expression of a complex array of genes within murine chondrocytes that contribute to the destruction of joint surfaces, independent of its actions on synovial and immune cells. Further studies are needed to clarify the biologic actions of TNFalpha in human cartilage cells.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Cartilage, Articular/cytology
- Cells, Cultured
- Chondrocytes/cytology
- Chondrocytes/drug effects
- Chondrocytes/physiology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glycoproteins/genetics
- Macrophage Colony-Stimulating Factor/genetics
- Matrix Metalloproteinase 3/genetics
- Mice
- Mice, Mutant Strains
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Osteoprotegerin
- Phenotype
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Signal Transduction
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Tae-Joon Cho
- Boston University Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Nishida T, Kubota S, Fukunaga T, Kondo S, Yosimichi G, Nakanishi T, Takano-Yamamoto T, Takigawa M. CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol 2003; 196:265-75. [PMID: 12811819 DOI: 10.1002/jcp.10277] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) plays important roles in the control of the proliferation and differentiation of chondrocytes in vitro. To clarify the mechanisms of regulation by CTGF/Hcs24 with respect to cartilage metabolism, we investigated the interaction between CTGF/Hcs24 and heparan sulfate proteoglycan perlecan. An immunofluorescence study showed that CTGF/Hcs24 was colocalized with heparan sulfate and perlecan in human chondrosarcoma-derived chondrocytic cell line HCS-2/8 in vitro. Northern blot analysis showed that perlecan, syndecan-1, -2, and -4 transcripts were detected in HCS-2/8 cells. Particularly, expression of the perlecan gene increased markedly in HCS-2/8 cells by recombinant CTGF/Hcs24 (rCTGF/Hcs24) treatment. We also found that CTGF/Hcs24 interacted with perlecan from HCS-2/8 cells in vitro. Furthermore, CTGF/Hcs24-stimulated gene expression of the aggrecan gene, as well as DNA/proteoglycan synthesis, was diminished when HCS-2/8 cells were pretreated with heparinase, indicating that the effects of CTGF/Hcs24 on chondrocytes occurred through the interaction between CTGF/Hcs24 and heparan sulfate on the cells. An in vivo study using mouse growth plate revealed that CTGF/Hcs24 produced by hypertrophic chondrocytes was localized from the proliferative to the hypertrophic zone, whereas perlecan was predominantly localized in the prehyphertrophic zone. Consistent with such findings in vivo, the binding of (125)I-rCTGF/Hcs24 to maturing chondrocytes was at higher levels than that to chondrocytes in hypertrophic stages. These findings suggest that CTGF/Hcs24 produced in the hypertrophic region may act on chondrocytes in the proliferative and maturative zone via some heparan sulfate proteoglycan, such as perlecan.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abulencia JP, Gaspard R, Healy ZR, Gaarde WA, Quackenbush J, Konstantopoulos K. Shear-induced cyclooxygenase-2 via a JNK2/c-Jun-dependent pathway regulates prostaglandin receptor expression in chondrocytic cells. J Biol Chem 2003; 278:28388-94. [PMID: 12743126 DOI: 10.1074/jbc.m301378200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Using cDNA microarrays coupled with bioinformatics tools, we elucidated a signaling cascade regulating cyclooxygenase-2 (COX-2), a pivotal pro-inflammatory enzyme expressed in rheumatic and osteoarthritic, but not normal, cartilage. Exposure of T/C-28a2 chondrocytic cells to fluid shear results in co-regulation of c-Jun N-terminal kinase2 (JNK2), c-Jun, and COX-2 as well as concomitant downstream expression of prostaglandin receptors EP2 and EP3a1. JNK2 transcript inhibition abrogated shear-induced COX-2, EP2, and EP3a1 mRNA up-regulation as well as c-Jun phosphorylation. Functional knock-out experiments using an antisense c-Jun oligonucleotide revealed the abolition of shear-induced COX-2, EP2, and EP3a1, but not JNK2, transcripts. Moreover, inhibition of COX-2 activity eliminated mRNA upregulation of EP2 and EP3a1 induced by shear. Hence, a biochemical pathway exists wherein fluid shear activates COX-2, via a JNK2/c-Jun-dependent pathway, which in turn elicits downstream EP2 and EP3a1 mRNA synthesis.
Collapse
Affiliation(s)
- James P Abulencia
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
44
|
Huh YH, Kim SH, Kim SJ, Chun JS. Differentiation status-dependent regulation of cyclooxygenase-2 expression and prostaglandin E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes. J Biol Chem 2003; 278:9691-7. [PMID: 12493746 DOI: 10.1074/jbc.m211360200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although large amounts of epidermal growth factor (EGF) are found in the synovial fluids of arthritic cartilage, the role of EGF in arthritis is not clearly understood. This study investigated the effect of EGF on differentiation and on inflammatory responses such as cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in articular chondrocytes. EGF caused a loss of differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. EGF also induced COX-2 expression and PGE(2) production. EGF-induced dedifferentiation was caused by EGF receptor-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) but not p38 kinase, whereas the activation of both ERK1/2 and p38 kinase was necessary for COX-2 expression and PGE(2) production. Neither the inhibition of COX-2 expression and PGE(2) production nor the addition of exogenous PGE(2) affected EGF-induced dedifferentiation. However, COX-2 expression and PGE(2) production were significantly enhanced in chondrocytes that were dedifferentiated by serial subculture, and EGF also potentiated COX-2 expression and PGE(2) production, although these cells were less sensitive to EGF. Dedifferentiation-induced COX-2 expression and PGE(2) production were mediated by ERK1/2 and p38 kinase signaling. Our results indicate that EGF in articular chondrocytes stimulates COX-2 expression and PGE(2) production via ERK and p38 kinase signaling in association with differentiation status.
Collapse
Affiliation(s)
- Yun-Hyun Huh
- Department of Life Science, National Research Laboratory, Kwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | |
Collapse
|
45
|
Relić B, Bentires-Alj M, Ribbens C, Franchimont N, Guerne PA, Benoît V, Merville MP, Bours V, Malaise MG. TNF-alpha protects human primary articular chondrocytes from nitric oxide-induced apoptosis via nuclear factor-kappaB. J Transl Med 2002; 82:1661-72. [PMID: 12480916 DOI: 10.1097/01.lab.0000041714.05322.c0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
TNF-alpha plays a key role in rheumatoid arthritis, but its effect on chondrocyte survival is still conflicting. In the present study, we tested how TNF-alpha influences chondrocyte survival in response to nitric oxide (NO)-related apoptotic signals, which are abundant during rheumatoid arthritis. Human primary articular chondrocytes or cartilage explants were pretreated with TNF-alpha for 24 hours and then treated with the proapoptotic NO donor sodium-nitro-prusside (SNP) for an additional 24 hours. TNF-alpha pretreatment markedly protected chondrocytes from SNP-induced cell death. Preincubation of chondrocytes with TNF-alpha inhibited both SNP-induced high-molecular weight DNA fragmentation and annexin V-FITC binding. Of interest, TNF-alpha induced persistent nuclear factor-kappaB (NF-kappaB)-DNA binding activity even in the presence of SNP, mirroring apoptosis protection effects. Both the TNF-alpha antiapoptotic effect and NF-kappaB-DNA binding activity were significantly inhibited by NF-kappaB inhibitors, Bay 11-7085, MG-132, and adenovirus-expressing mutated IkappaB-alpha. Phosphatidylinositol-3 kinase inhibitor LY 294002 also markedly inhibited the antiapoptotic effect of TNF-alpha. In primary chondrocytes, TNF-alpha induced expression of the antiapoptotic protein Cox-2, which persisted in the presence of SNP, and a specific Cox-2 inhibitor significantly blocked the TNF-alpha protective effect. We therefore conclude that TNF-alpha-mediated protection of chondrocytes from NO-induced apoptosis acts through NF-kappaB and requires Cox-2 activity.
Collapse
Affiliation(s)
- Biserka Relić
- Center for Cellular and Molecular Therapy, University of Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|