1
|
Wearing SC, Hooper SL, Langton CM, Keiner M, Horstmann T, Crevier-Denoix N, Pourcelot P. The Biomechanics of Musculoskeletal Tissues during Activities of Daily Living: Dynamic Assessment Using Quantitative Transmission-Mode Ultrasound Techniques. Healthcare (Basel) 2024; 12:1254. [PMID: 38998789 PMCID: PMC11241410 DOI: 10.3390/healthcare12131254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.
Collapse
Affiliation(s)
- Scott C. Wearing
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | - Sue L. Hooper
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christian M. Langton
- Griffith Centre of Rehabilitation Engineering, Griffith University, Southport, QLD 4222, Australia
| | - Michael Keiner
- Department of Exercise and Training Science, German University of Health and Sport, 85737 Ismaning, Bavaria, Germany
| | - Thomas Horstmann
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | | | - Philippe Pourcelot
- INRAE, BPLC Unit, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
2
|
Hoffmeister BK, Lawler BC, Viano AM, Mobley J. Effect of transducer position on ultrasonic backscatter measurements of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2858-2868. [PMID: 37930178 DOI: 10.1121/10.0022324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in bone caused by osteoporosis and other diseases. Backscatter measurements performed at peripheral skeletal sites such as the heel may place the interrogated region of bone tissue in the acoustic near field of the transducer. The purpose of this study is to investigate how measurements in the near field affect backscatter parameters used for ultrasonic bone assessment. Ultrasonic measurements were performed in a water tank using a planar 2.25 MHz transducer. Signals were acquired for five transducer-specimen distances: N/4, N/2, 3 N/4, N, and 5 N/4, where N is the near-field distance, a location that represents the transition from the near field to far field. Five backscatter parameters previously identified as potentially useful for ultrasonic bone assessment purposes were measured: apparent integrated backscatter, frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter, normalized mean of the backscatter difference, and backscatter amplitude decay constant. All five parameters depended on transducer-specimen distance to varying degrees with FSAB exhibiting the greatest dependence on distance. These results suggest that laboratory studies of bone should evaluate the performance of backscatter parameters using transducer-specimen distances that may be encountered clinically including distances where the ultrasonically interrogated region is in the near field of the transducer.
Collapse
Affiliation(s)
| | - Blake C Lawler
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Joel Mobley
- Department of Physics and Astronomy/National Center for Physical Acoustics, University of Mississippi, University, Mississippi 38677, USA
| |
Collapse
|
3
|
Bi D, Shi L, Liu C, Li B, Li Y, Le LH, Luo J, Wang S, Ta D. Ultrasonic Through-Transmission Measurements of Human Musculoskeletal and Fat Properties. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:347-355. [PMID: 36266143 DOI: 10.1016/j.ultrasmedbio.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The study described here was aimed at investigating the feasibility of using the ultrasonic through-transmission technique to estimate human musculoskeletal and fat properties. Five hundred eighty-two volunteers were assessed by dual-energy X-ray absorptiometry (DXA) and ultrasonic transmission techniques. Bone mineral density (BMD), muscle and fat mass were measured for both legs and the whole body. Hip BMD and spine BMD were also measured. Ultrasonic transmission measurements were performed on the heel, and the measured parameters were broadband ultrasound attenuation (BUA), speed of sound (SOS), ultrasonic stiffness index (SI), T-score and Z-score, which were significantly correlated with all measured BMDs. The optimal correlation was observed between SI and left-leg BMD (p < 0.001) before and after adjustment for age, sex and body mass index (BMI). The linear and partial correlation analyses revealed that BUA and SOS were closely associated with muscle and fat mass, respectively. Multiple regressions revealed that muscle and fat mass significantly contributed to the prediction of transmission parameters, explaining up to 17.83% (p < 0.001) variance independently of BMD. The results suggest that the ultrasonic through-transmission technique could help in the clinical diagnosis of skeletal and muscular system diseases.
Collapse
Affiliation(s)
- Dongsheng Bi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lingwei Shi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Jingchun Luo
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Sijia Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Academy for Engineering and Technology, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Hoffmeister BK, Delahunt SI, Downey KL, Viano AM, Thomas DM, Georgiou LA, Gray AJ, Newman WR, Main EN, Pirro G. In Vivo Comparison of Backscatter Techniques for Ultrasonic Bone Assessment at the Femoral Neck. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:997-1009. [PMID: 35282987 DOI: 10.1016/j.ultrasmedbio.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Ultrasonic techniques are being developed to detect changes in cancellous bone caused by osteoporosis. The goal of this study was to test the relative in vivo performance of eight backscatter parameters developed over the last several years for ultrasonic bone assessment: apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter (FIAB), normalized mean of the backscatter difference (nMBD), normalized slope of the backscatter difference (nSBD), normalized intercept of the backscatter difference (nIBD), normalized backscatter amplitude ratio (nBAR) and backscatter amplitude decay constant (BADC). Backscatter measurements were performed on the left and right femoral necks of 80 adult volunteers (age = 25 ± 11 y) using an imaging system equipped with a convex array transducer. For comparison, additional ultrasonic measurements were performed at the left and right heel using a commercially available heel-bone ultrasonometer that measured the stiffness index. Six of the eight backscatter parameters (all but nSBD and nIBD) exhibited similar and highly significant (p < 0.000001) left-right correlations (0.51 ≤ R ≤ 0.68), indicating sensitivity to naturally occurring variations in bone tissue. Left-right correlations for the stiffness index measured at the heel (R = 0.75) were not significantly better than those produced by AIB, FSAB and FIAB. The short-term precisions of AIB, nMBD, nBAR and BADC (7.8%-11.7%) were comparable to that of the stiffness index measured with the heel-bone ultrasonometer (7.5%).
Collapse
Affiliation(s)
| | | | - Kiera L Downey
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Doni M Thomas
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | | | - Aubrey J Gray
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Will R Newman
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Evan N Main
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Gia Pirro
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Wear K. Scattering in Cancellous Bone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:163-175. [DOI: 10.1007/978-3-030-91979-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Hans D, Métrailler A, Gonzalez Rodriguez E, Lamy O, Shevroja E. Quantitative Ultrasound (QUS) in the Management of Osteoporosis and Assessment of Fracture Risk: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:7-34. [PMID: 35508869 DOI: 10.1007/978-3-030-91979-5_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Quantitative ultrasound (QUS) presents a low cost and readily available alternative to DXA measurements of bone mineral density (BMD) for osteoporotic fracture risk assessment. It is performed in a variety of skeletal sites, among which the most widely investigated and clinically used are first the calcaneus and then the radius. Nevertheless, there is still uncertainty in the incorporation of QUS in the clinical management of osteoporosis as the level of clinical validation differs substantially upon the QUS models available. In fact, results from a given QUS device can unlikely be extrapolated to another one, given the technological differences between QUS devices. The use of QUS in clinical routine to identify individuals at low or high risk of fracture could be considered primarily when central DXA is not easily available. In this later case, it is recommended that QUS bone parameters are used in combination with established clinical risk factors for fracture. Currently, stand-alone QUS is not recommended for treatment initiation decision making or follow-up. As WHO classification of osteoporosis thresholds cannot apply to QUS, thresholds specific for given QUS devices and parameters need to be determined and cross-validated widely to have a well-defined and certain use of QUS in osteoporosis clinical workflow. Despite the acknowledged current clinical limitations for QUS to be used more widely in daily routine, substantial progresses have been made and new results are promising.
Collapse
Affiliation(s)
- Didier Hans
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland.
| | - Antoine Métrailler
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Elena Gonzalez Rodriguez
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Olivier Lamy
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Enisa Shevroja
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
7
|
Viano AM, Ankersen JP, Hoffmeister BK, Huang J, Fairbanks LC. Ultrasonic Bone Assessment: Ability of Apparent Backscatter Techniques to Detect Changes in the Microstructure of Human Cancellous Bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3309-3325. [PMID: 34138705 DOI: 10.1109/tuffc.2021.3090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasonic backscatter techniques may offer a useful approach for detecting changes in bone caused by osteoporosis. The goal of this study was to investigate how bone mineral density (BMD) and the microstructure of human cancellous bone affect three ultrasonic backscatter parameters that have been identified as potentially useful for ultrasonic bone assessment purposes: the apparent integrated backscatter (AIB), the frequency slope of apparent backscatter (FSAB), and the frequency intercept of apparent backscatter (FIAB). Ultrasonic measurements were performed with a 3.5-MHz broadband transducer on 54 specimens of human cancellous bone prepared from the proximal femur. Microstructural parameters and BMD were measured using X-ray microcomputed tomography (micro-CT). Relationships between AIB, FSAB, FIAB, and the micro-CT parameters were investigated using univariate and multivariate statistical analysis techniques. Moderate-to-strong univariate correlations were observed between the backscatter parameters and microstructure and BMD in many cases. The partial correlation analysis indicated that the backscatter parameters are dependent on microstructure independently of BMD in some cases. Multiple stepwise linear regression analysis used to generate multivariate models found that microstructure was a significant predictor of the backscatter parameters in most cases.
Collapse
|
8
|
Bi D, Dai Z, Liu D, Wu F, Liu C, Li Y, Li B, Li Z, Li Y, Ta D. Ultrasonic Backscatter Measurements of Human Cortical and Trabecular Bone Densities in a Head-Down Bed-Rest Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2404-2415. [PMID: 34052063 DOI: 10.1016/j.ultrasmedbio.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
This study aims to investigate the feasibility of quantitative ultrasonic backscatter in evaluating human cortical and trabecular bone densities in vivo based on a head-down-tilt bed rest study, with 36 participants tested through 90 d of bed rest and 180 d of recovery. Backscatter measurements were performed using an ultrasonic backscatter bone diagnostic instrument. Backscatter parameters were calculated with a dynamic signal-of-interest method, which was proposed to ensure the same ultrasonic interrogated volume in cortical and trabecular bones. The backscatter parameters exhibited significant correlations with site-matched bone densities provided by high-resolution peripheral quantitative computed tomography (0.33 < |R| < 0.72, p < 0.05). Some bone densities and backscatter parameters exhibited significant changes after the 90-d bed rest. The proposed method can be used to characterize bone densities, and the portable ultrasonic backscatter bone diagnostic device might be used to non-invasively reveal mean bone loss (across a group of people) after long-term bed rest and microgravity conditions of spaceflight missions.
Collapse
Affiliation(s)
- Dongsheng Bi
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Duwei Liu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Zhili Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Academy for Engineering and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
A Combined Ultrasonic Backscatter Parameter for Bone Status Evaluation in Neonates. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:3187268. [PMID: 32411279 PMCID: PMC7211244 DOI: 10.1155/2020/3187268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
Metabolic bone disease (MBD) is one of the major complications of prematurity. Ultrasonic backscatter technique has the potential to be a portable and noninvasive method for early diagnosis of MBD. This study firstly applied CAS to neonates, which was defined as a linear combination of the apparent integrated backscatter coefficient (AIB) and spectral centroid shift (SCS). The objective was to evaluate the feasibility of ultrasonic backscatter technique for assessing neonatal bone health using AIB, SCS, and CAS. Ultrasonic backscatter measurements at 3.5 MHz, 5.0 MHz, and 7.5 MHz were performed on a total of 505 newborns within 48 hours after birth. The values of backscatter parameters were calculated and compared among gestational age groups. Correlations between backscatter parameters, gestational age, anthropometric indices, and biochemical markers were analyzed. The optimal predicting models for CAS were determined. The results showed term infants had lower SCS and higher AIB and CAS than preterm infants. Gestational age and anthropometric indices were negatively correlated with SCS (|r| = 0.45 – 0.57, P < 0.001), and positively correlated with AIB (|r| = 0.36 – 0.60, P < 0.001) and CAS (|r| = 0.56 – 0.69, P < 0.001). Biochemical markers yielded weak or nonsignificant correlations with backscatter parameters. CAS had relatively stronger correlations with the neonatal variables than AIB and SCS. At 3.5 MHz and 5.0 MHz, only gestational age (P < 0.001) independently contributed to the measurements of CAS, and could explain up to 40.5% – 44.3% of CAS variation. At 7.5 MHz, the combination of gestational age (P < 0.001), head circumference (P = 0.002), and serum calcium (P = 0.037) explained up to 40.3% of CAS variation. This study suggested ultrasonic backscatter technique was feasible to evaluate neonatal bone status. CAS was a promising parameter to provide more information about bone health than AIB or SCS alone.
Collapse
|
10
|
Liu C, Li B, Li Y, Mao W, Chen C, Zhang R, Ta D. Ultrasonic Backscatter Difference Measurement of Bone Health in Preterm and Term Newborns. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:305-314. [PMID: 31791554 DOI: 10.1016/j.ultrasmedbio.2019.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Metabolic bone disease of prematurity remains a significant problem for preterm infants. Quantitative ultrasound (QUS) has potential as a non-invasive tool for assessing bone health of newborns. The aim of this study was to assess bone health in preterm and term newborns using ultrasonic backscatter difference measurement. This study analyzed a total of 493 neonates, including 239 full-term infants (gestational age [GA] >37 wk), 201 preterm I infants (GA: 32-37 wk) and 53 extreme preterm II infants (GA <32 wk). Ultrasonic backscatter measurements were performed on the calcaneus of infants at birth, and the normalized mean of the backscatter difference spectrum (nMBD) was calculated as an ultrasonic index of neonatal bone status. Simple and multiple linear regressions were performed to determine the association of ultrasonic nMBD with GA, anthropometric characteristics and biochemical markers. Statistically significant differences in GA, anthropometric characteristics (birth weight, birth length [BL], birth head circumference and body mass index [BMI]) and biochemical markers (alkaline phosphatase, serum calcium and serum phosphate) were observed among preterm and term infants. The nMBD for term infants (median = 3.72 dB/μs, interquartile range [IR] = 1.95 dB/μs) was significantly higher than that for preterm I infants (median = 1.95 dB/μs, IR = 3.12 dB/μs), which was, in turn, significantly higher than that for preterm II infants (median = 0.19 dB/μs, IR = 3.50 dB/μs). The nMBD yielded moderate correlations (ρ = 0.57-0.62, p < 0.001) with GA and anthropometric characteristics and weak correlations (|ρ| = 0.08-0.21, p < 0.001 or not significant) with biochemical markers. Multivariate regressions revealed that only BL (p = 0.002) and BMI (p = 0.032) yielded significantly independent contributions to the nMBD measurement, and combinations of BL and BMI could explain up to 42% of the variation of nMBD in newborn infants. This study found that ultrasonic backscatter difference measurement might be helpful in bone health evaluation in preterm and term newborns. The utility of ultrasonic backscatter measurement in diagnosis of metabolic bone disease in infants should be investigated further.
Collapse
Affiliation(s)
- Chengcheng Liu
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Boyi Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Ying Li
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Weiying Mao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China; Academy for Engineering & Technology, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Tasinkevych Y, Falińska K, Lewin PA, Litniewski J. Improving broadband ultrasound attenuation assessment in cancellous bone by mitigating the influence of cortical bone: Phantom and in-vitro study. ULTRASONICS 2019; 94:382-390. [PMID: 30001852 DOI: 10.1016/j.ultras.2018.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this work was to present a new approach that allows the influence of cortical bone on noninvasive measurement of broadband ultrasound attenuation (BUA) to be corrected. The method, implemented here at 1 MHz makes use of backscattered signal and once refined and clinically confirmed, it would offer an alternative to ionizing radiation based methods, such as DEXA (Dual-energy X-ray absorptiometry), quantitative computed tomography (QCT), radiographic absorptiometry (RA) or single X-ray absorptiometry (SXA), which are clinically approved for assessment of progress of osteoporosis. In addition, as the method employs reflected waves, it might substantially enhance the applicability of BUA - from being suitable to peripheral bones only it would extend this applicability to include such embedded bones as hip and femoral neck. The proposed approach allows the cortical layer parameters used for correction and the corrected value and parameter of the cancellous bone (BUA) to be determined simultaneously from the single (pulse-echo) bone backscattered wave; to the best of the authors' knowledge such approach was not previously reported. The validity of the method was tested using acoustic data obtained from a custom-designed bone-mimicking phantom and a calf femur. The relative error of the attenuation coefficient assessment was determined to be 3.9% and 4.7% for the bone phantom and calf bone specimens, respectively. When the cortical shell influence was not taken into account the corresponding errors were considerably higher 8.3% (artificial bone) and 9.2% (calf femur). As indicated above, once clinically proven, the use of this BUA measurement technique in reflection mode would augment diagnostic power of the attending physician by permitting to include bones, which are not accessible for transmission mode evaluation, e.g. hip, spine, humerus and femoral neck.
Collapse
Affiliation(s)
- Yuriy Tasinkevych
- Department of Ultrasound, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw, Poland.
| | - Katarzyna Falińska
- Department of Ultrasound, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Jerzy Litniewski
- Department of Ultrasound, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Wear KA, Nagaraja S, Dreher ML, Sadoughi S, Zhu S, Keaveny TM. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro. Bone 2017; 103:93-101. [PMID: 28666970 PMCID: PMC6941483 DOI: 10.1016/j.bone.2017.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/26/2017] [Indexed: 11/15/2022]
Abstract
Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (p<0.001). Multiple regression analysis indicated that ultrasound measurements provide additional information regarding mechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone.
Collapse
Affiliation(s)
- Keith A Wear
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Blvd., Silver Spring, MD 20993, USA.
| | - Srinidhi Nagaraja
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Blvd., Silver Spring, MD 20993, USA.
| | - Maureen L Dreher
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Blvd., Silver Spring, MD 20993, USA.
| | - Saghi Sadoughi
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, 5124 Etcheverry Hall, Mailstop 1740, University of California at Berkeley, Berkeley, CA 94720-1740, USA.
| | - Shan Zhu
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, 5124 Etcheverry Hall, Mailstop 1740, University of California at Berkeley, Berkeley, CA 94720-1740, USA.
| | - Tony M Keaveny
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, 5124 Etcheverry Hall, Mailstop 1740, University of California at Berkeley, Berkeley, CA 94720-1740, USA; Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
13
|
Abstract
The use of quantitative ultrasound (QUS) for a variety of skeletal sites, associated with the absence of technology-specific guidelines, has created uncertainty with respect to the application of QUS results to the management of individual patients in clinical practice. However, when prospectively validated (this is not the case for all QUS devices and skeletal sites), QUS is a proven, low-cost, and readily accessible alternative to dual-energy X-ray absorptiometry (DXA) measurements of bone mineral density (BMD) for the assessment of fracture risk. Indeed, the clinical use of QUS to identify subjects at low or high risk of osteoporotic fracture should be considered when central DXA is unavailable. Furthermore, the use of QUS in conjunction with clinical risk factors (CRF),allows for the identification of subjects who have a low and high probability of osteoporotic fracture. Device- and parameter-specific thresholds should be developed and cross-validated to confirm the concurrent use of QUS and CRF for the institution of pharmacological therapy and monitoring therapy.
Collapse
Affiliation(s)
- Didier Hans
- Center of Bone Diseases, Bone & Joint Department, Lausanne University Hospital, Lausanne, Switzerland.
| | - Sanford Baim
- Center of Bone Metabolic Diseases, Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This paper seeks to evaluate and compare recent advances in the clinical assessment of the changes in bone mechanical properties that take place as a result of osteoporosis and other metabolic bone diseases and their treatments. RECENT FINDINGS In addition to the standard of DXA-based areal bone mineral density (aBMD), a variety of methods, including imaging-based structural measurements, finite element analysis (FEA)-based techniques, and alternate methods including ultrasound, bone biopsy, reference point indentation, and statistical shape and density modeling, have been developed which allow for reliable prediction of bone strength and fracture risk. These methods have also shown promise in the evaluation of treatment-induced changes in bone mechanical properties. Continued technological advances allowing for increasingly high-resolution imaging with low radiation dose, together with the expanding adoption of DXA-based predictions of bone structure and mechanics, as well as the increasing awareness of the importance of bone material properties in determining whole-bone mechanics, lead us to anticipate substantial future advances in this field.
Collapse
Affiliation(s)
- Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 426C Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Liu C, Xu F, Ta D, Tang T, Jiang Y, Dong J, Wang WP, Liu X, Wang Y, Wang WQ. Measurement of the Human Calcaneus In Vivo Using Ultrasonic Backscatter Spectral Centroid Shift. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:2197-2208. [PMID: 27562978 DOI: 10.7863/ultra.15.03030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 01/05/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES The aim of this study was to determine the relationship between the backscattered spectral centroid shift and the bone mineral density (BMD) in vivo and investigate the feasibility of using the backscattered spectral centroid shift to characterize the cancellous bone status. METHODS Ultrasonic backscatter measurements were performed in vivo on 1216 participants at the right calcaneus using an ultrasonic backscattered bone diagnostic system, and the backscattered spectral centroid shift was calculated at central frequencies of 3.5 and 5.0 MHz. The BMD values were measured at the sites of the lumbar spine and left hip by dual energy x-ray absorptiometry. RESULTS The study population included 592 male and 624 female participants aged 20 to 89 years. The correlations between the backscattered spectral centroid shift in the calcaneus and the spine and hip BMD were found to be statistically significant in both the male and female groups (P < .0001). Linear regression showed that the spectral centroid shift at 3.5 MHz had negative correlations with the spine BMD (R = -0.65 for male participants; R = -0.67 for female participants) and hip BMD (R = -0.64 for male participants; R = -0.64 for female participants). The spectral centroid shift at 5.0 MHz was also found to be closely related to the spine BMD (R = -0.68 for male participants; R = -0.68 for female participants) and hip BMD (R = -0.66 for male participants; R = -0.64 for female participants). CONCLUSIONS The moderate correlations observed between the spectral centroid shift and the spine and hip BMD demonstrate that the ultrasonic backscattered spectral centroid shift may be a useful measurement for assessment of the cancellous bone status.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Feng Xu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China, Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention, Shanghai, China
| | - Tao Tang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yunqi Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xindang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Ultrasonography, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Qi Wang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Correlation between the combination of apparent integrated backscatter–spectral centroid shift and bone mineral density. J Med Ultrason (2001) 2016; 43:167-73. [DOI: 10.1007/s10396-015-0690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
17
|
Hoffmeister BK, Mcpherson JA, Smathers MR, Spinolo PL, Sellers ME. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:2115-25. [PMID: 26683412 DOI: 10.1109/tuffc.2015.007299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density.
Collapse
|
18
|
Hoffmeister BK, Spinolo PL, Sellers ME, Marshall PL, Viano AM, Lee SR. Effect of intervening tissues on ultrasonic backscatter measurements of bone: An in vitro study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2449-57. [PMID: 26520327 PMCID: PMC4627934 DOI: 10.1121/1.4931906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/07/2015] [Accepted: 09/12/2015] [Indexed: 05/28/2023]
Abstract
Ultrasonic backscatter techniques are being developed to diagnose osteoporosis. Tissues that lie between the transducer and the ultrasonically interrogated region of bone may produce errors in backscatter measurements. The goal of this study is to investigate the effects of intervening tissues on ultrasonic backscatter measurements of bone. Measurements were performed on 24 cube shaped specimens of human cancellous bone using a 5 MHz transducer. Measurements were repeated after adding a 1 mm thick plate of cortical bone to simulate the bone cortex and a 3 cm thick phantom to simulate soft tissue at the hip. Signals were analyzed to determine three apparent backscatter parameters (apparent integrated backscatter, frequency slope of apparent backscatter, and frequency intercept of apparent backscatter) and three backscatter difference parameters [normalized mean backscatter difference (nMBD), normalized slope of the backscatter difference, and normalized intercept of the backscatter difference]. The apparent backscatter parameters were impacted significantly by the presence of intervening tissues. In contrast, the backscatter difference parameters were not affected by intervening tissues. However, only one backscatter difference parameter, nMBD, demonstrated a strong correlation with bone mineral density. Thus, among the six parameters tested, nMBD may be the best choice for in vivo backscatter measurements of bone when intervening tissues are present.
Collapse
Affiliation(s)
| | - P Luke Spinolo
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Mark E Sellers
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Peyton L Marshall
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Sang-Rok Lee
- Department of Kinesiology and Dance, New Mexico State University, Las Cruces, New Mexico 88003, USA
| |
Collapse
|
19
|
Hosokawa A. Numerical Analysis of Ultrasound Backscattered Waves in Cancellous Bone Using a Finite-Difference Time-Domain Method: Isolation of the Backscattered Waves From Various Ranges of Bone Depths. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1201-1210. [PMID: 26263571 DOI: 10.1109/tuffc.2014.006946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using a finite-difference time-domain method, ultrasound backscattered waves inside cancellous bone were numerically analyzed to investigate the backscatter mechanism. Two bone models with different thicknesses were modeled with artificial absorbing layers positioned at the back surfaces of the model, and an ultrasound pulse wave was transmitted toward the front surface. By calculating the difference between the simulated waveforms obtained using the two bone models, the backscattered waves from a limited range of depths in cancellous bone could be isolated. The results showed that the fast and slow longitudinal waves, which have previously been observed only in the ultrasound waveform transmitted through the bone, could be distinguished in the backscattered waveform from a deeper bone depth when transmitting the ultrasound wave parallel to the main orientation of the trabecular network. The amplitudes of the fast and slow backscattered waves were more closely correlated with the bone porosity [R2 = 0.84 and 0.66 (p < 0.001), respectively] than the amplitude of the whole (nonisolated) backscattered waves [R2 = 0.48 (p < 0.001)]. In conclusion, the nonisolated backscattered waves could be regarded as the superposition of the fast and slow waves reflected from various bone depths, returning at different times.
Collapse
|
20
|
Lashkari B, Yang L, Mandelis A. The application of backscattered ultrasound and photoacoustic signals for assessment of bone collagen and mineral contents. Quant Imaging Med Surg 2015; 5:46-56. [PMID: 25694953 DOI: 10.3978/j.issn.2223-4292.2014.11.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/10/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND This study examines the backscattered ultrasound (US) and back-propagating photoacoustic (PA) signals from trabecular bones, and their variations with reduction in bone minerals and collagen content. While the collagen status is directly related to the strength of the bone, diagnosis of its condition using US remains a challenge. METHODS For both PA and US methods, coded-excitation signals and matched filtering were utilized to provide high sensitivity of the detected signal. The optical source was a 805-nm CW laser and signals were detected employing a 2.2-MHz ultrasonic transducer. Bone decalcification and decollagenization were induced with mild ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite solutions, respectively. RESULTS The PA and US signals were measured on cattle bones, and apparent integrated backscatter/back-propagating (AIB) parameters were compared before and after demineralization and decollagenization. CONCLUSIONS The results show that both PA and US are sensitive to mineral changes. In addition, PA is also sensitive to changes in the collagen content of the bone, but US is not significantly sensitive to these changes.
Collapse
Affiliation(s)
- Bahman Lashkari
- 1 Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada ; 2 School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lifeng Yang
- 1 Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada ; 2 School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Andreas Mandelis
- 1 Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada ; 2 School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
21
|
Conversano F, Franchini R, Greco A, Soloperto G, Chiriacò F, Casciaro E, Aventaggiato M, Renna MD, Pisani P, Di Paola M, Grimaldi A, Quarta L, Quarta E, Muratore M, Laugier P, Casciaro S. A novel ultrasound methodology for estimating spine mineral density. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:281-300. [PMID: 25438845 DOI: 10.1016/j.ultrasmedbio.2014.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/14/2014] [Accepted: 08/20/2014] [Indexed: 05/10/2023]
Abstract
We investigated the possible clinical feasibility and accuracy of an innovative ultrasound (US) method for diagnosis of osteoporosis of the spine. A total of 342 female patients (aged 51-60 y) underwent spinal dual X-ray absorptiometry and abdominal echographic scanning of the lumbar spine. Recruited patients were subdivided into a reference database used for US spectral model construction and a study population for repeatability and accuracy evaluation. US images and radiofrequency signals were analyzed via a new fully automatic algorithm that performed a series of spectral and statistical analyses, providing a novel diagnostic parameter called the osteoporosis score (O.S.). If dual X-ray absorptiometry is assumed to be the gold standard reference, the accuracy of O.S.-based diagnoses was 91.1%, with k = 0.859 (p < 0.0001). Significant correlations were also found between O.S.-estimated bone mineral densities and corresponding dual X-ray absorptiometry values, with r(2) values up to 0.73 and a root mean square error of 6.3%-9.3%. The results obtained suggest that the proposed method has the potential for future routine application in US-based diagnosis of osteoporosis.
Collapse
Affiliation(s)
| | - Roberto Franchini
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | - Giulia Soloperto
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Fernanda Chiriacò
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Ernesto Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Marco Di Paola
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Antonella Grimaldi
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Laura Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Eugenio Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Maurizio Muratore
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Pascal Laugier
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC 06, INSERM, CNRS, Paris, France
| | - Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
| |
Collapse
|
22
|
Chen J, Su Z. On ultrasound waves guided by bones with coupled soft tissues: a mechanism study and in vitro calibration. ULTRASONICS 2014; 54:1186-96. [PMID: 24008173 DOI: 10.1016/j.ultras.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 05/10/2023]
Abstract
The influence of soft tissues coupled with cortical bones on precision of quantitative ultrasound (QUS) has been an issue in the clinical bone assessment in conjunction with the use of ultrasound. In this study, the effect arising from soft tissues on propagation characteristics of guided ultrasound waves in bones was investigated using tubular Sawbones phantoms covered with a layer of mimicked soft tissue of different thicknesses and elastic moduli, and an in vitro porcine femur in terms of the axial transmission measurement. Results revealed that presence of soft tissues can exert significant influence on the propagation of ultrasound waves in bones, leading to reduced propagation velocities and attenuated wave magnitudes compared with the counterparts in a free bone in the absence of soft tissues. However such an effect is not phenomenally dependent on the variations in thickness and elastic modulus of the coupled soft tissues, making it possible to compensate for the coupling effect regardless of the difference in properties of the soft tissues. Based on an in vitro calibration, this study proposed quantitative compensation for the effect of soft tissues on ultrasound waves in bones, facilitating development of high-precision QUS.
Collapse
Affiliation(s)
- Jiangang Chen
- The Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhongqing Su
- The Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
23
|
Litniewski J, Cieslik L, Lewandowski M, Tymkiewicz R, Zienkiewicz B, Nowicki A. Ultrasonic scanner for in vivo measurement of cancellous bone properties from backscattered data. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1470-7. [PMID: 22828842 DOI: 10.1109/tuffc.2012.2347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A dedicated ultrasonic scanner for acquiring RF echoes backscattered from the trabecular bone was developed. The design of device is based on the goal of minimizing of custom electronics and computations executed solely on the main computer processor and the graphics card. The electronic encoder-digitizer module executing all of the transmission and reception functions is based on a single low-cost field programmable gate array (FPGA). The scanner is equipped with a mechanical sector-scan probe with a concave transducer with 50 mm focal length, center frequency of 1.5 MHz and 60% bandwidth at -6 dB. The example of femoral neck bone examination shows that the scanner can provide ultrasonic data from deeply located bones with the ultrasound penetrating the trabecular bone up to a depth of 20 mm. It is also shown that the RF echo data acquired with the scanner allow for the estimation of attenuation coefficient and frequency dependence of backscattering coefficient of trabecular bone. The values of the calculated parameters are in the range of corresponding in vitro data from the literature but their variation is relatively high.
Collapse
Affiliation(s)
- Jerzy Litniewski
- Institute of Fundamental Technological Research, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
24
|
Karjalainen JP, Riekkinen O, Töyräs J, Hakulinen M, Kröger H, Rikkonen T, Salovaara K, Jurvelin JS. Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures. Osteoporos Int 2012; 23:1287-95. [PMID: 21656263 DOI: 10.1007/s00198-011-1682-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED About 75% of patients suffering from osteoporosis are not diagnosed. This study describes a multi-site bone ultrasound method for osteoporosis diagnostics. In comparison with axial dual energy X-ray absorptiometry (DXA), the ultrasound method showed good diagnostic performance and could discriminate fracture subjects among elderly females. INTRODUCTION Axial DXA, the gold standard diagnostic method for osteoporosis, predicts fractures only moderately. At present, no reliable diagnostic methods are available at the primary health care level. Here, a multi-site ultrasound method is proposed for osteoporosis diagnostics. METHODS Thirty elderly women were examined using the ultrasound backscatter measurements in proximal femur, proximal radius, proximal and distal tibia in vivo. First, we predicted the areal bone mineral density (BMD) at femoral neck by ultrasound measurements in tibia combined with specific subject characteristics (density index, DI) and, second, we tested the ability of ultrasound backscatter measurements at proximal femur to discriminate between individuals with previously fractured hips from those without fractures. Areal BMD was determined by axial DXA. RESULTS Combined ultrasound parameters, cortical thickness at distal and proximal tibia, with age and weight of the subject, provided a significant estimate of BMD(neck) (r = 0.86, p < 0.001, n = 30). When inserted into FRAX (World Health Organization fracture risk assessment tool), the DI indicated the same treatment proposal as the BMD(neck) with 86% sensitivity and 100% specificity. The receiver operating characteristic analyses, with a combination of ultrasound parameters and patient characteristics, discriminated fracture subjects from the controls similarly as the model combining BMD(neck) and patient characteristics. CONCLUSIONS For the first time, ultrasound backscatter measurements of proximal femur were conducted in vivo. The results indicate that ultrasound parameters, combined with patient characteristics, may provide a means for osteoporosis diagnostics.
Collapse
Affiliation(s)
- J P Karjalainen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wear KA, Nagaraja S, Dreher ML, Gibson SL. Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:1605-12. [PMID: 22352530 PMCID: PMC6931152 DOI: 10.1121/1.3672701] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ultrasound parameters (attenuation, phase velocity, and backscatter), bone mineral density (BMD), and microarchitectural features were measured on 29 human cancellous calcaneus samples in vitro. Regression analysis was performed to predict ultrasound parameters from BMD and microarchitectural features. The best univariate predictors of the ultrasound parameters were the indexes of bone quantity: BMD and bone volume fraction (BV/TV). The most predictive univariate models for attenuation, phase velocity, and backscatter coefficient yielded adjusted squared correlation coefficients of 0.69-0.73. Multiple regression models yielded adjusted correlation coefficients of 0.74-0.83. Therefore attenuation, phase velocity, and backscatter are primarily determined by bone quantity, but multiple regression models based on bone quantity plus microarchitectural features achieve slightly better predictive performance than models based on bone quantity alone.
Collapse
Affiliation(s)
- Keith A Wear
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Boulevard, Silver Spring, Maryland 20993, USA.
| | | | | | | |
Collapse
|
26
|
Karjalainen JP, Töyräs J, Riekkinen O, Hakulinen M, Jurvelin JS. Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1376-84. [PMID: 19525060 DOI: 10.1016/j.ultrasmedbio.2009.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/26/2009] [Accepted: 03/08/2009] [Indexed: 05/10/2023]
Abstract
The strength as well as the acoustic properties of trabecular bone are determined by its structure and composition. Consequently, tissue structure and compositional properties also affect the ultrasound propagation in bone. The diagnostic potential of ultrasound has not been fully exploited in clinical quantitative ultrasound devices. The aim of this study was to investigate the ability of quantitative ultrasound pulse-echo imaging, conducted over a broad range of frequencies (1 to 5 MHz), to predict the mechanics, composition and microstructure of trabecular bone. Ultrasound reflection and backscatter parameters correlated significantly with the ultimate strength of the trabecular bone and the bone volume fraction (r=0.76-0.90, n=20, p<0.01). Ultrasound backscatter associated significantly (independently of bone structure or mineral content) with the collagen content of the bone matrix (r=0.75, r(adjusted)=0.66, p<0.01). Interestingly, the applied ultrasound frequency seemed to relate the sensitivity of ultrasound backscatter to different properties of trabecular bone. At frequencies ranging from 1 to 3.5 MHz, the ultrasound backscatter associated significantly with the tissue mechanical and structural parameters. At 5MHz, the composition of the bone matrix was a more significant determinant of the measured backscatter. This study provides useful information for optimizing the use of pulse-echo measurements, and thereby further emphasizes the diagnostic potential of the ultrasound backscatter measurements of trabecular bone.
Collapse
|
27
|
Blondiaux E, Cellier C, Mallet E. Évaluation de la masse osseuse chez l’enfant : modalités, perspectives. Arch Pediatr 2009; 16:594-5. [DOI: 10.1016/s0929-693x(09)74079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Lin W, Xia Y, Qin YX. Characterization of the trabecular bone structure using frequency modulated ultrasound pulse. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:4071-7. [PMID: 19507988 PMCID: PMC5393910 DOI: 10.1121/1.3126993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 01/23/2009] [Accepted: 04/10/2009] [Indexed: 05/23/2023]
Abstract
The objective of this study was to investigate the efficacy of modulated ultrasound signals in the measurement of bone properties as an early indicator of osteoporosis. Twenty-one trabecular bone cubes were harvested from sheep femoral condyles and the cube axes corresponded to the anatomic superior-inferior (SI), antero-posterior (AP), and medio-lateral (ML) orientations. Micro-CT measurements were made on those samples to obtain bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp). Ultrasound tests were performed in the three orthogonal orientations using pulse and frequency modulated ultrasound. The comparison of the frequency modulated attenuation (FMA) with the broadband ultrasound attenuation (BUA) was made within the frequency band between 300 and 700 kHz. Results showed that FMA demonstrated higher correlations to the trabecular structure properties in the SI orientation (R(2)=0.84 for BV/TV, R(2)=0.77 for Tb.Th, R(2)=0.7 for Tb.Sp) than BUA (R(2)=0.30 for BV/TV, R(2)=0.27 for Tb.Th, R(2)=0.33 for Tb.Sp). In the AP orientation, FMA had higher correlation to Tr.Sp (R(2)=0.64) than BUA (R(2)=0.48), and relatively lower correlation to BV/TV (R(2)=0.48) and Tb.Th (R(2)=0.31) than BUA (R(2)=0.64 for BV/TV and R(2)=0.58 for Tb.Th). The results suggested that FMA could be a new ultrasound index for bone properties assessment.
Collapse
Affiliation(s)
- Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-2580, USA
| | | | | |
Collapse
|
29
|
Aula AS, Töyräs J, Hakulinen MA, Jurvelin JS. Effect of bone marrow on acoustic properties of trabecular bone--3D finite difference modeling study. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:308-318. [PMID: 19010590 DOI: 10.1016/j.ultrasmedbio.2008.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/18/2008] [Accepted: 08/05/2008] [Indexed: 05/27/2023]
Abstract
The composition of bone marrow is influenced by many factors, such as age and diseases. The present numerical study investigates the contribution of marrow on the acoustic measurements of trabecular bone. Cylindrical bone samples (n = 11), extracted from three anatomical sites of human cadaver knees, were imaged with a high-resolution microtomography (microCT). Three-dimensional finite difference time domain (FDTD) models (Wave 3000 Pro 2.2, Cyberlogic Inc., NY, USA) were created using the segmented microCT images of each sample. First, we evaluated the effect of voxel size on the computer resource requirements, morphological parameters and acoustic simulations. Second, the effect of bone marrow on ultrasonic measurements was assessed. The simulations were repeated with two voxel sizes before and after substitution of bone marrow (i.e., fat) with water. The voxel size of the FDTD mesh controlled the fine structure of the modeled calcified matrix and significantly affected the simulation results. However, present simulations showed that the effect of bone marrow on ultrasound parameters can be reliably simulated with the applied voxel sizes of 72 and 90 microm. Ultrasound attenuation and speed were found (p < 0.01) to decrease and increase, respectively, when bone marrow was substituted with water. Moreover, reflection from the surface of the sample increased (p < 0.01) and backscatter from internal structures decreased (p < 0.01) after removal of marrow. The effect of bone marrow on the acoustic properties was stronger in samples with low bone volume fraction. The present results indicate that the amount and quality of bone marrow significantly influence the acoustic properties of trabecular bone. Possible interindividual differences in the composition of bone marrow may increase uncertainty in clinical ultrasound diagnostics of osteoporosis. Importantly, the effect is most significant in osteoporotic low-density bone.
Collapse
Affiliation(s)
- A S Aula
- Department of Physics, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|
30
|
Wear KA. Mechanisms for attenuation in cancellous-bone-mimicking phantoms. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:2418-25. [PMID: 19049921 PMCID: PMC6935503 DOI: 10.1109/tuffc.949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Broadband ultrasound attenuation (BUA) in cancellous bone is useful for prediction of osteoporotic fracture risk, but its causes are not well understood. To investigate attenuation mechanisms, 9 cancellous-bone-mimicking phantoms containing nylon filaments (simulating bone trabeculae) embedded within soft-tissue-mimicking fluid (simulating marrow) were interrogated. The measurements of frequency-dependent attenuation coefficient had 3 separable components: 1) a linear (with frequency) component attributable to absorption in the soft-tissue-mimicking fluid, 2) a quasilinear (with frequency) component, which may include absorption in and longitudinal-shear mode conversion by the nylon filaments, and 3) a nonlinear (with frequency) component, which may be attributable to longitudinal-longitudinal scattering by the nylon filaments. The slope of total linear (with frequency) attenuation coefficient (sum of components #1 and #2) versus frequency was found to increase linearly with volume fraction, consistent with reported measurements on cancellous bone. Backscatter coefficient measurements in the 9 phantoms supported the claim that the nonlinear (with frequency) component of attenuation coefficient (component #3) was closely associated with longitudinal-longitudinal scattering. This work represents the first experimental separation of these 3 components of attenuation in cancellous bone-mimicking phantoms.
Collapse
Affiliation(s)
- Keith A Wear
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA.
| |
Collapse
|
31
|
Riekkinen O, Hakulinen MA, Töyräs J, Jurvelin JS. Dual-frequency ultrasound--new pulse-echo technique for bone densitometry. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1703-8. [PMID: 18524463 DOI: 10.1016/j.ultrasmedbio.2008.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 05/10/2023]
Abstract
Quantitative ultrasound has been suggested for screening of osteoporosis. Most commercial ultrasound devices are based on the through-transmission measurement of calcaneus, which is not a typical fracture site. In contrast to through-transmission measurements, reflection and backscattering measurements may be conducted at typical fracture sites such as vertebra and proximal femur. At these regions, soft tissues overlying bones affect reliability of the measurements. In this study, a novel dual-frequency ultrasound (DFUS) pulse-echo technique is introduced for reduction of the errors induced by soft tissues. First, DFUS was validated using elastomer samples. For further validation, human trabecular bone samples (n = 25) covered with heterogeneous soft tissues were measured at frequencies of 2.25 MHz and 5.0 MHz. The DFUS technique reduced (p < 0.01) the mean error induced by soft tissue from 58.6% to -4.9% and from 127.4% to 23.8% in broadband ultrasound backscattering and integrated reflection coefficient (at 5.0 MHz), respectively. To conclude, the DFUS, being the first ultrasound technique capable of determination of the composition and thickness of the soft tissue overlying the bone, may enhance the accuracy of clinical ultrasound measurements. Thereby, DFUS shows a significant clinical potential.
Collapse
Affiliation(s)
- O Riekkinen
- Department of Physics, University of Kuopio, Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.
| | | | | | | |
Collapse
|
32
|
Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 2008; 11:163-87. [PMID: 18442758 DOI: 10.1016/j.jocd.2007.12.011] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/05/2007] [Indexed: 12/19/2022]
Abstract
Dual-energy X-ray absorptiometry (DXA) is commonly used in the care of patients for diagnostic classification of osteoporosis, low bone mass (osteopenia), or normal bone density; assessment of fracture risk; and monitoring changes in bone density over time. The development of other technologies for the evaluation of skeletal health has been associated with uncertainties regarding their applications in clinical practice. Quantitative ultrasound (QUS), a technology for measuring properties of bone at peripheral skeletal sites, is more portable and less expensive than DXA, without the use of ionizing radiation. The proliferation of QUS devices that are technologically diverse, measuring and reporting variable bone parameters in different ways, examining different skeletal sites, and having differing levels of validating data for association with DXA-measured bone density and fracture risk, has created many challenges in applying QUS for use in clinical practice. The International Society for Clinical Densitometry (ISCD) 2007 Position Development Conference (PDC) addressed clinical applications of QUS for fracture risk assessment, diagnosis of osteoporosis, treatment initiation, monitoring of treatment, and quality assurance/quality control. The ISCD Official Positions on QUS resulting from this PDC, the rationale for their establishment, and recommendations for further study are presented here.
Collapse
|
33
|
Wear KA. Ultrasonic scattering from cancellous bone: a review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1432-41. [PMID: 18986932 PMCID: PMC6935504 DOI: 10.1109/tuffc.2008.818] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper reviews theory, measurements, and computer simulations of scattering from cancellous bone reported by many laboratories. Three theoretical models (binary mixture, Faran cylinder, and weak scattering) for scattering from cancellous bone have demonstrated some consistency with measurements of backscatter. Backscatter is moderately correlated with bone mineral density in human calcaneus in vitro (r(2) = 0.66 - 0.68). Backscatter varies approximately as frequency cubed and trabecular thickness cubed in human calcaneus and femur in vitro. Backscatter from human calcaneus and bovine tibia exhibits substantial anisotropy. So far, backscatter has demonstrated only modest clinical utility. Computer simulation models have helped to elucidate mechanisms underlying scattering from cancellous bones.
Collapse
Affiliation(s)
- K A Wear
- Center for Devices & Radiol. Health, U.S. Food & Drug Adm., Silver Spring, MD, USA.
| |
Collapse
|
34
|
Laugier P. Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1179-96. [PMID: 18599407 DOI: 10.1109/tuffc.2008.782] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although it has been more than 20 years since the first recorded use of a quantitative ultrasound (QUS) technology to predict bone fragility, the field has not yet reached its maturity. QUS has the potential to predict fracture risk in several clinical circumstances and has the advantages of being nonionizing, inexpensive, portable, highly acceptable to patients, and repeatable. However, the wide dissemination of QUS in clinical practice is still limited and suffering from the absence of clinical consensus on how to integrate QUS technologies in bone densitometry armamentarium. Several critical issues need to be addressed to develop the role of QUS within rheumatology. These include issues of technologies adapted to measure the central skeleton, data acquisition, and signal processing procedures to reveal bone properties beyond bone mineral quantity and elucidation of the complex interaction between ultrasound and bone structure. This article reviews the state-of-the art in technological developments applied to assess bone strength in vivo. We describe generic measurement and signal processing methods implemented in clinical ultrasound devices, the devices and their practical use, and performance measures. The article also points out the present limitations, especially those related to the absence of standardization, and the lack of comprehensive theoretical models. We conclude with suggestions of future lines and trends in technology challenges and research areas such as new acquisition modes, advanced signal processing techniques, and modelization.
Collapse
Affiliation(s)
- Pascal Laugier
- Université Pierre et Marie Curie-Paris 5, Laboratoire d'Imagerie Paramétrique, Paris, France.
| |
Collapse
|
35
|
Riekkinen O, Hakulinen MA, Lammi MJ, Jurvelin JS, Kallioniemi A, Töyräs J. Acoustic properties of trabecular bone--relationships to tissue composition. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1438-44. [PMID: 17561333 DOI: 10.1016/j.ultrasmedbio.2007.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 03/23/2007] [Accepted: 04/12/2007] [Indexed: 05/10/2023]
Abstract
In osteoporosis, changes in tissue composition and structure reduce bone strength and expose it to fractures. The current primary diagnostic technique, i.e., dual energy X-ray absorptiometry, measures areal bone mineral density (BMD) but provides no direct information on trabecular structure or organic composition. Although still poorly characterized, ultrasound techniques may bring about information on bone composition and structure. In this study, relationships of 2.25-MHz ultrasound speed, attenuation, reflection and backscattering with composition of human trabecular bone (n=26) were characterized experimentally, as well as by using numerical analyses. We also determined composition of the trabecular sample (fat and water content, bone volume fraction) and that of the calcified matrix (mineral, proteoglycan and collagen content of trabeculae). In experimental analyses, bone volume fraction and mineral content of the calcified matrix were the only determinants of BMD. Further, bone volume fraction served as the strongest determinant of ultrasound parameters (r=0.51-0.87). In numerical simulations, density and mechanical properties of the calcified matrix systematically affected ultrasound speed, attenuation, reflection and backscattering. However, partial correlation coefficients revealed only low associations(|r|<or=0.4) between the composition of calcified matrix and ultrasound parameters in experimental measurements. To conclude, the content and structure of calcified matrix, rather than its composition, affect more significantly acoustic properties of healthy trabecular bone.
Collapse
Affiliation(s)
- O Riekkinen
- Department of Physics, University of Kuopio, and Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Finland.
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Dencks S, Barkmann R, Padilla F, Haïat G, Laugier P, Glüer CC. Wavelet-based signal processing of in vitro ultrasonic measurements at the proximal femur. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:970-80. [PMID: 17445965 DOI: 10.1016/j.ultrasmedbio.2006.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 11/30/2006] [Accepted: 12/12/2006] [Indexed: 05/15/2023]
Abstract
To estimate osteoporotic fracture risk, several techniques for quantitative ultrasound (QUS) measurements at peripheral sites have been developed. As these techniques are limited in the prediction of fracture risk of the central skeleton, such as the hip, we are developing a QUS device for direct measurements at the femur. In doing so, we noticed the necessity to improve the conventional signal processing because it failed in a considerable number of measurements due to multipath transmission. Two sets of excised human femurs (n = 6 + 34) were scanned in transmission mode. Instead of using the conventional methods, the radio-frequency signals were processed with the continuous wavelet transform to detect their time-of-flights for the calculation of speed-of-sound (SOS) in bone. The SOS-values were averaged over a region similar to the total hip region of dual X-ray absorptiometry (DXA) measurements and compared with bone mineral density (BMD) measured with DXA. Testing six standard wavelets, this algorithm failed for only 0% to 6% of scan in test set 1 compared with 29% when using conventional algorithms. For test set 2, it failed for 2% to 12% compared with approximately 40%. SOS and BMD correlated significantly in both test sets (test set 1: r2 = 0.87 to 0.92, p < 0.007; test set 2: r2 = 0.68 to 0.79, p < 0.0001). The correlations are comparable with correlations recently reported. However, the number of evaluable signals could be substantially increased, which improves the perspectives of the in vivo measurements.
Collapse
Affiliation(s)
- Stefanie Dencks
- Medizinische Physik, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig Holstein, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Guo X, Zhang D, Gong X. Evaluation of ultrasonic scattering in human cancellous bone by using a binary mixture model. Phys Med Biol 2007; 52:29-40. [PMID: 17183126 DOI: 10.1088/0031-9155/52/1/003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A weak scattering model based on small perturbations in a binary mixture is developed to estimate the ultrasonic scattering from human cancellous bone, which is modelled as a random isotropic continuum containing identical scatters. Ultrasonic scattering is determined by both velocity fluctuation and density fluctuation, when k(2)a(2) << 1 is satisfied. Two kinds of trabeculae thickness distributions, i.e. even distribution and Gauss distribution, are applied in the calculation of attenuation and backscattering. Frequency dependence of the backscatter coefficient is found to be Af(3.13) and Af(2.84) with the Gauss distribution and an even distribution, respectively. Both backscattering and attenuation change significantly against porosity for the case of high porosity. The predicted results are close to the measured ones from the literature. The errors of this theoretical model are also discussed in this paper.
Collapse
Affiliation(s)
- Xiasheng Guo
- Institute of Acoustics, Key Lab of Modern Acoustics, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | |
Collapse
|
39
|
Padilla F, Jenson F, Laugier P. Influence of the precision of spectral backscatter measurements on the estimation of scatterers size in cancellous bone. ULTRASONICS 2006; 44 Suppl 1:e57-60. [PMID: 16904147 DOI: 10.1016/j.ultras.2006.06.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The goal of this study is to propose a model for the ultrasonic frequency-dependent backscatter coefficient in femoral cancellous bone. This model has been developed with success to predict backscatter in human calcaneal bone [Jenson, Ultr. Med. Biol. 2003]. A weak scattering model is used and the backscatter coefficient is expressed in terms of a Gaussian autocorrelation function of the medium. The backscatter coefficient is computed and comparison is made with experimental data for 37 specimens and for frequency ranging from 0.4 to 1.2 MHz. An excellent agreement between experimental data and predictions is found for both the magnitude and the frequency-dependence of the backscatter coefficient. Then, a nonlinear regression is performed for each specimen, and the mean trabecular thickness is estimated. Experimental data and theoretical predictions are averaged over the 37 specimens. We also find a close agreement between theoretical predictions obtained using the Gaussian autocorrelation function (scatterer size=134+/-15 microm) and the mean trabecular thickness (Tb.Th=132+/-12 microm) derived from the analysis of bone 3-D micro-architecture using high-resolution micro-tomography. However, the correlation between individual experimental and estimated Tb.Th values is moderate (R(2)=0.44). The performance of the estimator are limited mainly by two factors: interference noise due to random positioning of the scatterers and attenuation. We show that the fundamental limitation of our estimator due to the speckle noise is around 5 microm for trabecular thickness estimation. This limitation is lower than the observed biological variability which is around 30 microm and should not be a limiting factor for individual prediction. A second limitation is the tremendous attenuation encountered in highly scattering media such as cancellous bone, which results in highly damped backscatter signals. The compensation for attenuation is difficult to perform, and it may be a critical point that limits the precision of the estimator.
Collapse
Affiliation(s)
- F Padilla
- Laboratoire d'Imagerie paramétrique--CNRS UMR 7623 Université Paris 6, Paris, France.
| | | | | |
Collapse
|
40
|
Riekkinen O, Hakulinen MA, Timonen M, Töyräs J, Jurvelin JS. Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:1073-83. [PMID: 16829321 DOI: 10.1016/j.ultrasmedbio.2006.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 03/21/2006] [Accepted: 03/30/2006] [Indexed: 05/10/2023]
Abstract
Ultrasound (US) has been introduced as a promising tool for osteoporosis diagnostics. However, soft tissues overlying the bones affect reliability of the ultrasound (US) techniques. In this in vitro study, the effect of soft tissues on bone US measurements was investigated numerically and experimentally. Particularly, the dependence of the error induced by soft tissues on the applied US frequency (0.3 to 6.7 MHz) was addressed. For these aims, human trabecular bone samples (n = 25) were measured using acoustic, dual energy x-ray absorptiometry (DXA) and mechanical techniques. US attenuation, speed, reflection and backscattering were determined from the through-transmission and pulse-echo measurements. Numerical correction, based on the inclusion of acoustic characteristics of specific soft tissue components, i.e., adipose and lean tissues, was derived for the analysis of experimental measurements. Values of US parameters, interrelationships between the US parameters and mechanical properties, as well as the errors induced by the soft tissues, were significantly dependent on the US frequency. The errors induced by the soft tissues on the US measurement were typically reduced by approximately 50% after introduction of the numerical correction technique. Thereby, the acoustic prediction of mechanical properties of trabecular bone was also improved. We conclude that the numerical correction of the contribution of overlying soft tissues on acoustic measurements can reduce uncertainties related to in vivo US measurements.
Collapse
Affiliation(s)
- Ossi Riekkinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Kuopio, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
41
|
Hoffmeister BK, Jones CI, Caldwell GJ, Kaste SC. Ultrasonic characterization of cancellous bone using apparent integrated backscatter. Phys Med Biol 2006; 51:2715-27. [PMID: 16723761 DOI: 10.1088/0031-9155/51/11/002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Apparent integrated backscatter (AIB) is a measure of the frequency-averaged (integrated) backscattered power contained in some portion of a backscattered ultrasonic signal. AIB has been used extensively to study soft tissues, but its usefulness as a tissue characterization technique for cancellous bone has not been demonstrated. To address this, we performed measurements on 17 specimens of cancellous bone over two different frequency ranges using a 1 MHz and 5 MHz broadband ultrasonic transducer. Specimens were obtained from bovine tibiae and prepared in the shape of cubes (15 mm side length) with faces oriented along transverse (anterior, posterior, medial and lateral) and longitudinal (superior and inferior) principal anatomic directions. A mechanical scanning system was used to acquire multiple backscatter signals from each direction for each cube. AIB demonstrated highly significant linear correlations with bone mineral density (BMD) for both the transverse (R2 = 0.817) and longitudinal (R2 = 0.488) directions using the 5 MHz transducer. In contrast, the correlations with density were much weaker for the 1 MHz transducer (R2 = 0.007 transverse, R2 = 0.228 longitudinal). In all cases where a significant correlation was observed, AIB was found to decrease with increasing BMD.
Collapse
Affiliation(s)
- B K Hoffmeister
- Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| | | | | | | |
Collapse
|
42
|
Hakulinen MA, Day JS, Töyräs J, Weinans H, Jurvelin JS. Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol 2006; 51:1633-48. [PMID: 16510968 DOI: 10.1088/0031-9155/51/6/019] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
New quantitative ultrasound (QUS) techniques involving ultrasound backscattering have been introduced for the assessment of bone quality. QUS parameters are affected by the transducer characteristics, e.g. frequency range, wave and pulse length. Although frequency-dependent backscattering has been studied extensively, understanding of the ultrasound scattering phenomenon in trabecular bone is still limited. In the present study, the relationships between QUS parameters and the microstructure of human trabecular bone were investigated experimentally and by using numerical simulations. Speed of sound (SOS), normalized broadband ultrasound attenuation (nBUA), average attenuation, integrated reflection coefficient (IRC) and broadband ultrasound backscatter (BUB) were measured for 26 human trabecular bone cylinders. Subsequently, a high-resolution microCT system was used to determine the microstructural parameters. Moreover, based on the sample-specific microCT data, a numerical model for ultrasound propagation was developed for the simulation of experimental measurements. Experimentally, significant relationships between the QUS parameters and microstructural parameters were demonstrated. The relationships were dependent on the frequency, and the strongest association (r = 0.88) between SOS and structural parameters was observed at a centre frequency of 5 MHz. nBUA, average attenuation, IRC and BUB showed somewhat lower linear correlations with the structural properties at a centre frequency of 5 MHz, as compared to those determined at lower frequencies. Multiple regression analyses revealed that the variation of acoustic parameters could best be explained by parameters reflecting the amount of mineralized tissue. A principal component analysis demonstrated that the strongest determinants of BUB and IRC were related to the trabecular structure. However, other structural characteristics contributed significantly to the prediction of the acoustic parameters as well. The two-dimensional numerical model introduced in the present study demonstrated good agreement with the experimental measurements. However, further studies with the simulation model are warranted to systematically investigate the relation between the structural parameters and ultrasound scattering.
Collapse
Affiliation(s)
- Mikko A Hakulinen
- Department of Applied Physics, University of Kuopio, POB 1627, 70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
43
|
Padilla F, Jenson F, Laugier P. Estimation of trabecular thickness using ultrasonic backcatter. ULTRASONIC IMAGING 2006; 28:3-22. [PMID: 16924879 DOI: 10.1177/016173460602800102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a method to estimate trabecular thickness (Tb.Th) in trabecular bones from ultrasound backscatter measurements. The estimation scheme is based on a nonlinear adjustment of predictions from a model to experimental data. The model assumes weak scattering from bone, where scattering is assumed to arise from the elastic solid trabeculae. The fluctuations of acoustical properties between bone tissue and the saturating fluid are assumed to be random and are described by the 3-D spatial autocorrelation function of the medium. In this paper, a Gaussian autocorrelation function is used. The inversion procedure is applied to a set of data measured on 33 femoral bone specimens. Results show that the model can predict both the magnitude and the frequency-dependence of the backscatter coefficient (root mean square error RMSE = 1 dB). The estimated trabecular thickness values are compared to the true trabecular thickness measured on high resolution microcomputed tomography 3-D reconstruction of bones microarchitecture. A close agreement is obtained on average over the group of specimens between predictions and the reference values: true Tb.Th is 132 +/- 12 microm and estimated Tb.Th is 134 +/- 15 microm. However, a moderate correlation between actual and estimated Tb.Th values is found (R2 = 0.44, p<10(-4), RMSE = 8.7 microm) suggesting a modest predictability at the individual level. Sources for the variability of the estimator are studied. Using synthetic rf signals, we demonstrate that the fundamental limitation of the estimator due to speckle noise is approximately 5 microm. Taking into account the measurement errors, the total uncertainty on Tb.Th estimates is of the order of 7 microm. The influence of the attenuation compensation function used to derive the backscatter coefficient is studied. In particular, we demonstrate the necessity of compensating for the effect of the gating time window. The results are discussed with respect to their meaningful clinical value. The requirements to be fulfilled by the performance of the technique change with regard to the question being posed. Two different strategies are examined: 1. characterize trabecular thickness without consideration of bone quantity (or bone mineral density) and 2. estimate trabecular thickness after adjustment for BMD. Considering the first strategy, a comparison between the precision of our estimator and the biological variability leads us to the conclusion that our estimator should only permit to distinguish between micro-architectures characterized by extreme values of trabecular thickness (i.e., very thin or very thick trabecular thickness). In this respect, it would be interesting to test whether the estimator is able to discriminate between rod-like (thin) and plate-like (thick) structures that are known to influence differently bone strength. The second strategy is more demanding in terms of technique performance and our estimator is not able yet to catch small differences in Tb.Th values expected after adjustment to bone density. Progress in the field will require a significant reduction in speckle noise and measurement errors and/or the development of other and more efficient microstructural estimators.
Collapse
Affiliation(s)
- Frédéric Padilla
- Laboratoire d'Imagerie Paramétrique, CNRS UMR 7623, Université-Pierre et Marie Curie-Paris 6, France.
| | | | | |
Collapse
|
44
|
Braillon P. Techniques de mesure de la densité minérale osseuse et de la composition corporelle. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1879-8551(06)74012-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Waters KR, Hoffmeister BK. Kramers-Kronig analysis of attenuation and dispersion in trabecular bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:3912-20. [PMID: 16419833 DOI: 10.1121/1.2126934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A restricted-bandwidth form of the Kramers-Kronig dispersion relations is applied to in vitro measurements of ultrasonic attenuation and dispersion properties of trabecular bone specimens from bovine tibia. The Kramers-Kronig analysis utilizes only experimentally measured properties and avoids extrapolation of ultrasonic properties beyond the known bandwidth. Compensation for the portions of the Kramers-Kronig integrals over the unknown bandwidth is partially achieved by the method of subtractions, where a subtraction frequency acts as an adjustable parameter. Good agreement is found between experimentally measured and Kramers-Kronig reconstructed dispersions. The restricted-bandwidth approach improves upon other forms of the Kramers-Kronig relations and may provide further insight into how ultrasound interacts with trabecular bone.
Collapse
Affiliation(s)
- Kendall R Waters
- Materials Reliability Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | | |
Collapse
|
46
|
Laugier P. Quantitative ultrasound of bone: looking ahead. Joint Bone Spine 2005; 73:125-8. [PMID: 16488646 DOI: 10.1016/j.jbspin.2005.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/21/2005] [Indexed: 12/14/2022]
|
47
|
Haïat G, Padilla F, Barkmann R, Dencks S, Moser U, Glüer CC, Laugier P. Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur. Calcif Tissue Int 2005; 77:186-92. [PMID: 16151672 DOI: 10.1007/s00223-005-0057-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Bone mineral density (BMD) measured with dual energy X-ray absorptiometry (DXA) techniques is the current gold standard for osteoporotic fracture risk prediction. Quantitative ultrasound (QUS) techniques in transmission measurements are, however, increasingly recognized as an alternative approach. It is feasible to select different QUS methods, one type being optimized to assess microarchitectural properties of bone structure and another to assess BMD. Broadband ultrasonic attenuation (BUA) and ultrasonic velocity (UV) measured on the proximal human femur have been shown to be both significantly correlated with BMD. However, a great diversity of algorithms has been reported to measure the time-of-flight used to derive UV values. The purpose of this study was to determine which procedure results in the optimal BMD prediction at the proximal femur from ultrasound measurements. Thirty-eight excised human femurs were measured in transmission with a pair of focused 0.5-MHz central frequency transducers. Two-dimensional scans were performed and radiofrequency (RF) signals were recorded digitally at each scan position. BUA was estimated and eight different signal processing techniques were performed to estimate UV. For each signal-processing technique UV was compared to BMD. We show that the best prediction of BMD was obtained with signal-processing techniques taking into account only the first part of the transmitted signal (r2BMD-SOS = 0.86). Moreover, we show that a linear multiple regression using both BUA and speed of sound (SOS) and applied to site-matched regions of interest improved the accuracy of BMD predictions (r2BMD-SOS/BUA = 0.95). Our results demonstrate that selecting specific signal-processing methods for QUS variables allows optimal assessment of BMD. Correlation is sufficiently high that this specific QUS method can be considered as a good surrogate of BMD.
Collapse
Affiliation(s)
- G Haïat
- Laboratoire d'Imagerie Paramétrique, Université Paris VI, UMR CNRS 7623, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Haïat G, Padilla F, Barkmann R, Kolta S, Latremouille C, Glüer CC, Laugier P. In vitro speed of sound measurement at intact human femur specimens. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:987-96. [PMID: 15972205 DOI: 10.1016/j.ultrasmedbio.2005.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/07/2005] [Accepted: 02/17/2005] [Indexed: 05/03/2023]
Abstract
Quantitative ultrasound has been recognized as a useful tool for fracture risk prediction. Current measurement techniques are limited to peripheral skeletal sites. Our objective was to demonstrate the in vitro feasibility of ultrasonic velocity measurements on human proximal femur and to investigate the relationship between velocity and bone mineral density (BMD). Sound velocity images were computed from 2-D scans performed on 38 excised human femurs in transmission at 0.5 MHz. Different regions-of-interest were investigated. Dual x-ray absorptiometry scans have been achieved for BMD measurements in site-matched regions. Our study demonstrates the feasibility of ultrasonic velocity measurements at the hip with reasonable precision (coefficient of variation of 0.3%). The best prediction of BMD was reached in the intertrochanter region (r(2) = 0.91, p < 10(-4)), with a residual error of 0.06 g/cm(2) (10%). Because BMD measured at the femur is the best predictor of hip fracture risk, the highly significant correlation and small residual error found in this study suggest that speed of sound measurement at the femur might be a good candidate for hip fracture risk prediction.
Collapse
Affiliation(s)
- G Haïat
- Laboratoire d'Imagerie Paramétrique, Université Paris VI, Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Hakulinen MA, Day JS, Töyräs J, Timonen M, Kröger H, Weinans H, Kiviranta I, Jurvelin JS. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Phys Med Biol 2005; 50:1629-42. [PMID: 15815086 DOI: 10.1088/0031-9155/50/8/001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ultrasound (US) backscattering method has been introduced as an alternative for the through-transmission measurement of sound attenuation and speed in diagnosis of osteoporosis. Both attenuation and backscattering depend strongly on the US frequency. In this study, 20 human trabecular bone samples were measured in transmission and pulse-echo geometry in vitro. The aim of the study was to find the most sensitive frequency range for the quantitative ultrasound (QUS) analyses. Normalized broadband US attenuation (nBUA), speed of sound (SOS), broadband US backscatter (BUB) and integrated reflection coefficient (IRC) were determined for each sample. The samples were spatially scanned with five pairs of US transducers covering a frequency range of 0.2-6.7 MHz. Furthermore, mechanical properties and density of the same samples were determined. At all frequencies, SOS, BUB and IRC showed statistically significant linear correlations with the mechanical properties or density of human trabecular bone (0.51 < r < 0.82, 0.54 < r < 0.81 and 0.70 < r < 0.85, respectively). In contrast to SOS, IRC and BUB, nBUA showed statistically significant correlations with mechanical parameters or density at the centre frequency of 1 MHz only. Our results suggest that frequencies up to 5 MHz can be useful in QUS analyses for the prediction of bone mechanical properties and density. Since the use of higher frequencies provides better axial and spatial resolution, improved structural analyses may be possible. While extensive attenuation of high frequencies in trabecular bone limits the clinically feasible frequency range, selection of optimal frequency range for in vivo QUS application should be carefully considered.
Collapse
|
50
|
|