1
|
Hua R, Han Y, Ni Q, Fajardo RJ, Iozzo RV, Ahmed R, Nyman JS, Wang X, Jiang JX. Pivotal roles of biglycan and decorin in regulating bone mass, water retention, and bone toughness. Bone Res 2025; 13:2. [PMID: 39743559 DOI: 10.1038/s41413-024-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025] Open
Abstract
Proteoglycans, key components of non-collagenous proteins in the bone matrix, attract water through their negatively charged glycosaminoglycan chains. Among these proteoglycans, biglycan (Bgn) and decorin (Dcn) are major subtypes, yet their distinct roles in bone remain largely elusive. In this study, we utilized single knockout (KO) mouse models and successfully generated double KO (dKO) models despite challenges with low yield. Bgn deficiency, but not Dcn deficiency, decreased trabecular bone mass, with more pronounced bone loss in dKO mice. Low-field nuclear magnetic resonance measurements showed a marked decrease in bound water among all KO groups, especially in Bgn KO and dKO mice. Moreover, both Bgn KO and dKO mice exhibited reduced fracture toughness compared to Dcn KO mice. Dcn was significantly upregulated in Bgn KO mice, while a modest upregulation of Bgn was observed in Dcn KO mice, indicating Bgn's predominant role in bone. High resolution atomic force microscopy showed decreased in situ permanent energy dissipation and increased elastic modulus in the extrafibrillar matrix of Bgn/Dcn deficient mice, which were diminished upon dehydration. Furthermore, we found that both Bgn and Dcn are indispensable for the activation of ERK and p38 MAPK signaling pathways. Collectively, our results highlight the distinct and indispensable roles of Bgn and Dcn in maintaining bone structure, water retention, and bulk/in situ tissue properties in the bone matrix, with Bgn exerting a predominant influence.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan Han
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Qingwen Ni
- Department of Physics, Texas A&M International University, Laredo, TX, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, USA
| | - Renato V Iozzo
- Department of Pathology & Genomic Medicine, Sidney Kimmel Medical Collage, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
2
|
Newton JB, Weiss SN, Nuss CA, Darrieutort-Laffite C, Eekhoff JD, Birk DE, Soslowsky LJ. Decorin and/or biglycan knockdown in aged mouse patellar tendon impacts fibril morphology, scar area, and mechanical properties. J Orthop Res 2024; 42:2400-2413. [PMID: 38967120 PMCID: PMC11479833 DOI: 10.1002/jor.25931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Small leucine-rich proteoglycans, such as decorin and biglycan, play pivotal roles in collagen fibrillogenesis during development, healing, and aging in tendon. Previous work has shown that the absence of decorin and biglycan affects fibril shape and mechanical properties during tendon healing. However, the roles of decorin and biglycan in the healing process of aged tendons are unclear. Therefore the objective of this study was to evaluate the differential roles of decorin and biglycan during healing of patellar tendon injury in aged mice. Aged (300 days old) female Dcn+/+/Bgn+/+ control (WT, n = 52), Dcnflox/flox (I-Dcn-/-, n = 36), Bgnflox/flox (I-Bgn-/-, n = 36), and compound Dcnflox/flox/Bgnflox/flox (I-Dcn-/-/Bgn-/-, n = 36) mice with a tamoxifen-inducible Cre were utilized. Targeted gene expression, collagen fibril diameter distributions, mechanical properties, and histological assays were employed to assess the effects of knockdown of decorin and/or biglycan at the time of injury. Knockdown resulted in alterations in fibril diameter distribution and scar area, but surprisingly did not lead to many differences in mechanical properties. Biglycan played a larger role in early healing stages, while decorin is more significant in later stages, particularly in scar remodeling. This study highlights some of the differential roles of biglycan and decorin in the regulation of fibril structure and scar area, as well as influencing gene expression during healing in aged mice.
Collapse
Affiliation(s)
- Joseph B Newton
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie N Weiss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Courtney A Nuss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christelle Darrieutort-Laffite
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy D Eekhoff
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Flordia, USA
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Zens B, Fäßler F, Hansen JM, Hauschild R, Datler J, Hodirnau VV, Zheden V, Alanko J, Sixt M, Schur FK. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. J Cell Biol 2024; 223:e202309125. [PMID: 38506714 PMCID: PMC10955043 DOI: 10.1083/jcb.202309125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.
Collapse
Affiliation(s)
- Bettina Zens
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M. Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jonna Alanko
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
4
|
Grandi A, Ferrini E, Zoboli M, Buseghin D, Pennati F, Khalajzeyqami Z, Ciccimarra R, Villetti G, Stellari FF. A mouse model of progressive lung fibrosis with cutaneous involvement induced by a combination of oropharyngeal and osmotic minipump bleomycin delivery. Am J Physiol Lung Cell Mol Physiol 2024; 326:L736-L753. [PMID: 38651940 PMCID: PMC11381007 DOI: 10.1152/ajplung.00408.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Systemic sclerosis (SSc) with interstitial lung disease (SSc-ILD) lacks curative pharmacological treatments, thus necessitating effective animal models for candidate drug discovery. Existing bleomycin (BLM)-induced SSc-ILD mouse models feature spatially limited pulmonary fibrosis, spontaneously resolving after 28 days. Here, we present an alternative BLM administration approach in female C57BL/6 mice, combining oropharyngeal aspiration (OA) and subcutaneous mini-pump delivery (pump) of BLM to induce a sustained and more persistent fibrosis, while retaining stable skin fibrosis. A dose-finding study was performed with BLM administered as 10 µg (OA) +80 mg/kg (pump) (10 + 80), 10 + 100, and 15 + 100. Forty-two days after OA, micro-computed tomography (micro-CT) imaging and histomorphometric analyses showed that the 10 + 100 and 15 + 100 treatments induced significant alterations in lung micro-CT-derived readouts, Ashcroft score, and more severe fibrosis grades compared with saline controls. In addition, a marked reduction in hypodermal thickness was observed in the 15 + 100 group. A time-course characterization of the BLM 15 + 100 treatment at days 28, 35, and 42, including longitudinal micro-CT imaging, revealed progressing alterations in lung parameters. Lung histology highlighted a sustained fibrosis accompanied by a reduction in hypodermis thickness throughout the explored time-window, with a time-dependent increase in fibrotic biomarkers detected by immunofluorescence analysis. BLM-induced alterations were partly mitigated by Nintedanib treatment. Our optimized BLM delivery approach leads to extensive and persistent lung fibrotic lesions coupled with cutaneous fibrotic alterations: it thus represents a significant advance compared with current preclinical models of BLM-induced SSc-ILD.NEW & NOTEWORTHY This study introduces an innovative approach to enhance the overall performance of the mouse bleomycin (BLM)-induced model for systemic sclerosis with interstitial lung disease (SSc-ILD). By combining oropharyngeal aspiration and subcutaneous mini-pump delivery of BLM, our improved model leads to sustained lung fibrosis and stable skin fibrosis in female C57BL/6 mice. The optimized 15 + 100 treatment results in extensive and persistent lung fibrotic lesions and thus represents a significant improvement over existing preclinical models of BLM-induced SSc-ILD.
Collapse
Affiliation(s)
- Andrea Grandi
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | - Erica Ferrini
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Davide Buseghin
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
- ANTHEM (AdvaNced Technologies for Human-centrEd Medicine), Milan, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Zahra Khalajzeyqami
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | | |
Collapse
|
5
|
Guvatova ZG, Kobelyatskaya AA, Kudasheva ER, Pudova EA, Bulavkina EV, Churov AV, Tkacheva ON, Moskalev AA. Matrisome Transcriptome Dynamics during Tissue Aging. Life (Basel) 2024; 14:593. [PMID: 38792614 PMCID: PMC11121957 DOI: 10.3390/life14050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is a complex three-dimensional network of macromolecules that provides structural support for the cells and plays a significant role in tissue homeostasis and repair. Growing evidence indicates that dysregulation of ECM remodeling contributes to various pathological conditions in the body, including age-associated diseases. In this work, gene expression data of normal human tissues obtained from the Genotype-Tissue Expression project, as well as data from MatrisomeDB 2.0, the ECM-protein knowledge database, are used to estimate the age-dependent matrisome transcriptome dynamics in the blood, heart, brain, liver, kidneys, lungs, and muscle. Differential gene expression (DE) analysis revealed dozens of matrisome genes encoding both structural elements of the ECM and ECM-associated proteins, which had a tissue-specific expression profile with age. Among common DE genes that changed expression with age in at least three tissues, COL18A1, MFAP1, IGFBP7, AEBP1, LTBP2, LTBP4, LG14, EFEMP1, PRELP, BGN, FAM20B, CTSC, CTSS, and CLEC2B were observed. The findings of the study also reveal that there are sex-specific alterations during aging in the matrisome gene expression. Taken together, the results obtained in this work may help in understanding the role of the ECM in tissue aging and might prove valuable for the future development of the field of ECM research in general.
Collapse
Affiliation(s)
- Zulfiya G. Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | | | - Eveline R. Kudasheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey V. Churov
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Olga N. Tkacheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| |
Collapse
|
6
|
Du L, Wu J, Han Y, Wu C. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. SCIENCE ADVANCES 2024; 10:eadk6610. [PMID: 38457502 PMCID: PMC10923514 DOI: 10.1126/sciadv.adk6610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/03/2024] [Indexed: 03/10/2024]
Abstract
Limited motor activity due to the loss of natural structure impedes recovery in patients suffering from tendon-to-bone injury. Conventional biomaterials focus on strengthening the regenerative ability of tendons/bones to restore natural structure. However, owing to ignoring the immune environment and lack of multi-tissue regenerative function, satisfactory outcomes remain elusive. Here, combined manganese silicate (MS) nanoparticles with tendon/bone-related cells, the immunomodulatory multicellular scaffolds were fabricated for integrated regeneration of tendon-to-bone. Notably, by integrating biomimetic cellular distribution and MS nanoparticles, the multicellular scaffolds exhibited diverse bioactivities. Moreover, MS nanoparticles enhanced the specific differentiation of multicellular scaffolds via regulating macrophages, which was mainly attributed to the secretion of PGE2 in macrophages induced by Mn ions. Furthermore, three animal results indicated that the scaffolds achieved immunomodulation, integrated regeneration, and function recovery at tendon-to-bone interfaces. Thus, the multicellular scaffolds based on inorganic biomaterials offer an innovative concept for immunomodulation and integrated regeneration of soft/hard tissue interfaces.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yahui Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Beach ZM, Nuss CA, Weiss SN, Soslowsky LJ. Neonatal Achilles Tendon Microstructure is Negatively Impacted by Decorin and Biglycan Knockdown After Injury and During Development. Ann Biomed Eng 2024; 52:657-670. [PMID: 38079083 PMCID: PMC11044902 DOI: 10.1007/s10439-023-03414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/22/2023] [Indexed: 02/13/2024]
Abstract
Interest in studying neonatal development and the improved healing response observed in neonates is increasing, with the goal of using this work to create better therapeutics for tendon injury. Decorin and biglycan are two small leucine-rich proteoglycans that play important roles in collagen fibrillogenesis to develop, maintain, and repair tendon structure. However, little is known about the roles of decorin and biglycan in early neonatal development and healing. The goal of this study was to determine the effects of decorin and biglycan knockdown on Achilles tendon structure and mechanics during neonatal development and recovery of these properties after injury of the neonatal tendon. We hypothesized that knockdown of decorin and biglycan would disrupt the neonatal tendon developmental process and produce tendons with impaired mechanical and structural properties. We found that knockdown of decorin and biglycan in an inducible, compound decorin/biglycan knockdown model, both during development and after injury, in neonatal mice produced tendons with reduced mechanical properties. Additionally, the collagen fibril microstructure resembled an immature tendon with a large population of small diameter fibrils and an absence of larger diameter fibrils. Overall, this study demonstrates the importance of decorin and biglycan in facilitating tendon growth and maturation during neonatal development.
Collapse
Affiliation(s)
- Zakary M Beach
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney A Nuss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie N Weiss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Cen X, Li M, Yao A, Zheng Y, Lai W. Immune infiltration and clinical significance analyses of the cancer-associated fibroblast-related signature in skin cutaneous melanoma. J Gene Med 2024; 26:e3614. [PMID: 37847069 DOI: 10.1002/jgm.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most aggressive cancers with high mortality rates. Cancer-associated fibroblasts (CAFs) play essential roles in tumor growth, metastasis and the establishment of a pro-tumor microenvironment. This study aimed to establish a CAF-related signature for providing a new perspective for indicating prognosis and guiding therapeutic regimens of SKCM patients. METHODS In this study, the CAF-related genes were screened out based on melanoma-associated fibroblast markers identified from single-cell transcriptome analysis in the Gene Expression Omnibus (GEO) database and a CAF-related module identified from weighted gene co-expression analysis using The Cancer Genome Atlas (TCGA) dataset. We extracted these gene expression data of SKCM samples from TCGA and constructed a prognostic CAF-related signature. The prediction abilities of the signature for survival prognosis, tumor immune landscape and responses to chemo-/immunotherapies were evaluated in the TCGA-SKCM cohort. RESULTS We suggested that CAFs were significantly involved in the clinical outcomes of SKCM. A 10-gene CAF-related model was constructed, and the high-CAF risk group exhibited immunosuppressive features and worse prognosis. Patients with high CAF score were more likely to not respond to immune checkpoint inhibitors but were more sensitive to some chemotherapeutic agents, suggesting a potential approach of chemotherapy/anti-CAF combination treatment to improve the SKCM patient response rate of current immunotherapies. CONCLUSIONS The CAF-related risk score could serve as a robust prognostic indicator and personal assessment of this score could uncover the degree of immunosuppression and provide treatment strategies to improve outcomes in clinical decision-making in SKCM patients.
Collapse
Affiliation(s)
- Xintao Cen
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengna Li
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Amin Yao
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Zheng
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Jawich K, Hadakie R, Jamal S, Habeeb R, Al Fahoum S, Ferlin A, De Toni L. Emerging Role of Non-collagenous Bone Proteins as Osteokines in Extraosseous Tissues. Curr Protein Pept Sci 2024; 25:215-225. [PMID: 37937553 DOI: 10.2174/0113892037268414231017074054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
Bone is a unique tissue, composed of various types of cells embedded in a calcified extracellular matrix (ECM), whose dynamic structure consists of organic and inorganic compounds produced by bone cells. The main inorganic component is represented by hydroxyapatite, whilst the organic ECM is primarily made up of type I collagen and non-collagenous proteins. These proteins play an important role in bone homeostasis, calcium regulation, and maintenance of the hematopoietic niche. Recent advances in bone biology have highlighted the importance of specific bone proteins, named "osteokines", possessing endocrine functions and exerting effects on nonosseous tissues. Accordingly, osteokines have been found to act as growth factors, cell receptors, and adhesion molecules, thus modifying the view of bone from a static tissue fulfilling mobility to an endocrine organ itself. Since bone is involved in a paracrine and endocrine cross-talk with other tissues, a better understanding of bone secretome and the systemic roles of osteokines is expected to provide benefits in multiple topics: such as identification of novel biomarkers and the development of new therapeutic strategies. The present review discusses in detail the known osseous and extraosseous effects of these proteins and the possible respective clinical and therapeutic significance.
Collapse
Affiliation(s)
- Kenda Jawich
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Rana Hadakie
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Souhaib Jamal
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Rana Habeeb
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Sahar Al Fahoum
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Zheng Q, Liu M, He M, Sun S, Liu C, Li Y, Jiang L, Ta D. Low-Intensity Pulsed Ultrasound Promotes the Repair of Achilles Tendinopathy by Downregulating the JAK/STAT Signaling Pathway in Rabbits. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:141-152. [PMID: 38060355 DOI: 10.1109/tuffc.2023.3340721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Tendinopathy is a complex tendon injury or pathology outcome, potentially leading to permanent impairment. Low-intensity pulsed ultrasound (LIPUS) is emerging as a treatment modality for tendon disorders. However, the optimal treatment duration and its effect on tendons remain unclear. This study aims to investigate the efficacy of LIPUS in treating injured tendons, delineate the appropriate treatment duration, and elucidate the underlying treatment mechanisms through animal experiments. Ninety-six three-month-old New Zealand white rabbits were divided into normal control (NC) and model groups. The model group received Prostaglandin E2 (PGE2) injections to induce Achilles tendinopathy. They were then divided into model control (MC) and LIPUS treatment (LT) groups. LT received LIPUS intervention with a 1-MHz frequency, a pulse repetition frequency (PRF) of 1 kHz, and spatial average temporal average sound intensity ( [Formula: see text]) of 100 mW/cm2. MC underwent a sham ultrasound, and NC received no treatment. Assessments on 1, 4, 7, 14, and 28 days after LT included shear wave elastography (SWE), mechanical testing, histologic evaluation, ribonucleic acid sequencing (RNA-seq), polymerase chain reaction (PCR), and western blot (WB) analysis. SWE results showed that the shear modulus in the LT group was significantly higher than that in the MC group after LT for seven days. Histological results demonstrated improved tendon tissue alignment and fibroblast distribution after LT. Molecular analyses suggested that LIPUS may downregulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway and regulate inflammatory and matrix-related factors. We concluded that LT enhanced injured tendon elasticity and accelerated Achilles tendon healing. The study highlighted the JAK/STAT signaling pathway as a potential therapeutic target for LT of Achilles tendinopathy, guiding future research.
Collapse
|
11
|
Kinoshita M, Yamada S, Sasaki J, Suzuki S, Kajikawa T, Iwayama T, Fujihara C, Imazato S, Murakami S. Mice Lacking PLAP-1/Asporin Show Alteration of Periodontal Ligament Structures and Acceleration of Bone Loss in Periodontitis. Int J Mol Sci 2023; 24:15989. [PMID: 37958972 PMCID: PMC10649079 DOI: 10.3390/ijms242115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Periodontal ligament-associated protein 1 (PLAP-1), also known as Asporin, is an extracellular matrix protein expressed in the periodontal ligament and plays a crucial role in periodontal tissue homeostasis. Our previous research demonstrated that PLAP-1 may inhibit TLR2/4-mediated inflammatory responses, thereby exerting a protective function against periodontitis. However, the precise roles of PLAP-1 in the periodontal ligament (PDL) and its relationship to periodontitis have not been fully explored. In this study, we employed PLAP-1 knockout mice to investigate its roles and contributions to PDL tissue and function in a ligature-induced periodontitis model. Mandibular bone samples were collected from 10-week-old male C57BL/6 (WT) and PLAP-1 knockout (KO) mice. These samples were analyzed through micro-computed tomography (μCT) scanning, hematoxylin and eosin (HE) staining, picrosirius red staining, and fluorescence immunostaining using antibodies targeting extracellular matrix proteins. Additionally, the structure of the PDL collagen fibrils was examined using transmission electron microscopy (TEM). We also conducted tooth extraction and ligature-induced periodontitis models using both wild-type and PLAP-1 KO mice. PLAP-1 KO mice did not exhibit any changes in alveolar bone resorption up to the age of 10 weeks, but they did display an enlarged PDL space, as confirmed by μCT and histological analyses. Fluorescence immunostaining revealed increased expression of extracellular matrix proteins, including Col3, BGN, and DCN, in the PDL tissues of PLAP-1 KO mice. TEM analysis demonstrated an increase in collagen diameter within the PDL of PLAP-1 KO mice. In line with these findings, the maximum stress required for tooth extraction was significantly lower in PLAP-1 KO mice in the tooth extraction model compared to WT mice (13.89 N ± 1.34 and 16.51 N ± 1.31, respectively). In the ligature-induced periodontitis model, PLAP-1 knockout resulted in highly severe alveolar bone resorption, with a higher number of collagen fiber bundle tears and significantly more osteoclasts in the periodontium. Our results demonstrate that mice lacking PLAP-1/Asporin show alteration of periodontal ligament structures and acceleration of bone loss in periodontitis. This underscores the significant role of PLAP-1 in maintaining collagen fibrils in the PDL and suggests the potential of PLAP-1 as a therapeutic target for periodontal diseases.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoru Yamada
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Junichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shigeki Suzuki
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tetsuhiro Kajikawa
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tomoaki Iwayama
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| |
Collapse
|
12
|
Leahy TP, Fung AK, Weiss SN, Dyment NA, Soslowsky LJ. Investigating the temporal roles of decorin and biglycan in tendon healing. J Orthop Res 2023; 41:2238-2249. [PMID: 37132501 PMCID: PMC10525000 DOI: 10.1002/jor.25590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
The small leucine-rich proteoglycans, decorin and biglycan, are minor components of the tendon extracellular matrix that regulate fibrillogenesis and matrix assembly. Our study objective was to define the temporal roles of decorin and biglycan during tendon healing using inducible knockout mice to include genetic knockdown at specific phases of healing: time of injury, the proliferative phase, and the remodeling phase. We hypothesized that knockdown of decorin or biglycan would adversely affect tendon healing, and that by prescribing the timing of knockdown, we could elucidate the temporal roles of these proteins during healing. Contrary to our hypothesis, decorin knockdown did not affect tendon healing. However, when biglycan was knocked down, either alone or coupled with decorin, tendon modulus was increased relative to wild-type mice, and this finding was consistent among all induction timepoints. At 6 weeks postinjury, we observed increased expression of genes associated with the extracellular matrix and growth factor signaling in the biglycan knockdown and compound decorin-biglycan knockdown tendons. Interestingly, these groups demonstrated opposing trends in gene expression as a function of knockdown-induction timepoint, highlighting distinct temporal roles for decorin and biglycan. In summary, this study finds that biglycan plays multiple functions throughout tendon healing, with the most impactful, detrimental role likely occurring during late-stage healing. Statement of clinical importance: This study helps to define the molecular factors that regulate tendon healing, which may aid in the development of new clinical therapies.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley K. Fung
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie N. Weiss
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Zappia J, Tong Q, Van der Cruyssen R, Cornelis FMF, Lambert C, Pinto Coelho T, Grisart J, Kague E, Lories RJ, Muller M, Elewaut D, Hammond CL, Sanchez C, Henrotin Y. Osteomodulin downregulation is associated with osteoarthritis development. Bone Res 2023; 11:49. [PMID: 37730805 PMCID: PMC10511717 DOI: 10.1038/s41413-023-00286-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 09/22/2023] Open
Abstract
Abnormal subchondral bone remodeling leading to sclerosis is a main feature of osteoarthritis (OA), and osteomodulin (OMD), a proteoglycan involved in extracellular matrix mineralization, is associated with the sclerotic phenotype. However, the functions of OMD remain poorly understood, specifically in vivo. We used Omd knockout and overexpressing male mice and mutant zebrafish to study its roles in bone and cartilage metabolism and in the development of OA. The expression of Omd is deeply correlated with bone and cartilage microarchitectures affecting the bone volume and the onset of subchondral bone sclerosis and spontaneous cartilage lesions. Mechanistically, OMD binds to RANKL and inhibits osteoclastogenesis, thus controlling the balance of bone remodeling. In conclusion, OMD is a key factor in subchondral bone sclerosis associated with OA. It participates in bone and cartilage homeostasis by acting on the regulation of osteoclastogenesis. Targeting OMD may be a promising new and personalized approach for OA.
Collapse
Affiliation(s)
- Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium.
| | - Qiao Tong
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Renée Van der Cruyssen
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Frederique M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Cécile Lambert
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
| | - Tiago Pinto Coelho
- Cardiovascular Sciences, Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
- Division of Nephrology, CHU of Liège, Université de Liège, Liège, Belgium
| | | | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Marc Muller
- Laboratoire d'Organogenèse et Régénération, Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Dirk Elewaut
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Chrissy L Hammond
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
- Artialis SA, Tour GIGA, CHU Sart-Tilman, Liège, Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
14
|
Nishikori S, Yasuda J, Murata K, Takegaki J, Harada Y, Shirai Y, Fujita S. Resistance training rejuvenates aging skin by reducing circulating inflammatory factors and enhancing dermal extracellular matrices. Sci Rep 2023; 13:10214. [PMID: 37353523 PMCID: PMC10290068 DOI: 10.1038/s41598-023-37207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
Aerobic training (AT) is suggested to be an effective anti-aging strategy for skin aging. However, the respective effects of resistance training (RT) have not been studied. Therefore, we compared the effects of AT and RT on skin aging in a 16-week intervention in 61 healthy sedentary middle-aged Japanese women. Data from 56 women were available for analysis. Both interventions significantly improved skin elasticity and upper dermal structure, and RT also improved dermal thickness. After the training intervention, expression of dermal extracellular matrix-related genes was increased in normal human primary dermal fibroblasts. AT and RT had different effects on circulating levels of factors, such as cytokines, hormones in serum, and metabolites, and RT increased dermal biglycan (BGN). To our knowledge, this is the first report to show different effects of AT and RT on skin aging and identify the key factors involved in RT-induced skin rejuvenation.
Collapse
Affiliation(s)
- Shu Nishikori
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Jun Yasuda
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Kao Murata
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Junya Takegaki
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Yasuko Harada
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Yuki Shirai
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan.
| |
Collapse
|
15
|
Sarbu M, Ica R, Sharon E, Clemmer DE, Zamfir AD. Glycomics by ion mobility tandem mass spectrometry of chondroitin sulfate disaccharide domain in biglycan. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4908. [PMID: 36799777 DOI: 10.1002/jms.4908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biglycan (BGN), a small leucine-rich repeat proteoglycan, is involved in a variety of pathological processes including malignant transformation, for which the upregulation of BGN was found related to cancer cell invasiveness. Because the functions of BGN are mediated by its chondroitin/dermatan sulfate (CS/DS) chains through the sulfates, the determination of CS/DS structure and sulfation pattern is of major importance. In this study, we have implemented an advanced glycomics method based on ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS) to characterize the CS disaccharide domains in BGN. The high separation efficiency and sensitivity of this technique allowed the discrimination of five distinct CS disaccharide motifs, of which four irregulated in their sulfation pattern. For the first time, trisulfated unsaturated and bisulfated saturated disaccharides were found in BGN, the latter species documenting the non-reducing end of the chains. The structural investigation by IMS MS/MS disclosed that in one or both of the CS/DS chains, the non-reducing end is 3-O-sulfated GlcA in a rather rare bisulfated motif having the structure 3-O-sulfated GlcA-4-O-sulfated GalNAc. Considering the role played by BGN in cancer cell spreading, the influence on this process of the newly identified sequences will be investigated in the future.
Collapse
Affiliation(s)
- Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300569, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300569, Romania
- Department of Physics, West University of Timisoara, Timisoara, 300223, Romania
| | - Edie Sharon
- Department of Chemistry, The College of Arts & Science, Indiana University, Bloomington, Indiana, USA
| | - David E Clemmer
- Department of Chemistry, The College of Arts & Science, Indiana University, Bloomington, Indiana, USA
| | - Alina D Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300569, Romania
- Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, 310330, Romania
| |
Collapse
|
16
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
17
|
Shainer R, Kram V, Kilts TM, Li L, Doyle AD, Shainer I, Martin D, Simon CG, Zeng-Brouwers J, Schaefer L, Young MF, Genomics and Computational Biology Core. Biglycan regulates bone development and regeneration. Front Physiol 2023; 14:1119368. [PMID: 36875017 PMCID: PMC9979216 DOI: 10.3389/fphys.2023.1119368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Endochondral bone development and regeneration relies on activation and proliferation of periosteum derived-cells (PDCs). Biglycan (Bgn), a small proteoglycan found in extracellular matrix, is known to be expressed in bone and cartilage, however little is known about its influence during bone development. Here we link biglycan with osteoblast maturation starting during embryonic development that later affects bone integrity and strength. Biglycan gene deletion reduced the inflammatory response after fracture, leading to impaired periosteal expansion and callus formation. Using a novel 3D scaffold with PDCs, we found that biglycan could be important for the cartilage phase preceding bone formation. The absence of biglycan led to accelerated bone development with high levels of osteopontin, which appeared to be detrimental to the structural integrity of the bone. Collectively, our study identifies biglycan as an influencing factor in PDCs activation during bone development and bone regeneration after fracture.
Collapse
Affiliation(s)
- Reut Shainer
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Tina M. Kilts
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Li Li
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Andrew D. Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Inbal Shainer
- Department Genes-Circuits-Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Daniel Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institutes of Health, Bethesda, MD, United States
| | - Carl G. Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Marian F. Young
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
18
|
Xu X, Zhang Y, Ha P, Chen Y, Li C, Yen E, Bai Y, Chen R, Wu BM, Da Lio A, Ting K, Soo C, Zheng Z. A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery. Bioeng Transl Med 2023; 8:e10355. [PMID: 36684085 PMCID: PMC9842059 DOI: 10.1002/btm2.10355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/25/2023] Open
Abstract
A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yulong Zhang
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Pin Ha
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Chen
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chenshuang Li
- Department of OrthodonticsSchool of Dental Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Yen
- Arcadia High SchoolArcadiaCaliforniaUSA
| | - Yuxing Bai
- Department of OrthodonticsBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Benjamin M. Wu
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Andrew Da Lio
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Kang Ting
- Forsyth Research InstituteHarvard UniversityCambridgeMassachusettsUSA
- Samueli School of EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic SurgeryThe Orthopaedic Hospital Research Center, University of CaliforniaLos AngelesCaliforniaUSA
| | - Zhong Zheng
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
19
|
Burns JS, Kassem M. Identifying Biomarkers for Osteogenic Potency Assay Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:39-58. [PMID: 37258783 DOI: 10.1007/978-3-031-30040-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been extensive exploration of how cells may serve as advanced therapy medicinal products to treat skeletal pathologies. Osteoblast progenitors responsible for production of extracellular matrix that is subsequently mineralized during bone formation have been characterised as a rare bone marrow subpopulation of cell culture plastic adherent cells. Conveniently, they proliferate to form single-cell derived colonies of fibroblastoid cells, termed colony forming unit fibroblasts that can subsequently differentiate to aggregates resembling small areas of cartilage or bone. However, donor heterogeneity and loss of osteogenic differentiation capacity during extended cell culture have made the discovery of reliable potency assay biomarkers difficult. Nonetheless, functional osteoblast models derived from telomerised human bone marrow stromal cells have allowed extensive comparative analysis of gene expression, microRNA, morphological phenotypes and secreted proteins. This chapter highlights numerous insights into the molecular mechanisms underpinning osteogenic differentiation of multipotent stromal cells and bone formation, discussing aspects involved in the choice of useful biomarkers for functional attributes that can be quantitively measured in osteogenic potency assays.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| | - Moustapha Kassem
- University Hospital of Odense, University of Southern Denmark, Odense, Denmark
- Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Syx D, Delbaere S, Bui C, De Clercq A, Larson G, Mizumoto S, Kosho T, Fournel-Gigleux S, Malfait F. Alterations in glycosaminoglycan biosynthesis associated with the Ehlers-Danlos syndromes. Am J Physiol Cell Physiol 2022; 323:C1843-C1859. [PMID: 35993517 DOI: 10.1152/ajpcell.00127.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to β4GalT7 or β3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.
Collapse
Affiliation(s)
- Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Sarah Delbaere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Ostend, Belgium
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Decorin Promotes Osteoblastic Differentiation of Human Periodontal Ligament Stem Cells. Molecules 2022; 27:molecules27238224. [PMID: 36500314 PMCID: PMC9739490 DOI: 10.3390/molecules27238224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study is to clarify the biological functions of decorin (DCN) in the healing and regeneration of wounded periodontal tissue. We investigated the expression pattern of DCN during the healing of wounded periodontal tissue in rats by immunohistochemistry and the effects of DCN on the osteoblastic differentiation of human periodontal ligament (PDL) stem cells (HPDLSCs) and preosteoblasts by Alizarin red S staining, quantitative reverse transcription-polymerase chain reactions, and western blotting. The expression of DCN was increased around the wounded PDL tissue on day 5 after surgery compared with the nonwounded PDL tissue, whereas its expression was not changed in the osteoblastic layer around the wounded alveolar bone. Furthermore, DCN promoted the osteoblastic differentiation of HPDLSCs, but it did not affect the osteoblastic differentiation of preosteoblasts. ERK1/2 phosphorylation was upregulated during the DCN-induced osteoblastic differentiation of HPDLSCs. DCN did not affect proliferation, migration, or the PDL-related gene expression of HPDLSCs. In conclusion, this study demonstrates that DCN has a role in the healing of wounded periodontal tissue. Furthermore, DCN secreted from PDL cells may contribute to bone healing by upregulating osteoblastic differentiation through ERK1/2 signaling in HPDLSCs, indicating a therapeutic effect of DCN in periodontal tissue regeneration.
Collapse
|
22
|
Beach ZM, Bonilla KA, Dekhne MS, Sun M, Adams TH, Adams SM, Weiss SN, Rodriguez AB, Shetye SS, Birk DE, Soslowsky LJ. Biglycan has a major role in maintenance of mature tendon mechanics. J Orthop Res 2022; 40:2546-2556. [PMID: 35171523 PMCID: PMC9378794 DOI: 10.1002/jor.25299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023]
Abstract
Decorin and biglycan are two small leucine-rich proteoglycans (SLRPs) that regulate collagen fibrillogenesis and extracellular matrix assembly in tendon. The objective of this study was to determine the individual roles of these molecules in maintaining the structural and mechanical properties of tendon during homeostasis in mature mice. We hypothesized that knockdown of decorin in mature tendons would result in detrimental changes to tendon structure and mechanics while knockdown of biglycan would have a minor effect on these parameters. To achieve this objective, we created tamoxifen-inducible mouse knockdown models targeting decorin or biglycan inactivation. This enables the evaluation of the roles of these SLRPs in mature tendon without the abnormal tendon development caused by conventional knockout models. Contrary to our hypothesis, knockdown of decorin resulted in minor alterations to tendon structure and no changes to mechanics while knockdown of biglycan resulted in broad changes to tendon structure and mechanics. Specifically, knockdown of biglycan resulted in reduced insertion modulus, maximum stress, dynamic modulus, stress relaxation, and increased collagen fiber realignment during loading. Knockdown of decorin and biglycan produced similar changes to tendon microstructure by increasing the collagen fibril diameter relative to wild-type controls. Biglycan knockdown also decreased the cell nuclear aspect ratio, indicating a more spindle-like nuclear shape. Overall, the extensive changes to tendon structure and mechanics after knockdown of biglycan, but not decorin, provides evidence that biglycan plays a major role in the maintenance of tendon structure and mechanics in mature mice during homeostasis.
Collapse
Affiliation(s)
- Zakary M. Beach
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Kelsey A. Bonilla
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Mihir S. Dekhne
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Mei Sun
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Thomas H. Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Sheila M. Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Stephanie N. Weiss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Ashley B. Rodriguez
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| |
Collapse
|
23
|
Hasegawa T, Hongo H, Yamamoto T, Abe M, Yoshino H, Haraguchi-Kitakamae M, Ishizu H, Shimizu T, Iwasaki N, Amizuka N. Matrix Vesicle-Mediated Mineralization and Osteocytic Regulation of Bone Mineralization. Int J Mol Sci 2022; 23:ijms23179941. [PMID: 36077336 PMCID: PMC9456179 DOI: 10.3390/ijms23179941] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bone mineralization entails two mineralization phases: primary and secondary mineralization. Primary mineralization is achieved when matrix vesicles are secreted by osteoblasts, and thereafter, bone mineral density gradually increases during secondary mineralization. Nearby extracellular phosphate ions (PO43−) flow into the vesicles via membrane transporters and enzymes located on the vesicles’ membranes, while calcium ions (Ca2+), abundant in the tissue fluid, are also transported into the vesicles. The accumulation of Ca2+ and PO43− in the matrix vesicles induces crystal nucleation and growth. The calcium phosphate crystals grow radially within the vesicle, penetrate the vesicle’s membrane, and continue to grow outside the vesicle, ultimately forming mineralized nodules. The mineralized nodules then attach to collagen fibrils, mineralizing them from the contact sites (i.e., collagen mineralization). Afterward, the bone mineral density gradually increases during the secondary mineralization process. The mechanisms of this phenomenon remain unclear, but osteocytes may play a key role; it is assumed that osteocytes enable the transport of Ca2+ and PO43− through the canaliculi of the osteocyte network, as well as regulate the mineralization of the surrounding bone matrix via the Phex/SIBLINGs axis. Thus, bone mineralization is biologically regulated by osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo 005-8543, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8577, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tomohiro Shimizu
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| |
Collapse
|
24
|
Dong Y, Zhong J, Dong L. The Role of Decorin in Autoimmune and Inflammatory Diseases. J Immunol Res 2022; 2022:1283383. [PMID: 36033387 PMCID: PMC9402370 DOI: 10.1155/2022/1283383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Decorin is an extracellular matrix protein that belongs to the family of small leucine-rich proteoglycans. As a matrix protein, the first discovered role of decorin is participating in collagen fibril formation. Many other functions of decorin in various biological processes have been subsequently identified. Decorin is involved in an extensive signaling network and can interact with other extracellular matrix components, growth factors, receptor tyrosine kinases, and various proteases. Decorin has been shown to be involved in wound repair, cell cycle, angiogenesis, tumor metastasis, and autophagy. Recent evidence indicates that it also plays a role in immune regulation and inflammatory diseases. This review summarizes the characteristics of decorin in immune and inflammatory diseases, including inflammatory bowel disease (IBD), Sjögren's syndrome (SS), chronic obstructive pulmonary disease (COPD), IgA nephropathy, rheumatoid arthritis (RA), spondyloarthritis (SpA), osteoarthritis, multiple sclerosis (MS), idiopathic inflammatory myopathies (IIM), and systemic sclerosis (SSc) and discusses the potential role in these disorders.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Semin Cell Dev Biol 2022; 128:137-144. [PMID: 35339360 DOI: 10.1016/j.semcdb.2022.02.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a dynamic structure that surrounds and anchors cellular components in tissues. In addition to functioning as a structural scaffold for cellular components, ECMs also regulate diverse biological functions, including cell adhesion, proliferation, differentiation, migration, cell-cell interactions, and intracellular signaling events. Dermal fibroblasts (dFBs), the major cellular source of skin ECM, develop from a common embryonic precursor to the highly heterogeneous subpopulations during development and adulthood. Upon injury, dFBs migrate into wound granulation tissue and transdifferentiate into myofibroblasts, which play a critical role in wound contraction and dermal ECM regeneration and deposition. In this review, we describe the plasticity of dFBs during development and wound healing and how various dFB-derived ECM molecules, including collagen, proteoglycans, glycosaminoglycans, fibrillins and matricellular proteins are expressed and regulated, and in turn how these ECM molecules play a role in regulating the function of dFBs and immune cells. Finally, we describe how dysregulation of ECM matrix is associated the pathogenesis of wound healing related skin diseases, including chronic wounds and keloid.
Collapse
|
26
|
Beach ZM, Dekhne MS, Rodriguez AB, Weiss SN, Adams TH, Adams SM, Sun M, Birk DE, Soslowsky LJ. Decorin knockdown is beneficial for aged tendons in the presence of biglycan expression. Matrix Biol Plus 2022; 15:100114. [PMID: 35818471 PMCID: PMC9270257 DOI: 10.1016/j.mbplus.2022.100114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Decorin and biglycan are two major small leucine-rich proteoglycans (SLRPs) present in the tendon extracellular matrix that facilitate collagen fibrillogenesis, tissue turnover, and cell signal transduction. Previously, we demonstrated that knockout of decorin prevented the decline of tendon mechanical properties that are associated with aging. The objective of this study was to determine the effects of decorin and biglycan knockdown on tendon structure and mechanics in aged tendons using tamoxifen-inducible knockdown models. We hypothesized that the knockdown of decorin and compound knockdown of decorin and biglycan would prevent age-related declines in tendon mechanics and structure compared to biglycan knockdown and wild-type controls, and that these changes would be exacerbated as the tendons progress towards geriatric ages. To achieve this objective, we created tamoxifen-inducible mouse knockdown models to target decorin and biglycan gene inactivation without the abnormal tendon development associated with traditional knockout models. Knockdown of decorin led to increased midsubstance modulus and decreased stress relaxation in aged tendons. However, these changes were not sustained in the geriatric tendons. Knockdown in biglycan led to no changes in mechanics in the aged or geriatric tendons. Contrary to our hypothesis, the compound decorin/biglycan knockdown tendons did not resemble the decorin knockdown tendons, but resulted in increased viscoelastic properties in the aged and geriatric tendons. Structurally, knockdown of SLRPs, except for the 570d I-Dcn-/-/Bgn-/- group, resulted in alterations to the collagen fibril diameter relative to wild-type controls. Overall, this study identified the differential roles of decorin and biglycan throughout tendon aging in the maintenance of tendon structural and mechanical properties and revealed that the compound decorin and biglycan knockdown phenotype did not resemble the single gene decorin or biglycan models and was detrimental to tendon properties throughout aging.
Collapse
|
27
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
28
|
Lee N, Shi L, Colon Caraballo M, Nallasamy S, Mahendroo M, Iozzo RV, Myers K. Mechanical Response of Mouse Cervices Lacking Decorin and Biglycan During Pregnancy. J Biomech Eng 2022; 144:061009. [PMID: 35348624 PMCID: PMC9125869 DOI: 10.1115/1.4054199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Cervical remodeling is critical for a healthy pregnancy. The proper regulation of extracellular matrix (ECM) turnover leads to remodeling throughout gestation, transforming the tissue from a stiff material to a compliant, extensible, viscoelastic tissue prepared for delivery. Small leucine-rich proteoglycans (SLRPs) regulate structural fiber assembly in the cervical ECM and overall tissue material properties. To quantify the SLRPs' mechanical role in the cervix, whole cervix specimens from nonpregnant and late pregnant knockout mice of SLRPs, decorin and biglycan, were subjected to cyclic load-unload, ramp-hold, and load-to-failure mechanical tests. Further, a fiber composite material model, accounting for collagen fiber bundle waviness, was developed to describe the cervix's three-dimensional large deformation equilibrium behavior. In nonpregnant tissue, SLRP knockout cervices have the same equilibrium material properties as wild-type tissue. In contrast, the load-to-failure and ramp-hold tests reveal SLRPs impact rupture and time-dependent relaxation behavior. Loss of decorin in nonpregnant (NP) cervices results in inferior rupture properties. After extensive remodeling, cervical strength is similar between all genotypes, but the SLRP-deficient tissue has a diminished ability to dissipate stress during a ramp-hold. In mice with a combined loss of decorin and biglycan, the pregnant cervix loses its extensibility, compliance, and viscoelasticity. These results suggest that decorin and biglycan are necessary for crucial extensibility and viscoelastic material properties of a healthy, remodeled pregnant cervix.
Collapse
Affiliation(s)
- Nicole Lee
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Mariano Colon Caraballo
- Department of Obstetrics and Gynecology, Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Shanmugasundaram Nallasamy
- Department of Obstetrics and Gynecology, Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
29
|
Eremenko E, Ding J, Kwan P, Tredget EE. The Biology of Extracellular Matrix Proteins in Hypertrophic Scarring. Adv Wound Care (New Rochelle) 2022; 11:234-254. [PMID: 33913776 DOI: 10.1089/wound.2020.1257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Significance: Hypertrophic scars (HTS) are a fibroproliferative disorder that occur following deep dermal injury and affect up to 72% of burn patients. These scars result in discomfort, impaired mobility, disruption of normal function and cosmesis, and significant psychological distress. Currently, there are no satisfactory methods to treat or prevent HTS, as the cellular and molecular mechanisms are complex and incompletely understood. This review summarizes the biology of proteins in the dermal extracellular matrix (ECM), which are involved in wound healing and hypertrophic scarring. Recent Advances: New basic research continues toward understanding the diversity of cellular and molecular mechanisms of normal wound healing and hypertrophic scarring. Broadening the understanding of these mechanisms creates insight into novel methods for preventing and treating HTS. Critical Issues: Although there is an abundance of research conducted on collagen in the ECM and its relationship to HTS, there is a significant gap in understanding the role of proteoglycans and their specific isoforms in dermal fibrosis. Future Directions: Exploring the biological roles of ECM proteins and their unique isoforms in HTS, mature scars, and normal skin will further the understanding of abnormal wound healing and create a more robust understanding of what constitutes dermal fibrosis. Research into the biological roles of ECM protein isoforms and their regulation during wound healing warrants a more extensive investigation to identify their distinct biological functions in cellular processes and outcomes.
Collapse
Affiliation(s)
- Elizabeth Eremenko
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Peter Kwan
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| |
Collapse
|
30
|
Lopez SG, Bonassar LJ. The role of SLRPs and large aggregating proteoglycans in collagen fibrillogenesis, extracellular matrix assembly, and mechanical function of fibrocartilage. Connect Tissue Res 2022; 63:269-286. [PMID: 33726572 DOI: 10.1080/03008207.2021.1903887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Proteoglycans, especially small leucine rich proteoglycans (SLRPs), play major roles in facilitating the development and regulation of collagen fibers and other extracellular matrix components. However, their roles in fibrocartilage have not been widely reviewed. Here, we discuss both SLRP and large aggregating proteoglycan's roles in collagen fibrillogenesis and extracellular matrix assembly in fibrocartilage tissues such as the meniscus, annulus fibrosus (AF), and TMJ disc. We also discuss their expression levels throughout development, aging and degeneration, as well as repair. METHODS A review of literature discussing proteoglycans and collagen fibrillogenesis in fibrocartilage was conducted and data from these manuscripts were analyzed and grouped to discuss trends throughout the tissue's architectural zones and developmental stage. RESULTS The spatial collagen architecture of these fibrocartilaginous tissues is reflected in the distribution of proteoglycans expressed, suggesting that each proteoglycan plays an important role in the type of architecture presented and associated mechanical function. CONCLUSION The unique structure-function relationship of fibrocartilage makes the varied architectures throughout the tissues imperative for their success and understanding the functions of these proteoglycans in developing and maintaining the fiber structure could inform future work in fibrocartilage replacement using tissue engineered constructs.
Collapse
Affiliation(s)
- Serafina G Lopez
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The Role of the Non-Collagenous Extracellular Matrix in Tendon and Ligament Mechanical Behavior: A Review. J Biomech Eng 2022; 144:1128818. [PMID: 34802057 PMCID: PMC8719050 DOI: 10.1115/1.4053086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Tendon is a connective tissue that transmits loads from muscle to bone, while ligament is a similar tissue that stabilizes joint articulation by connecting bone to bone. The 70-90% of tendon and ligament's extracellular matrix (ECM) is composed of a hierarchical collagen structure that provides resistance to deformation primarily in the fiber direction, and the remaining fraction consists of a variety of non-collagenous proteins, proteoglycans, and glycosaminoglycans (GAGs) whose mechanical roles are not well characterized. ECM constituents such as elastin, the proteoglycans decorin, biglycan, lumican, fibromodulin, lubricin, and aggrecan and their associated GAGs, and cartilage oligomeric matrix protein (COMP) have been suggested to contribute to tendon and ligament's characteristic quasi-static and viscoelastic mechanical behavior in tension, shear, and compression. The purpose of this review is to summarize existing literature regarding the contribution of the non-collagenous ECM to tendon and ligament mechanics, and to highlight key gaps in knowledge that future studies may address. Using insights from theoretical mechanics and biology, we discuss the role of the non-collagenous ECM in quasi-static and viscoelastic tensile, compressive, and shear behavior in the fiber direction and orthogonal to the fiber direction. We also address the efficacy of tools that are commonly used to assess these relationships, including enzymatic degradation, mouse knockout models, and computational models. Further work in this field will foster a better understanding of tendon and ligament damage and healing as well as inform strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Lainie E Eisner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Ryan Rosario
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
32
|
Xu X, Ha P, Yen E, Li C, Zheng Z. Small Leucine-Rich Proteoglycans in Tendon Wound Healing. Adv Wound Care (New Rochelle) 2022; 11:202-214. [PMID: 34978952 DOI: 10.1089/wound.2021.0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital of Capital Medical University, Beijing, People's Republic of China
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Emily Yen
- Arcadia High School, Arcadia, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
33
|
Managing Skin Ageing as a Modifiable Disorder—The Clinical Application of Nourella® Dual Approach Comprising a Nano-Encapsulated Retinoid, Retilex-A® and a Skin Proteoglycan Replacement Therapy, Vercilex®. COSMETICS 2022. [DOI: 10.3390/cosmetics9020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skin ageing is a progressive, but modifiable, multi-factorial disorder that involves all the skin’s tissues. Due to its wide range of physiological and psychosocial complications, skin ageing requires rigorous clinical attention. In this review, we aim to encourage clinicians to consider skin ageing as a disorder and suggest a novel, dual approach to its clinical treatment. Topical retinoids and per-oral proteoglycans are promising, non-invasive, therapeutic modalities. To overcome the low bioavailability of conventional free retinoids, Nourella® cream with Retilex-A® (Pharma Medico, Aarhus, Denmark) was developed using a proprietary nano-encapsulation technology. The nano-encapsulation is a sophisticated ‘permeation/penetration enhancer’ that optimises topical drug delivery by increasing the surface availability and net absorption ratio. Treatment adherence is also improved by minimising skin irritation. Interventional evidence suggests the greater efficacy of Retilex-A® in improving skin thickness and elasticity compared with conventional free forms. It is also reported that the rejuvenating efficacy of Retilex-A® and tretinoin are comparable. Another skin anti-ageing approach is proteoglycan replacement therapy (PRT) with Vercilex®. Vercilex® in Nourella® tablet form has the potential to ameliorate proteoglycan dysmetabolism in aged skin by activating skin cells and improving collagen/elastin turnover. Replicated clinical trials evidenced that PRT can significantly enhance the density, elasticity and thickness of both intrinsically aged and photoaged skin. Evidently, Vercilex® and Retilex-A® share a range of bioactivities that underlie their synergistic activity, as observed in a clinical trial. Dual therapy with Nourella® tablets and cream produced greater effects on skin characteristics than monotherapy with each of the two treatments. In conclusion, Nourella® cream and tablets are safe and effective treatments for skin ageing; however, combining the two in a ‘dual skin rejuvenation system’ significantly improves treatment outcomes.
Collapse
|
34
|
Hoffman DB, Raymond-Pope CJ, Sorensen JR, Corona BT, Greising SM. Temporal changes in the muscle extracellular matrix due to volumetric muscle loss injury. Connect Tissue Res 2022; 63:124-137. [PMID: 33535825 PMCID: PMC8364566 DOI: 10.1080/03008207.2021.1886285] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Volumetric muscle loss (VML) is a devastating orthopedic injury resulting in chronic persistent functional deficits, loss of joint range of motion, pathologic fibrotic deposition and lifelong disability. However, there is only limited mechanistic understanding of VML-induced fibrosis. Herein we examined the temporal changes in the fibrotic deposition at 3, 7, 14, 28, and 48 days post-VML injury. MATERIALS AND METHODS Adult male Lewis rats (n = 39) underwent a full thickness ~20% (~85 mg) VML injury to the tibialis anterior (TA) muscle unilaterally, the contralateral TA muscle served as the control group. All TA muscles were harvested for biochemical and histologic evaluation. RESULTS The ratio of collagen I/III was decreased at 3, 7, and 14 days post-VML, but significantly increased at 48 days. Decorin content followed an opposite trend, significantly increasing by day 3 before dropping to below control levels by 48 days. Histological evaluation of the defect area indicates a shift from loosely packed collagen at early time points post-VML, to a densely packed fibrotic scar by 48 days. CONCLUSIONS The shift from early wound healing efforts to a fibrotic scar with densely packed collagen within the skeletal muscle occurs around 21 days after VML injury through dogmatic synchronous reduction of collagen III and increase in collagen I. Thus, there appears to be an early window for therapeutic intervention to prevent pathologic fibrous tissue formation, potentially by targeting CCN2/CTGF or using decorin as a therapeutic.
Collapse
Affiliation(s)
- Daniel B. Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455
| | | | - Jacob R. Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455
| | | | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455;,For reprints contact: Sarah M. Greising, Ph.D., 1900 University Ave SE, 220A Cooke Hall, Minneapolis MN, 55455, , Phone: 612-626-7890, Fax: 612-626-7700
| |
Collapse
|
35
|
Turlo AJ, McDermott BT, Barr ED, Riggs CM, Boyde A, Pinchbeck GL, Clegg PD. Gene expression analysis of subchondral bone, cartilage, and synovium in naturally occurring equine palmar/plantar osteochondral disease. J Orthop Res 2022; 40:595-603. [PMID: 33993513 DOI: 10.1002/jor.25075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disease of the entire joint but the relationship between pathological events in various joint tissues is poorly understood. We examined concurrent changes in bone, cartilage, and synovium in a naturally occurring equine model of joint degeneration. Joints (n = 64) were grossly assessed for palmar/plantar osteochondral disease (POD) in racehorses that required euthanasia for unrelated reasons and assigned a grade of 0 (n = 34), 1 (n = 17), 2 or 3 (n = 13) using a recognized grading scheme. Synovium, cartilage, and subchondral bone were collected for histological and gene expression analysis. Relations between POD grade, cartilage histological score, and gene expression levels were examined using one-way analysis of variance or Kruskal-Wallis test and Spearman's correlation coefficient with corrections for multiple comparisons. Cartilage histological score increased in joints with POD grade 1 (p = 0.002) and 2 or 3 (p < 0.001) compared to 0. At grade 1, expression of COL1A1, COL2A1, and MMP1 increased and BGN decreased in subchondral bone while expression of BGN and ACAN decreased in cartilage. These changes further progressed at grades 2 and 3. POD grades 2 and 3 were associated with decreased expression of osteoclast inhibitor OPG and increased markers of cartilage degeneration (MMP13, COL1A1). Expression of the vascular endothelial growth factor decreased with POD grade and negatively correlated with cartilage histological score. Synovium showed no histological or transcriptomic changes related to pathology grade. Cartilage degeneration in POD is likely to be secondary to remodeling of the subchondral bone. Limited activation of proinflammatory and catabolic genes and moderate synovial pathology suggests distinct molecular phenotype of POD compared with OA.
Collapse
Affiliation(s)
- Agnieszka J Turlo
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Benjamin T McDermott
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Chris M Riggs
- Department of Veterinary Clinical Services, Hong Kong Jockey Club, Sha Tin Racecourse, New Territories, Hong Kong SAR, China
| | - Alan Boyde
- Dental Physical Sciences, Oral BioEngineering, Queen Mary University of London, Mile End Campus, London, UK
| | - Gina L Pinchbeck
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Peter D Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
36
|
Leiphart RJ, Pham H, Harvey T, Komori T, Kilts TM, Shetye SS, Weiss SN, Adams SM, Birk DE, Soslowsky LJ, Young MF. Coordinate roles for collagen VI and biglycan in regulating tendon collagen fibril structure and function. Matrix Biol Plus 2022; 13:100099. [PMID: 35036900 PMCID: PMC8749075 DOI: 10.1016/j.mbplus.2021.100099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
Abstract
Tendon is a vital musculoskeletal tissue that is prone to degeneration. Proper tendon maintenance requires complex interactions between extracellular matrix components that remain poorly understood. Collagen VI and biglycan are two matrix molecules that localize pericellularly within tendon and are critical regulators of tissue properties. While evidence suggests that collagen VI and biglycan interact within the tendon matrix, the relationship between the two molecules and its impact on tendon function remains unknown. We sought to elucidate potential coordinate roles of collagen VI and biglycan within tendon by defining tendon properties in knockout models of collagen VI, biglycan, or both molecules. We first demonstrated co-expression and co-localization of collagen VI and biglycan within the healing tendon, providing further evidence of cooperation between the two molecules during nascent tendon matrix formation. Deficiency in collagen VI and/or biglycan led to significant reductions in collagen fibril size and tendon mechanical properties. However, collagen VI-null tendons displayed larger reductions in fibril size and mechanics than seen in biglycan-null tendons. Interestingly, knockout of both molecules resulted in similar properties to collagen VI knockout alone. These results indicate distinct and non-additive roles for collagen VI and biglycan within tendon. This work provides better understanding of regulatory interactions between two critical tendon matrix molecules.
Collapse
Affiliation(s)
- Ryan J. Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Hai Pham
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Harvey
- Carnegie Institution for Science, Department of Embryology, The Johns Hopkins University, USA
| | - Taishi Komori
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tina M. Kilts
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snehal S. Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie N. Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheila M. Adams
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - David E. Birk
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - Louis J. Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Marian F. Young
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Colon-Caraballo M, Lee N, Nallasamy S, Myers K, Hudson D, Iozzo RV, Mahendroo M. Novel regulatory roles of small leucine-rich proteoglycans in remodeling of the uterine cervix in pregnancy. Matrix Biol 2022; 105:53-71. [PMID: 34863915 PMCID: PMC9446484 DOI: 10.1016/j.matbio.2021.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023]
Abstract
The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.
Collapse
Affiliation(s)
- Mariano Colon-Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Nicole Lee
- Department of Mechanical Engineering, Columbia University New York, New York 10027
| | - Shanmugasundaram Nallasamy
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Burlington, Vermont 05405
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University New York, New York 10027
| | - David Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington Seattle, Washington 98165
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390,Correspondence to: Mala Mahendroo, Ph.D, Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
38
|
Baghy K, Reszegi A, Horváth Z, Kovalszky I. The Role of Decorin in Cancer. BIOLOGY OF EXTRACELLULAR MATRIX 2022:23-47. [DOI: 10.1007/978-3-030-99708-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Jiao MN, Zhang TM, Yang K, Xu ZY, Zhang GM, Tian YY, Liu H, Yan YB. Absorbance or organization into ankylosis: a microarray analysis of haemarthrosis in a sheep model of temporomandibular joint trauma. BMC Oral Health 2021; 21:668. [PMID: 34961493 PMCID: PMC8713393 DOI: 10.1186/s12903-021-02033-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Traumatic haemarthrosis was hypothesized to be the etiology of temporomandibular (TMJ) ankylosis. Here, taking haematoma absorbance as a control, we aimed to reveal the molecular mechanisms involved in haematoma organizing into ankylosis using transcriptome microarray profiles. Material/methods Disk removal was performed to building haematoma absorbance (HA) in one side of TMJ, while removal of disk and articular fibrous layers was performed to induced TMJ ankylosis through haematoma organization (HO) in the contralateral side in a sheep model. Haematoma tissues harvested at days 1, 4 and 7 postoperatively were examined by histology, and analyzed by Affymetrix OviGene-1_0-ST microarrays. The DAVID were recruited to perform the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis for the different expression genes (DEGs). The DEGs were also typed into protein–protein interaction (PPI) networks to get the interaction data. Six significant genes screened from PPI analysis, were confirmed by real-time PCR. Results We found 268, 223 and 17 DEGs at least twofold at days 1, 4 and 7, respectively. At day 1, genes promoting collagen ossification (POSTN, BGN, LUM, SPARC), cell proliferation (TGF-β), and osteogenic differentiation of mesenchymal stem cells (BMP-2) were up-regulated in the HO side. At day 4, several genes involved in angiogenesis (KDR, FIT1, TEK) shower higher expression in the HO side. While HA was characterized by a continuous immune and inflammatory reaction. Conclusions Our results provide a comprehensive understanding of the role of haematoma in the onset and progress of TMJ ankylosis. The study will contribute to explaining why few injured TMJs ankylose and most do not from the molecular level. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-02033-w.
Collapse
Affiliation(s)
- Mai-Ning Jiao
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Tong-Mei Zhang
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, People's Republic of China.,Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Kun Yang
- Department of Oral and Maxillofacial Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 443001, People's Republic of China
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Yuan-Yuan Tian
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China
| | - Hao Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, People's Republic of China.
| |
Collapse
|
40
|
Lehmann TP, Guderska U, Kałek K, Marzec M, Urbanek A, Czernikiewicz A, Sąsiadek M, Karpiński P, Pławski A, Głowacki M, Jagodziński PP. The Regulation of Collagen Processing by miRNAs in Disease and Possible Implications for Bone Turnover. Int J Mol Sci 2021; 23:91. [PMID: 35008515 PMCID: PMC8745169 DOI: 10.3390/ijms23010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
This article describes several recent examples of miRNA governing the regulation of the gene expression involved in bone matrix construction. We present the impact of miRNA on the subsequent steps in the formation of collagen type I. Collagen type I is a main factor of mechanical bone stiffness because it constitutes 90-95% of the organic components of the bone. Therefore, the precise epigenetic regulation of collagen formation may have a significant influence on bone structure. We also describe miRNA involvement in the expression of genes, the protein products of which participate in collagen maturation in various tissues and cancer cells. We show how non-collagenous proteins in the extracellular matrix are epigenetically regulated by miRNA in bone and other tissues. We also delineate collagen mineralisation in bones by factors that depend on miRNA molecules. This review reveals the tissue variability of miRNA regulation at different levels of collagen maturation and mineralisation. The functionality of collagen mRNA regulation by miRNA, as proven in other tissues, has not yet been shown in osteoblasts. Several collagen-regulating miRNAs are co-expressed with collagen in bone. We suggest that collagen mRNA regulation by miRNA could also be potentially important in bone metabolism.
Collapse
Affiliation(s)
- Tomasz P. Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Urszula Guderska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Klaudia Kałek
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Maria Marzec
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Agnieszka Urbanek
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Alicja Czernikiewicz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Maria Sąsiadek
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland;
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| |
Collapse
|
41
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
43
|
Ahmad K, Lim JH, Lee EJ, Chun HJ, Ali S, Ahmad SS, Shaikh S, Choi I. Extracellular Matrix and the Production of Cultured Meat. Foods 2021; 10:foods10123116. [PMID: 34945667 PMCID: PMC8700801 DOI: 10.3390/foods10123116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature. In in vivo settings, extracellular matrix (ECM) ensures substrates and scaffolds are provided for cells. The ECM of skeletal muscle (SM) maintains tissue elasticity, creates adhesion points for cells, provides a three-dimensional (3D) environment, and regulates biological processes. Consequently, creating mimics of native ECM is a difficult task. Animal-derived polymers like collagen are often regarded as the gold standard for producing scaffolds with ECM-like properties. Animal-free scaffolds are being investigated as a potential source of stable, chemically defined, low-cost materials for cultured meat production. In this review, we explore the influence of ECM on myogenesis and its role as a scaffold and vital component to improve the efficacy of the culture media used to produce cultured meat.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong-Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun-Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Hee-Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence:
| |
Collapse
|
44
|
Proteoglycans and Diseases of Soft Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:127-138. [PMID: 34807417 DOI: 10.1007/978-3-030-80614-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteoglycans consist of protein cores to which at least one glycosaminoglycan chain is attached. They play important roles in the physiology and biomechanical function of tendons, ligaments, cardiovascular system, and other systems through their involvement in regulation of assembly and maintenance of extracellular matrix, and through their participation in cell proliferation together with growth factors. They can be divided into two main groups, small and large proteoglycans. The small proteoglycans are also known as small leucine-rich proteoglycans (SLRPs) which are encoded by 18 genes and are further subclassified into Classes I-V. Several members of Class I and II, such as decorin and biglycan from Class I, and Class II fibromodulin and lumican, are known to regulate collagen fibrillogenesis. Decorin limits the diameter of collagen fibrils during fibrillogenesis. The function of biglycan in fibrillogenesis is similar to that of decorin. Though biomechanical function of tendon is compromised in decorin-deficient mice, decorin can substitute for lack of biglycan in biglycan-deficient mice. New data also indicate an important role for biglycan in disorders of the cardiovascular system, including aortic valve stenosis and aortic dissection. Two members of the Class II of SLRPs, fibromodulin and lumican bind to the same site within the collagen molecule and can substitute for each other in fibromodulin- or lumican-deficient mice.Aggrecan and versican are the major representatives of the large proteoglycans. Though they are mainly found in the cartilage where they provide resilience and toughness, they are present also in tensile portions of tendons and, in slightly different biochemical form in fibrocartilage. Degradation by aggrecanase is responsible for the appearance of different forms of aggrecan and versican in different parts of the tendon where these cleaved forms play different roles. In addition, they are important components of the ventricularis of cardiac valves. Mutations in the gene for versican or in the gene for elastin (which binds to versican ) lead to severe disruptions of normal developmental of the heart at least in mice.
Collapse
|
45
|
Wang ST, Neo BH, Betts RJ. Glycosaminoglycans: Sweet as Sugar Targets for Topical Skin Anti-Aging. Clin Cosmet Investig Dermatol 2021; 14:1227-1246. [PMID: 34548803 PMCID: PMC8449875 DOI: 10.2147/ccid.s328671] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides comprised of repeating disaccharide units with pleiotropic biological functions, with the non-sulfated GAG hyaluronic acid (HA), and sulfated GAGs dermatan sulfate, chondroitin sulfate, heparan sulfate, keratan sulfate, and to a lesser extent heparin all being expressed in skin. Their ability to regulate keratinocyte proliferation and differentiation, inflammatory processes and extracellular matrix composition and quality demonstrates their critical role in regulating skin physiology. Similarly, the water-binding properties of GAGs and structural qualities, particularly for HA, are crucial for maintaining proper skin form and hydration. The biological importance of GAGs, as well as extensive evidence that their properties and functions are altered in both chronological and extrinsic skin aging, makes them highly promising targets to improve cosmetic skin quality. Within the present review, we examine the cutaneous biological activity of GAGs alongside the protein complexes they form called proteoglycans and summarize the age-related changes of these molecules in skin. We also examine current topical interventional approaches to modulate GAGs for improved skin quality such as direct exogenous administration of GAGs, with a particular interest in strategies targeted at potentiating GAG levels in skin through either attenuating GAG degradation or increasing GAG production.
Collapse
Affiliation(s)
- Siew Tein Wang
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | - Boon Hoe Neo
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | | |
Collapse
|
46
|
Stability and remineralization of proteoglycan-infused dentin substrate. Dent Mater 2021; 37:1724-1733. [PMID: 34538503 DOI: 10.1016/j.dental.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study tested the effects of small leucine-rich proteoglycan (SLRP) proteins on phosphoric acid (PA)-treated dentin bonding overtime and the role of such SLRPs in the remineralization potential of demineralized dentin collagen. METHODS Coronal dentin sections of human molars were used. SLRPs were either decorin (DCN) or biglycan (BGN) in core or proteoglycan form (with glycosaminoglycans, GAGs). Groups were: No treatment (control), DCN core, DCN + GAGs, BGN core, BGN + GAGs. Samples were etched with PA for 15 s and prior to application of Adper Single Bond Plus and composite buildup an aliquot of the specific SLRPs was applied over dentin. Twenty-four hours or 6 months after the bonding procedure, samples were tested for microtensile bond strength (MTBS). Debonded beams were analyzed by scanning electron microscopy (SEM). For remineralization studies, dentin blocks were fully demineralized, infused with the SLRPs, placed in artificial saliva for 2 weeks, and evaluated by transmission electron microscopy (TEM). RESULTS MTBS test presented a mean of 51.4 ± 9.1 MPa in control with no statistically significant difference to DCN core (47.6 ± 8.3) and BGN core (48.3 ± 6.5). The full proteoglycan groups DCN + GAGs (27.4 ± 4.5) and BGN + GAGs (36.4 ± 13.6) showed decreased MTBS compared to control (p < 0.001). At 6 months, control or core-treated samples did not have a statistically significant difference in MTBS. However, SLRPs with GAGs showed statistically significant improvement of bonding (62.5 ± 6.0 for DCN and 52.8 ± 8.1 for BGN, p < 0.001) compared to their baseline values. SEM showed that GAGs seem to favor water retention but overtime help remineralization. TEM of demineralized dentin indicated a larger collagen fibril diameter pattern of samples treated with core proteins compared to control and a smaller diameter with DCN + GAGs in water with evidence of mineralization with DCN + GAGS, BGN core and BGN + GAGs. SIGNIFICANCE In conclusion, core proteins seem not to affect dentin adhesion significantly but the presence of GAGs can be detrimental to immediate bonding. However, after ageing of samples, full proteoglycans, particularly DCN, can significantly improve bonding overtime while promoting remineralization which can prove to be clinically beneficial.
Collapse
|
47
|
Chartier C, ElHawary H, Baradaran A, Vorstenbosch J, Xu L, Efanov JI. Tendon: Principles of Healing and Repair. Semin Plast Surg 2021; 35:211-215. [PMID: 34526870 DOI: 10.1055/s-0041-1731632] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tendon stores, releases, and dissipates energy to efficiently transmit contractile forces from muscle to bone. Tendon injury is exceedingly common, with the spectrum ranging from chronic tendinopathy to acute tendon rupture. Tendon generally develops according to three main steps: collagen fibrillogenesis, linear growth, and lateral growth. In the setting of injury, it also repairs and regenerates in three overlapping steps (inflammation, proliferation, and remodeling) with tendon-specific durations. Acute injury to the flexor and extensor tendons of the hand are of particular clinical importance to plastic surgeons, with tendon-specific treatment guided by the general principle of minimum protective immobilization followed by hand therapy to overcome potential adhesions. Thorough knowledge of the underlying biomechanical principles of tendon healing is required to provide optimal care to patients presenting with tendon injury.
Collapse
Affiliation(s)
| | - Hassan ElHawary
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Aslan Baradaran
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Joshua Vorstenbosch
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Liqin Xu
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Johnny Ionut Efanov
- Division of Plastic and Reconstructive Surgery, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Buravkova L, Larina I, Andreeva E, Grigoriev A. Microgravity Effects on the Matrisome. Cells 2021; 10:2226. [PMID: 34571874 PMCID: PMC8471442 DOI: 10.3390/cells10092226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the "gravisensors" in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity. This review covers the current understanding of ECM and associated molecules as the matrisome, the features of the above components in connective tissues, and the role of the latter in the cell and tissue responses to the gravity alterations. Special attention is paid to contemporary methodological approaches to the matrisome composition analysis under real space flights and ground-based simulation of its effects on Earth.
Collapse
Affiliation(s)
- Ludmila Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, 123007 Moscow, Russia; (I.L.); (E.A.); (A.G.)
| | | | | | | |
Collapse
|
49
|
Hua R, Jiang JX. Small leucine-rich proteoglycans in physiological and biomechanical function of bone. Matrix Biol Plus 2021; 11:100063. [PMID: 34435181 PMCID: PMC8377002 DOI: 10.1016/j.mbplus.2021.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Proteoglycans (PGs) and glycosaminoglycans (GAGs) play vital roles in key signaling pathways to regulate bone homeostasis. The highly negatively charged GAGs are crucial in retaining bound water and modulating mechanical properties of bone. Age-related changes of PGs, GAGs, and bound water contribute to deterioration of bone quality during aging.
Proteoglycans (PGs) contain long unbranched glycosaminoglycan (GAG) chains attached to core proteins. In the bone extracellular matrix, PGs represent a class of non-collagenous proteins, and have high affinity to minerals and collagen. Considering the highly negatively charged character of GAGs and their interfibrillar positioning interconnecting with collagen fibrils, PGs and GAGs play pivotal roles in maintaining hydrostatic and osmotic pressure in the matrix. In this review, we will discuss the role of PGs, especially the small leucine-rich proteoglycans, in regulating the bioactivity of multiple cytokines and growth factors, and the bone turnover process. In addition, we focus on the coupling effects of PGs and GAGs in the hydration status of bone extracellular matrix, thus modulating bone biomechanical properties under physiological and pathological conditions.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
50
|
Han B, Li Q, Wang C, Chandrasekaran P, Zhou Y, Qin L, Liu XS, Enomoto-Iwamoto M, Kong D, Iozzo RV, Birk DE, Han L. Differentiated activities of decorin and biglycan in the progression of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2021; 29:1181-1192. [PMID: 33915295 PMCID: PMC8319061 DOI: 10.1016/j.joca.2021.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To delineate the activities of decorin and biglycan in the progression of post-traumatic osteoarthritis (PTOA). DESIGN Three-month-old inducible biglycan (BgniKO) and decorin/biglycan compound (Dcn/BgniKO) knockout mice were subjected to the destabilization of the medial meniscus (DMM) surgery to induce PTOA. The OA phenotype was evaluated by assessing joint structure and sulfated glycosaminoglycan (sGAG) staining via histology, surface collagen fibril nanostructure and calcium content via scanning electron microscopy, tissue modulus via atomic force microscopy-nanoindentation, as well as subchondral bone structure and meniscus ossification via micro-computed tomography. Outcomes were compared with previous findings in the inducible decorin (DcniKO) knockout mice. RESULTS In the DMM model, BgniKO mice developed similar degree of OA as the control (0.44 [-0.18 1.05] difference in modified Mankin score), different from the more severe OA phenotype observed in DcniKO mice (1.38 [0.91 1.85] difference). Dcn/BgniKO mice exhibited similar histological OA phenotype as DcniKO mice (1.51 [0.97 2.04] difference vs control), including aggravated loss of sGAGs, salient surface fibrillation and formation of osteophyte. Meanwhile, Dcn/BgniKO mice showed further cartilage thinning than DcniKO mice, resulting in the exposure of underlying calcified tissues and aberrantly high surface modulus. BgniKO and Dcn/BgniKO mice developed altered subchondral trabecular bone structure in both Sham and DMM groups, while DcniKO and control mice did not. CONCLUSION In PTOA, decorin plays a more crucial role than biglycan in regulating cartilage degeneration, while biglycan is more important in regulating subchondral bone structure. The two have distinct activities and modest synergy in the pathogenesis of PTOA.
Collapse
Affiliation(s)
- B Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - Q Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - C Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - P Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - Y Zhou
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - L Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - X S Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - M Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - D Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - R V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| | - D E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - L Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States.
| |
Collapse
|