• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635019)   Today's Articles (6908)   Subscriber (50000)
For: Kim HH. New algae mapping technique by the use of an airborne laser fluorosensor. Appl Opt 1973;12:1454-1459. [PMID: 20125547 DOI: 10.1364/ao.12.001454] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Number Cited by Other Article(s)
1
Shangguan M, Guo Y, Liao Z. Shipborne single-photon fluorescence oceanic lidar: instrumentation and inversion. OPTICS EXPRESS 2024;32:10204-10218. [PMID: 38571237 DOI: 10.1364/oe.515477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 04/05/2024]
2
Shangguan M, Guo Y, Liao Z, Lee Z. Sensing profiles of the volume scattering function at 180° using a single-photon oceanic fluorescence lidar. OPTICS EXPRESS 2023;31:40393-40410. [PMID: 38041342 DOI: 10.1364/oe.505615] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 12/03/2023]
3
Churnside JH, Shaw JA. Lidar remote sensing of the aquatic environment: invited. APPLIED OPTICS 2020;59:C92-C99. [PMID: 32400573 DOI: 10.1364/ao.59.000c92] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 06/11/2023]
4
Mohammed GH, Colombo R, Middleton EM, Rascher U, van der Tol C, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu-Etchegorry JP, Miller JR, Guanter L, Moreno J, Moya I, Berry JA, Frankenberg C, Zarco-Tejada PJ. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. REMOTE SENSING OF ENVIRONMENT 2019;231:111177. [PMID: 33414568 PMCID: PMC7787158 DOI: 10.1016/j.rse.2019.04.030] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
5
The Potential of Reflectance and Laser Induced Luminescence Spectroscopy for Near-Field Rare Earth Element Detection in Mineral Exploration. REMOTE SENSING 2018. [DOI: 10.3390/rs11010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
6
Hostetler CA, Behrenfeld MJ, Hu Y, Hair JW, Schulien JA. Spaceborne Lidar in the Study of Marine Systems. ANNUAL REVIEW OF MARINE SCIENCE 2018;10:121-147. [PMID: 28961071 PMCID: PMC7394243 DOI: 10.1146/annurev-marine-121916-063335] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
7
Chekalyuk A, Hafez M. Analysis of spectral excitation for measurements of fluorescence constituents in natural waters. OPTICS EXPRESS 2013;21:29255-29268. [PMID: 24514478 DOI: 10.1364/oe.21.029255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
8
Hoge FE, Lyon PE, Wright CW, Swift RN, Yungel JK. Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter. APPLIED OPTICS 2005;44:2857-62. [PMID: 15943339 DOI: 10.1364/ao.44.002857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
9
Lefcourt AM, Kim MS, Chen YR. Detection of fecal contamination on apples with nanosecond-scale time-resolved imaging of laser-induced fluorescence. APPLIED OPTICS 2005;44:1160-1170. [PMID: 15765694 DOI: 10.1364/ao.44.001160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
10
Kim MS, Lefcourt AM, Chen YR. Multispectral laser-induced fluorescence imaging system for large biological samples. APPLIED OPTICS 2003;42:3927-3934. [PMID: 12868832 DOI: 10.1364/ao.42.003927] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
11
Kim MS, McMurtrey JE, Mulchi CL, Daughtry CS, Chappelle EW, Chen YR. Steady-state multispectral fluorescence imaging system for plant leaves. APPLIED OPTICS 2001;40:157-166. [PMID: 18356987 DOI: 10.1364/ao.40.000157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
12
Anderson D, Nachman P, Estell R, Ruekgauer T, Havstad K, Fredrickson E, Murray L. The potential of laser-induced fluorescence (LIF) spectra of sheep feces to determine diet botanical composition. Small Rumin Res 1996. [DOI: 10.1016/0921-4488(95)00817-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Fernerkundung von Pflanzen. Naturwissenschaften 1993. [DOI: 10.1007/bf01136034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
14
Gitelson AA, Dubovitzkii GA, Mittenzwey KH. Grundlagenexperimente zur Laserfernerkundung von Binnengewässern. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/aheh.19900180505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
15
Remote sample characterization based on fluorescence monitoring. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00693979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
16
Hoge FE, Swift RN, Yungel JK. Active-passive airborne ocean color measurement. 2: Applications. APPLIED OPTICS 1986;25:48. [PMID: 18231135 DOI: 10.1364/ao.25.000048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
17
Hoge FE, Berry RE, Swift RN. Active-passive airborne ocean color measurement. 1: Instrumentation. APPLIED OPTICS 1986;25:39. [PMID: 18231134 DOI: 10.1364/ao.25.000039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
18
Chappelle EW, Wood FM, Newcomb WW, McMurtrey JE. Laser-induced fluorescence of green plants. 3: LIF spectral signatures of five major plant types. APPLIED OPTICS 1985;24:74-80. [PMID: 18216907 DOI: 10.1364/ao.24.000074] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
19
Hoge FE, Swift RN, Yungel JK. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants. APPLIED OPTICS 1983;22:2991. [PMID: 18200143 DOI: 10.1364/ao.22.002991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
20
Gehlhaar U. Computer simulations and theory of oceanographic fluorescence lidar signals: effect of sea surface structure. APPLIED OPTICS 1982;21:3743-3755. [PMID: 20396310 DOI: 10.1364/ao.21.003743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
21
Gehlhaar U, Gunther KP, Luther J. Compact and highly sensitive fluorescence lidar for oceanographic measurements. APPLIED OPTICS 1981;20:3318-3320. [PMID: 20333148 DOI: 10.1364/ao.20.003318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
22
Hoge FE, Swift RN. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments. APPLIED OPTICS 1981;20:3197-3205. [PMID: 20333121 DOI: 10.1364/ao.20.003197] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
23
Capelle GA, Franks LA. Laboratory evaluation of two laser fluorosensor systems. APPLIED OPTICS 1979;18:3579-3586. [PMID: 20216654 DOI: 10.1364/ao.18.003579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
24
Leonard DA, Caputo B, Hoge FE. Remote sensing of subsurface water temperature by Raman scattering. APPLIED OPTICS 1979;18:1732-1745. [PMID: 20212541 DOI: 10.1364/ao.18.001732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
25
Sato T, Suzuki Y, Kashiwagi H, Nanjo M, Kakui Y. Laser radar for remote detection of oil spills. APPLIED OPTICS 1978;17:3798-3803. [PMID: 20208611 DOI: 10.1364/ao.17.003798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
26
Measures RM. Lidar equation analysis allowing for target lifetime, laser pulse duration, and detector integration period. APPLIED OPTICS 1977;16:1092-1103. [PMID: 20168642 DOI: 10.1364/ao.16.001092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
27
Kim HH. Airborne bathymetric charting using pulsed blue-green lasers. APPLIED OPTICS 1977;16:46-56. [PMID: 20168426 DOI: 10.1364/ao.16.000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
28
Levine JS, Rogowski RS. Fluorescence detection of organic molecules in the Jovian atmosphere. ORIGINS OF LIFE 1975;6:395-9. [PMID: 1187102 DOI: 10.1007/bf01130340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
29
Ornstein MH, Derr VE. Prepulse enhancement of flashlamp pumped dye laser. APPLIED OPTICS 1974;13:2100-2104. [PMID: 20134635 DOI: 10.1364/ao.13.002100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA