1
|
Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices. Annu Rev Biomed Eng 2020; 21:219-239. [PMID: 31167098 DOI: 10.1146/annurev-bioeng-060418-052305] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Duche
- L'Oréal Research and Innovation, Aulnay-sous-Bois 93600, France
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Tissue Dynamics Ltd., Jerusalem 91904, Israel
| |
Collapse
|
2
|
Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018; 132:296-332. [PMID: 29990578 DOI: 10.1016/j.addr.2018.07.004] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
3D bioprinting is a pioneering technology that enables fabrication of biomimetic, multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate cytoarchitecture, structure-function hierarchy, and tissue-specific compositional and mechanical heterogeneity. Given the huge demand for organ transplantation, coupled with limited organ donors, bioprinting is a potential technology that could solve this crisis of organ shortage by fabrication of fully-functional whole organs. Though organ bioprinting is a far-fetched goal, there has been a considerable and commendable progress in the field of bioprinting that could be used as transplantable tissues in regenerative medicine. This paper presents a first-time review of 3D bioprinting in regenerative medicine, where the current status and contemporary issues of 3D bioprinting pertaining to the eleven organ systems of the human body including skeletal, muscular, nervous, lymphatic, endocrine, reproductive, integumentary, respiratory, digestive, urinary, and circulatory systems were critically reviewed. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro drug testing models, and personalized medicine. While there is a substantial progress in the field of bioprinting in the recent past, there is still a long way to go to fully realize the translational potential of this technology. Computational studies for study of tissue growth or tissue fusion post-printing, improving the scalability of this technology to fabricate human-scale tissues, development of hybrid systems with integration of different bioprinting modalities, formulation of new bioinks with tuneable mechanical and rheological properties, mechanobiological studies on cell-bioink interaction, 4D bioprinting with smart (stimuli-responsive) hydrogels, and addressing the ethical, social, and regulatory issues concerning bioprinting are potential futuristic focus areas that would aid in successful clinical translation of this technology.
Collapse
|
3
|
Ezra E, Keinan E, Mandel Y, Boulton ME, Nahmias Y. Non-dimensional analysis of retinal microaneurysms: critical threshold for treatment. Integr Biol (Camb) 2013; 5:474-80. [PMID: 23371018 DOI: 10.1039/c3ib20259c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluid dynamics play a fundamental role in the development of diabetic retinopathy, one of the leading causes of blindness in the Western world, affecting over 4 million people in the US alone. The disease is defined by microaneurysms, local expansions of capillaries that disturb the hemodynamic forces experienced by the endothelium leading to dysfunction, leakage and edema. Here we present a method to identify microaneurysms with a high risk of leakage based on a critical ratio of microaneurysm to vessel diameter. We derive this non-dimensional parameter from an analytical solution and generalize it using experimentally validated numerical methods. We show that this non-dimensional parameter defines the shear force experienced by endothelial cells, below which endothelial dysfunction is evident in vivo. Our results demonstrate the involvement of vWF in diabetic retinopathy, and explain a perceived disconnect between microaneurysm size and leakage. This method will allow experts to treat microaneurysms poising a high-risk of leakage, prior to edema, minimizing damage and saving vision.
Collapse
Affiliation(s)
- Elishai Ezra
- Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
4
|
Tasoglu S, Gurkan UA, Wang S, Demirci U. Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem Soc Rev 2013; 42:5788-808. [PMID: 23575660 PMCID: PMC3865707 DOI: 10.1039/c3cs60042d] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development.
Collapse
Affiliation(s)
- Savas Tasoglu
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Umut Atakan Gurkan
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - ShuQi Wang
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Utkan Demirci
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Ma Z, Liu Q, Yang H, Runyan RB, Eisenberg CA, Xu M, Borg TK, Markwald R, Wang Y, Gao BZ. Laser patterning for the study of MSC cardiogenic differentiation at the single-cell level. LIGHT, SCIENCE & APPLICATIONS 2013; 2:68. [PMID: 24527266 PMCID: PMC3920285 DOI: 10.1038/lsa.2013.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 06/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been cited as contributors to heart repair through cardiogenic differentiation and multiple cellular interactions, including the paracrine effect, cell fusion, and mechanical and electrical couplings. Due to heart-muscle complexity, progress in the development of knowledge concerning the role of MSCs in cardiac repair is heavily based on MSC-cardiomyocyte coculture. In conventional coculture systems, however, the in vivo cardiac muscle structure, in which rod-shaped cells are connected end-to-end, is not sustained; instead, irregularly shaped cells spread randomly, resulting in randomly distributed cell junctions. Consequently, contact-mediated cell-cell interactions (e.g., the electrical triggering signal and the mechanical contraction wave that propagate through MSC-cardiomyocyte junctions) occur randomly. Thus, the data generated on the beneficial effects of MSCs may be irrelevant to in vivo biological processes. In this study, we explored whether cardiomyocyte alignment, the most important phenotype, is relevant to stem cell cardiogenic differentiation. Here, we report (i) the construction of a laser-patterned, biochip-based, stem cell-cardiomyocyte coculture model with controlled cell alignment; and (ii) single-cell-level data on stem cell cardiogenic differentiation under in vivo-like cardiomyocyte alignment conditions.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA ; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Qiuying Liu
- Biomedical R&D Center, Jinan University, Guangzhou, China
| | - Huaxiao Yang
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
| | - Raymond B Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Carol A Eisenberg
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, New York Medical College, Valhalla, New York, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Thomas K Borg
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Roger Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yifei Wang
- Biomedical R&D Center, Jinan University, Guangzhou, China
| | - Bruce Z Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
|
7
|
Microscale methods to assemble mammalian cells into tissue-like structures. SCIENCE CHINA-LIFE SCIENCES 2012; 55:862-71. [DOI: 10.1007/s11427-012-4385-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/24/2012] [Indexed: 01/19/2023]
|
8
|
Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U. Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 2012; 1:149-158. [PMID: 23184717 PMCID: PMC3774531 DOI: 10.1002/adhm.201200011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/08/2012] [Indexed: 01/30/2023]
Abstract
Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications.
Collapse
Affiliation(s)
- Umut Atakan Gurkan
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Savas Tasoglu
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Doga Kavaz
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Melik C Demirel
- Materials Research Institute Pennsylvania State University University Park, PA 16802, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| |
Collapse
|
9
|
Li ZJ, Wu ZS, Shang QC. Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam. OPTICS EXPRESS 2011; 19:16044-16057. [PMID: 21934968 DOI: 10.1364/oe.19.016044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Using the theory of electromagnetic scattering of a uniaxial anisotropic sphere, we derive the analytical expressions of the radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam. The beam's propagation direction is parallel to the primary optical axis of the anisotropic sphere. The effects of the permittivity tensor elements ε(t) and ε(z) on the axial radiation forces are numerically analyzed in detail. The two transverse components of radiation forces exerted on a uniaxial anisotropic sphere, which is distinct from that exerted on an isotropic sphere due to the two eigen waves in the uniaxial anisotropic sphere, are numerically studied as well. The characteristics of the axial and transverse radiation forces are discussed for different radii of the sphere, beam waist width, and distances from the sphere center to the beam center of an off-axis Gaussian beam. The theoretical predictions of radiation forces exerted on a uniaxial anisotropic sphere are hoped to provide effective ways to achieve the improvement of optical tweezers as well as the capture, suspension, and high-precision delivery of anisotropic particles.
Collapse
Affiliation(s)
- Zheng-Jun Li
- School of Science, Xidian University, xi’an 710071, China
| | | | | |
Collapse
|
10
|
Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng 2011; 39:2329-45. [PMID: 21761242 DOI: 10.1007/s10439-011-0352-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/02/2011] [Indexed: 01/08/2023]
Abstract
The effects of flow on endothelial cells (ECs) have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of EC morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines EC micropatterning research by exploring both the many alternative methods used to alter EC morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in EC proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, are discussed.
Collapse
|
11
|
Guillame-Gentil O, Semenov O, Roca AS, Groth T, Zahn R, Vörös J, Zenobi-Wong M. Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:5443-62. [PMID: 20842659 DOI: 10.1002/adma.201001747] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Indexed: 05/22/2023]
Abstract
Cell fate is regulated by extracellular environmental signals. Receptor specific interaction of the cell with proteins, glycans, soluble factors as well as neighboring cells can steer cells towards proliferation, differentiation, apoptosis or migration. In this review, approaches to build cellular structures by engineering aspects of the extracellular environment are described. These methods include non-specific modifications to control the wettability and stiffness of surfaces using self-assembled monolayers (SAMs) and polyelectrolyte multilayers (PEMs) as well as methods where the temporal activation and spatial distribution of adhesion ligands is controlled. Building on these techniques, construction of two-dimensional cell sheets using temperature sensitive polymers or electrochemical dissolution is described together with current applications of these grafts in the clinical arena. Finally, methods to pattern cells in three-dimensions as well as to functionalize the 3D environment with biologic motifs take us one step closer to being able to engineer multicellular tissues and organs.
Collapse
|
12
|
Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. Biofabrication 2010; 2:032001. [PMID: 20814088 DOI: 10.1088/1758-5082/2/3/032001] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fabrication of cellular constructs with spatial control of cell location (+/-5 microm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing.
Collapse
Affiliation(s)
- Nathan R Schiele
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Ma Z, Burg KJL, Wei Y, Yuan XC, Peng X, Gao BZ. Laser-guidance based detection of cells with single-gene modification. APPLIED PHYSICS LETTERS 2008; 92:213902-2139023. [PMID: 19479045 PMCID: PMC2682740 DOI: 10.1063/1.2938020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/06/2008] [Indexed: 05/27/2023]
Abstract
An optical method with single-gene sensitivity for cell detection based on laser guidance was explored. Guided by the optical force from a weakly focused laser beam, a cell will move along the laser axis. Cells with different properties experience different optical forces and thus guidance speeds. The guidance speeds of the TC-1 cell and its genetically modified counterpart with only one gene change, L-10 cell, were studied under the same conditions. The results demonstrated that this laser guidance-based speed-measurement method can precisely distinguish cells that differ by only one gene.
Collapse
|
14
|
Nahmias Y, Odde DJ. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat Protoc 2007; 1:2288-96. [PMID: 17406470 DOI: 10.1038/nprot.2006.386] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we describe a simple protocol for the design and construction of a laser-guided direct writing (LGDW) system able to micropattern the self-assembly of liver sinusoid-like structures with micrometer resolution in vitro. To the best of our knowledge, LGDW is the only technique able to pattern cells "on the fly" with micrometer precision on arbitrary matrices, including soft gels such as Matrigel. By micropatterning endothelial cells on Matrigel, one can control the self-assembly of vascular structures and associated liver tissue. LGDW is therefore uniquely suited for studying the role of tissue architecture and mechanical properties at the single-cell resolution, and for studying the effects of heterotypic cell-cell interactions underlying processes such as liver morphogenesis, differentiation and angiogenesis. The total time required to carry out this protocol is typically 7 h.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, 51 Blossom Street, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
15
|
Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 103:309-29. [PMID: 17195468 DOI: 10.1007/10_029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | | | | |
Collapse
|
16
|
Nahmias Y, Arneja A, Tower TT, Renn MJ, Odde DJ. Cell patterning on biological gels via cell spraying through a mask. ACTA ACUST UNITED AC 2006; 11:701-8. [PMID: 15998211 DOI: 10.1089/ten.2005.11.701] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present an easily applicable and inexpensive method for patterning cells on arbitrary surfaces including biological gels with little loss of viability or function. Single-cell suspensions of human umbilical vein endothelial cells and NIH 3T3 fibroblasts were sprayed with an off-the-shelf airbrush through a mask to create 100-microm scale patterns on collagen gels. Three-dimensional patterns were created by layering a collagen gel on top of the first pattern and patterning the top gel. Coculture of rat hepatocytes with NIH 3T3 patterns on collagen gels resulted in localized increased activity of cytochrome P-450 along the pattern. These results suggest that cell spraying is a useful tool for the study of heterotypic cellular interactions and tissue-engineering applications on biologically relevant matrices, and for the creation of three-dimensional cell patterns in vitro.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
17
|
De Silva MN, Paulsen J, Renn MJ, Odde DJ. Two-step cell patterning on planar and complex curved surfaces by precision spraying of polymers. Biotechnol Bioeng 2006; 93:919-27. [PMID: 16358279 DOI: 10.1002/bit.20787] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Controlling adhesion of living animal cells plays a key role in biosensor fabrication, drug-testing technologies, basic biological research, and tissue engineering applications. Current techniques for cell patterning have two primary limitations: (1) they require photolithography, and (2) they are limited to patterning of planar surfaces. Here we demonstrate a simple, precision spraying method for both positive and negative patterning of planar and curved surfaces to achieve cell patterns rapidly and reproducibly. In this method, which we call precision spraying (PS), a polymer solution is aerosolized, focused with sheath airflow through an orifice, and deposited on the substrate using a deposition head to create approximately 25 microm sized features. In positive patterning, adhesive molecules, such as laminin or polyethylenimine (PEI) were patterned on polydimethylsiloxane (PDMS) substrates in a single spraying operation. A variety of animal cell types were found to adhere to the adhesive regions, and avoid the non-adhesive (bare PDMS) regions. In negative patterning, hydrophobic materials, such as polytetrafluoroethylene (PTFE) and PDMS, were patterned on glass substrates. Cells then formed patterns on the exposed glass regions and avoided the hydrophobic regions. Cellular patterns were maintained for up to 2 weeks in the presence of serum, which normally fouls non-adhesive regions. Additionally, we found that precision spraying enabled micropatterning of complex-curved surfaces. Our results show that precision spraying followed by cell plating enables rapid and flexible cellular micropatterning in two simple steps.
Collapse
Affiliation(s)
- Mauris N De Silva
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
18
|
Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 2005; 92:129-36. [PMID: 16025535 DOI: 10.1002/bit.20585] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the principal limitations to the size of an engineered tissue is oxygen and nutrient transport. Lacking a vascular bed, cells embedded in an engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. One possible solution is to directly write vascular structures within the engineered tissue prior to implantation, reconstructing the tissue according to its native architecture. The cell patterning technique, laser-guided direct writing (LGDW), can pattern multiple cells types with micrometer resolution on arbitrary surfaces, including biological gels. Here we show that LGDW can pattern human umbilical vein endothelial cells (HUVEC) in two- and three-dimensions with micrometer accuracy. By patterning HUVEC on Matrigel, we can direct their self-assembly into vascular structures along the desired pattern. Finally, co-culturing the vascular structures with hepatocytes resulted in an aggregated tubular structure similar in organization to a hepatic sinusoid. This capability can facilitate studies of tissue architecture at the single cell level, and of heterotypic interactions underlying processes such as liver and pancreas morphogenesis, differentiation, and angiogenesis.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | |
Collapse
|