1
|
Yildiz MZ, Kamanli AF, Eskiler GG, Tabakoğlu HÖ, Pala MA, Özdemir AE. Development of a novel laboratory photodynamic therapy device: automated multi-mode LED system for optimum well-plate irradiation. Lasers Med Sci 2024; 39:131. [PMID: 38750381 PMCID: PMC11096209 DOI: 10.1007/s10103-024-04083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Photodynamic therapy (PDT) is a targeted treatment method that utilizes a photosensitizer (PS) to induce cytotoxicity in malignant and non-malignant tumors. Optimization of PDT requires investigation of the selectivity of PS for the target tissues, irradiating light source, irradiation wavelengths, fluence rate, fluence, illumination mode, and overall treatment plan. In this study, we developed the Multi-mode Automatized Well-plate PDT LED Laboratory Irradiation System (MAWPLIS), an innovative device that automates time-consuming well plate light dosage/PS dose measurement experiment. The careful control of LED current and temperature stabilization in the LED module allowed the system to achieve high optical output stability. The MAWPLIS was designed by integrating a 3-axis moving system and motion controller, a quick-switching LED controller unit equipped with interchangeable LED modules capable of employing multiple wavelengths, and a TEC system. The proposed system achieved high optical output stability (1 mW) within the range of 0-500 mW, high wavelength stability (5 nm) at 635 nm, and high temperature stability (0.2 °C) across all radiation modes. The system's validation involved in vitro analysis using 5-ALA across varying concentrations, incubation periods, light exposures, and wavelengths in HT-29 colon cancer and WI-38 human lung fibroblast cell lines. Specifically, a combination of 405 nm and 635 nm wavelengths was selected to demonstrate enhanced strategies for colon cancer cell eradication and system validation. The MAWPLIS system represents a significant advancement in photodynamic therapy (PDT) research, offering automation and standardization of time-intensive experiments, high stability and precision, and improved PDT efficacy through dual-wavelength integration.
Collapse
Affiliation(s)
- Mustafa Zahid Yildiz
- Faculty of Technology, Electrical-Electronics Engineering, Sakarya University of Applied Sciences, Serdivan, Turkey
| | - Ali Furkan Kamanli
- Biomedical Technologies Application and Research Center (Biyotam), Sakarya University of Applied Sciences, Serdivan, Turkey.
| | | | | | - Muhammed Ali Pala
- Health Services Vocational School, Sakarya University, Serdivan, Sakarya, Turkey
| | - Ayla Eren Özdemir
- Health Services Vocational School, Sakarya University, Serdivan, Sakarya, Turkey
| |
Collapse
|
2
|
Yu TC, Davis SJ, Scimone MT, Grimble J, Maguluri G, Anand S, Cheng CE, Maytin E, Cao X, Pogue BW, Zhao Y. High Sensitivity Singlet Oxygen Luminescence Sensor Using Computational Spectroscopy and Solid-State Detector. Diagnostics (Basel) 2023; 13:3431. [PMID: 37998567 PMCID: PMC10670281 DOI: 10.3390/diagnostics13223431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
This paper presents a technique for high sensitivity measurement of singlet oxygen luminescence generated during photodynamic therapy (PDT) and ultraviolet (UV) irradiation on skin. The high measurement sensitivity is achieved by using a computational spectroscopy (CS) approach that provides improved photon detection efficiency compared to spectral filtering methodology. A solid-state InGaAs photodiode is used as the CS detector, which significantly reduces system cost and improves robustness compared to photomultiplier tubes. The spectral resolution enables high-accuracy determination and subtraction of photosensitizer fluorescence baseline without the need for time-gating. This allows for high sensitivity detection of singlet oxygen luminescence emission generated by continuous wave light sources, such as solar simulator sources and those commonly used in PDT clinics. The value of the technology is demonstrated during in vivo and ex vivo experiments that show the correlation of measured singlet oxygen with PDT treatment efficacy and the illumination intensity on the skin. These results demonstrate the potential use of the technology as a dosimeter to guide PDT treatment and as an analytical tool supporting the development of improved sunscreen products for skin cancer prevention.
Collapse
Affiliation(s)
- Tiffany C. Yu
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| | - Steve J. Davis
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| | | | - John Grimble
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| | - Gopi Maguluri
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| | | | | | | | - Xu Cao
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| | - Youbo Zhao
- Physical Sciences Inc., Andover, MA 01810, USA; (T.C.Y.)
| |
Collapse
|
3
|
Vaziri MRR, Ranjbar S, Beigzadeh AM, Sharif S. Experimental investigation and simultaneous modeling of the effect of methylene blue addition to cancer tumors in photodynamic therapy by digital holography. Photodiagnosis Photodyn Ther 2022; 40:103153. [PMID: 36228979 DOI: 10.1016/j.pdpdt.2022.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although many types of cancers can be treated with surgery, alternatives such as photodynamic therapy with simultaneous use of photosensitive materials and illumination can also be used. Knowing the dose of absorbed energy from the light beam in the photo-sensitized tumors and tissues has an important role in designing the optimal irradiation method with the aim of investigating the amount of received damage to the healthy and tumor tissues. METHODS In this study, the effect of the presence of methylene blue sensitizer on the amount of dose received in tissue-equivalent material has been investigated experimentally by Mach-Zehnder interferometry and digital holography. The Monte Carlo method and the ValoMC code have been used to confirm the results obtained in the experimental phase. RESULTS The results indicate the positive role of methylene blue in increasing the absorbed dose of tumor-equivalent material. The amount of light dose increase and the two-dimensional profile of the dose absorbed in tissue and tumor equivalent materials have been measured by digital holography. CONCLUSIONS The method presented in this work can be used in treatment design and real time measuring of the spatially resolved distribution of the absorbed dose in the tissues containing tumors.
Collapse
Affiliation(s)
| | - Sepideh Ranjbar
- Applied Physics Group, Faculty of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Amir Mohammad Beigzadeh
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Azadi square, Mashhad, Iran.
| |
Collapse
|
4
|
VİTHANAGE V, C.D. J, M.D.P. DE. C, RAJENDRAM S. Photodynamic Therapy : An Overview and Insights into a Prospective Mainstream Anticancer Therapy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) procedure has minimum invasiveness in contrast to conventional anticancer surgical procedures. Although clinically approved a few decades ago, it is not commonly used due to its poor efficacy, mainly due to poor light penetration into deeper tissues. PDT uses a photosensitizer (PS), which is photoactivated on illumination by light of appropriate wavelength and oxygen in the tissue, leading to a series of photochemical reactions producing reactive oxygen species (ROS) triggering various mechanisms resulting in lethal effects on tumor cells. This review looks into the fundamental aspects of PDT, such as photochemistry, photobiological effects, and the current clinical applications in the light of improving PDT to become a mainstream therapeutic procedure against a broad spectrum of cancers and malignant lesions. The side effects of PDT, both early and late-onset, are elaborated on in detail to highlight the available options to minimize side effects without compromising therapeutic efficacy. This paper summarizes the benefits, drawbacks, and limitations of photodynamic therapy along with the recent attempts to achieve improved therapeutic efficacy via monitoring various cellular and molecular processes through fluorescent imagery aided by suitable biomarkers, prospective nanotechnology-based targeted delivery methods, the use of scintillating nanoparticles to deliver light to remote locations and also combining PDT with conventional anticancer therapies have opened up new dimensions for PDT in treating cancers. This review inquires and critically analyses prospective avenues in which a breakthrough would finally enable PDT to be integrated into mainstream anticancer therapy.
Collapse
|
5
|
Zhao Y, Moritz T, Hinds MF, Gunn JR, Shell JR, Pogue BW, Davis SJ. High optical-throughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy. JOURNAL OF BIOPHOTONICS 2021; 14:e202100088. [PMID: 34323374 DOI: 10.1002/jbio.202100088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
We report a high light-throughput spectroscopic dosimeter system that is able to noninvasively measure luminescence signals of singlet oxygen (1 O2 ) produced during photodynamic therapy (PDT) using a CW (continuous wave) light source. The system is based on a compact, fiber-coupled, high collection efficiency spectrometer (>50% transmittance) designed to maximize optical throughput but with sufficient spectral resolution (~7 nm). This is adequate to detect 1 O2 phosphorescence in the presence of strong luminescence background in vivo. This system provides simultaneous acquisition of multiple spectral data points, allowing for more accurate determination of luminescence baseline via spectral fitting and thus the extraction of 1 O2 phosphorescence signal based solely on spectroscopic decomposition, without the need for time-gating. Simultaneous collection of photons at different wavelengths improves the quantum efficiency of the system when compared to sequential spectral measurements such as filter-wheel or tunable-filter based systems. A prototype system was tested during in vivo PDT tumor regression experiments using benzoporphyrin derivative (BPD) photosensitizer. It was found that the treatment efficacy (tumor growth inhibition rate) correlated more strongly with 1 O2 phosphorescence than with PS fluorescence. These results indicate that this high photon-collection efficiency spectrometer instrument may offer a viable option for real-time 1 O2 dosimetry during PDT treatment using CW light.
Collapse
Affiliation(s)
- Youbo Zhao
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Tobias Moritz
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Michael F Hinds
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA
| | - Steven J Davis
- Physical Sciences Inc, 20 New England Business Center Dr., Andover, MA, 01810, USA
| |
Collapse
|
6
|
Ubbink R, Prens EP, Mik EG. Quantitative intracellular oxygen availability before and after 5-aminolevulinic acid skin photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102599. [PMID: 34699980 DOI: 10.1016/j.pdpdt.2021.102599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND During photodynamic therapy (PDT) oxygen is transformed into reactive oxygen species (ROS) to induce cellular apoptosis in (pre)malignant cells. Real time oxygen availability measurement is clinically available with the Cellular Oxygen Metabolism (COMET) monitor. METHODS Primary objective is to show that mitochondrial oxygen availability (mitoPO2) measurement is possible during clinical ALA-PDT. The secondary aim was to determine the pain sensation, because it is the most commonly reported side effect of PDT. Before and after the two fraction PDT treatment, with a 2-hour dark period, mitoPO2 was measured and reported pain was documented with a visual analog scale (VAS) 0-100. RESULTS Nine patients were included. Before the first PDT session the median signal quality was [IQR] 55.0% [34.2-68.0], which decreased after session one to 0% [0.0-10.0]. MitoPO2 was 40.0 [17.7-53.8] mmHg and increased afterwards to 61.8 [38.2-64.8] mmHg. This likely the result of the delay time between the illumination stop and the mitoPO2 measurements in a vasodilated, visibly red lesion. Before session two signal quality was 10.4% [0-20.15], 40% lower than at the start. In 5 patients the signal quality after session 2 was too low because of photobleaching and insufficient regeneration of PpIX, median 0% [0-10]. Subjects reported low median VAS scores, all below 3, directly after the mitoPO2 measurements. CONCLUSION With COMET we were able to reliably measure mitochondrial oxygen concentrations during photodynamic therapy. Signal quality drastically decreases after a PDT session because of PpIX deterioration during the illumination phase.
Collapse
Affiliation(s)
- R Ubbink
- Erasmus Medical Center, Anesthesiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - E P Prens
- Erasmus Medical Center, Dermatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - E G Mik
- Erasmus Medical Center, Anesthesiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Komolibus K, Fisher C, Swartling J, Svanberg S, Svanberg K, Andersson-Engels S. Perspectives on interstitial photodynamic therapy for malignant tumors. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210111-PERR. [PMID: 34302323 PMCID: PMC8299827 DOI: 10.1117/1.jbo.26.7.070604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE Despite remarkable advances in the core modalities used in combating cancer, malignant diseases remain the second largest cause of death globally. Interstitial photodynamic therapy (IPDT) has emerged as an alternative approach for the treatment of solid tumors. AIM The aim of our study is to outline the advancements in IPDT in recent years and provide our vision for the inclusion of IPDT in standard-of-care (SoC) treatment guidelines of specific malignant diseases. APPROACH First, the SoC treatment for solid tumors is described, and the attractive properties of IPDT are presented. Second, the application of IPDT for selected types of tumors is discussed. Finally, future opportunities are considered. RESULTS Strong research efforts in academic, clinical, and industrial settings have led to significant improvements in the current implementation of IPDT, and these studies have demonstrated the unique advantages of this modality for the treatment of solid tumors. It is envisioned that further randomized prospective clinical trials and treatment optimization will enable a wide acceptance of IPDT in the clinical community and inclusion in SoC guidelines for well-defined clinical indications. CONCLUSIONS The minimally invasive nature of this treatment modality combined with the relatively mild side effects makes IPDT a compelling alternative option for treatment in a number of clinical applications. The adaptability of this technique provides many opportunities to both optimize and personalize the treatment.
Collapse
Affiliation(s)
- Katarzyna Komolibus
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- Address all correspondence to Katarzyna Komolibus,
| | - Carl Fisher
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
| | | | - Sune Svanberg
- Lund University, Department of Physics, Lund, Sweden
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Katarina Svanberg
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
- Lund University Hospital, Department of Clinical Sciences, Lund, Sweden
| | - Stefan Andersson-Engels
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| |
Collapse
|
8
|
Garcia MR, Requena MB, Pratavieira S, Moriyama LT, Becker M, Bagnato VS, Kurachi C, Magalhães DV. Development of a system to treat and online monitor photodynamic therapy of skin cancer using PpIX near-infrared fluorescence. Photodiagnosis Photodyn Ther 2020; 30:101680. [DOI: 10.1016/j.pdpdt.2020.101680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
|
9
|
Mousavi M, Moriyama LT, Grecco C, Nogueira MS, Svanberg K, Kurachi C, Andersson-Engels S. Photodynamic therapy dosimetry using multiexcitation multiemission wavelength: toward real-time prediction of treatment outcome. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-14. [PMID: 32246614 PMCID: PMC7118359 DOI: 10.1117/1.jbo.25.6.063812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 05/28/2023]
Abstract
Evaluating the optical properties of biological tissues is needed to achieve accurate dosimetry during photodynamic therapy (PDT). Currently, accurate assessment of the photosensitizer (PS) concentration by fluorescence measurements during PDT is typically hindered by the lack of information about tissue optical properties. In the present work, a hand-held fiber-optic probe instrument monitoring fluorescence and reflectance is used for assessing blood volume, reduced scattering coefficient, and PS concentration facilitating accurate dosimetry for PDT. System validation was carried out on tissue phantoms using nonlinear least squares support machine regression analysis. It showed a high correlation coefficient (>0.99) in the prediction of the PS concentration upon a large variety of phantom optical properties. In vivo measurements were conducted in a PDT chlorine e6 dose escalating trial involving 36 male Swiss mice with Ehrlich solid tumors in which fluences of 5, 15, and 40 J cm - 2 were delivered at two fluence rates (100 and 40 mW cm - 2). Remarkably, quantitative measurement of fluorophore concentration was achieved in the in vivo experiment. Diffuse reflectance spectroscopy (DRS) system was also used to independently measure the physiological properties of the target tissues for result comparisons. Then, blood volume and scattering coefficient measured by the fiber-optic probe system were compared with the corresponding result measured by DRS and showed agreement. Additionally, tumor hemoglobin oxygen saturation was measured using the DRS system. Overall, the system is capable of assessing the implicit photodynamic dose to predict the PDT outcome.
Collapse
Affiliation(s)
| | - Lilian Tan Moriyama
- University of São Paulo, São Carlos Institute of Physics, Optics Group, São Carlos/SP, Brazil
| | - Clovis Grecco
- University of São Paulo, São Carlos Institute of Physics, Optics Group, São Carlos/SP, Brazil
| | - Marcelo Saito Nogueira
- Tyndall National Institute, IPIC, Biophotonics@Tyndall, Lee Maltings, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| | - Katarina Svanberg
- Lund University, Department of Physics, Biophotonics Group, Lund, Sweden
| | - Cristina Kurachi
- University of São Paulo, São Carlos Institute of Physics, Optics Group, São Carlos/SP, Brazil
| | - Stefan Andersson-Engels
- Lund University, Department of Physics, Biophotonics Group, Lund, Sweden
- Tyndall National Institute, IPIC, Biophotonics@Tyndall, Lee Maltings, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| |
Collapse
|
10
|
Hernández-Quintanar L, Fabila-Bustos DA, Hernández-Chávez M, Valor A, de la Rosa JM, Stolik S. Fiber-optic pulseoximeter for local oxygen saturation determination using a Monte Carlo multi-layer model for calibration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 187:105237. [PMID: 31790944 DOI: 10.1016/j.cmpb.2019.105237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/28/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Local tissue oxygenation determines the relationship between the supply and the demand for oxygen by the tissue and it is an important indicator of the physiological or pathological condition of the tissue. Moreover, some therapeutic methods strongly depend on the oxygen content of the tissue. In photodynamic therapy, when molecular oxygen is present, the irradiation of the photosensitizer with light triggers the generation of reactive oxygen species that kill the target diseased cells within the treated tissue. To ensure the best possible therapy response, the tissue must be well oxygenated; hence, oxygen concentration measurement becomes a decisive factor. In this work, the design, construction and calibration of a module to locally measure the blood oxygen saturation in tissue is presented. METHODS The system is built using a red (660-nm) and an infrared (940-nm) light emitting diodes as light sources, a photodiode as a detector, and a homemade handheld fiber optic-based reflectance pulse oximetry sensor. In addition, the developed sensor was modeled by means of multilayered Monte Carlo simulations, to study its behavior when used in different thickness and melanin content skin. RESULTS From the simulation reflectance values, the oxygen saturation calibration curves considering different melanin concentrations and skin thicknesses were obtained for two different skin models, one comprising three skin layers and the second, assuming seven different layers for the skin. A comparison of the performances of the developed pulse oximeter sensor with a commercial one is also presented. CONCLUSIONS A new pulseoximeter for the measurement of local oxygenation in tissue was developed. Its calibration strongly depends on the site of measurement due to the influence of tissue thickness, vascularization, and melanin content. A three-layer skin model is proved to be suitable for the calibration of the pulseoximeter in thin and medium thickness skin.
Collapse
Affiliation(s)
- Luis Hernández-Quintanar
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Ciudad de México, 07738, Mexico; Laboratorio de Espectroscopía, UPIIH, Instituto Politécnico Nacional, Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, 42162, Mexico
| | - Diego A Fabila-Bustos
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Ciudad de México, 07738, Mexico; Laboratorio de Espectroscopía, UPIIH, Instituto Politécnico Nacional, Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, 42162, Mexico
| | - Macaria Hernández-Chávez
- Laboratorio de Espectroscopía, UPIIH, Instituto Politécnico Nacional, Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, 42162, Mexico
| | - Alma Valor
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Ciudad de México, 07738, Mexico
| | - José M de la Rosa
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Ciudad de México, 07738, Mexico
| | - Suren Stolik
- Laboratorio de Biofotónica, ESIME ZAC, Instituto Politécnico Nacional, Ciudad de México, 07738, Mexico.
| |
Collapse
|
11
|
Kamanli AF, Çetinel G, Yıldız MZ. A New handheld singlet oxygen detection system (SODS) and NIR light source based phantom environment for photodynamic therapy applications. Photodiagnosis Photodyn Ther 2019; 29:101577. [PMID: 31711998 DOI: 10.1016/j.pdpdt.2019.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Photodynamic therapy (PDT) is an emerging treatment modality in various areas such as cancer treatment and disinfection. The photosensitizer and oxygen have crucial roles for effective PDT treatment. The quantitative evaluation of singlet oxygen, which is a gold standard for monitoring effective treatment, remains as an important problem for PDT. However, low quantum yield and low life span of the singlet oxygen make the system expensive, unnecessarily large and unadaptable for clinical usage. In our study, a new mobile singlet oxygen detection system (SODS) was designed to detect singlet oxygen illumination during PDT and a new singlet oxygen phantom environment was constituted to test the designed SODS system. The singlet oxygen phantom environment composed of fast switching led driver & microcontroller and led light source (1200-1300 nm radiation). The elements of the singlet oxygen detection system are optic filter and collimation, avalanche photodiode transimpedance amplifier, differential amplifier and a signal processing block. According to the performance evaluation of the system on the phantom environment, the presented SODS can measure the illuminations at 1270 nm wavelength between 10 ns and 15 µs timespans. The results showed that the proposed system might be a good candidate for clinical PDT applications.
Collapse
Affiliation(s)
- Ali Furkan Kamanli
- Sakarya University of Applied Sciences, Faculty of Technology, Electrical and Electronics Engineering, Turkey.
| | - Gökçen Çetinel
- Sakarya University, Faculty of Engineering, Electrical and Electronics Engineering, Turkey
| | - Mustafa Zahid Yıldız
- Sakarya University of Applied Sciences, Faculty of Technology, Electrical and Electronics Engineering, Turkey
| |
Collapse
|
12
|
Buzalewicz I, Hołowacz I, Ulatowska-Jarża A, Podbielska H. Towards dosimetry for photodynamic diagnosis with the low-level dose of photosensitizer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [PMID: 28641204 DOI: 10.1016/j.jphotobiol.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Contemporary medicine does not concern the issue of dosimetry in photodynamic diagnosis (PDD) but follows the photosensitizer (PS) producers recommendation. Most preclinical and clinical PDD studies indicate a considerable variation in the possibility of visualization and treatment, as e.g. in case of cervix lesions. Although some of these variations can be caused by the different histological subtypes or various tumor geometries, the issue of varying PS concentration in the tumor tissue volume is definitely an important factor. Therefore, there is a need to establish the objective and systematic PDD dosimetry protocol regarding doses of light and photosensitizers. METHODS Four different irradiation sources investigated in PDD (literature) were used for PS excitation. The PS luminescence was examined by means of the non-imaging (spectroscopic) and imaging (wide- and narrow-field of view) techniques. The methodology for low-level intensity photoluminescence (PL) characterization and dedicated image processing algorithm for PS luminescence images analysis were proposed. Further, HeLa cells' cultures penetration by PS was studied by a confocal microscopy. RESULTS Reducing the PS dose with the choice of proper photoexcitation conditions decreases the PDD procedure costs and the side effects, not affecting the diagnostic efficiency. We determined in vitro the minimum incubation time and photosensitizer concentration of Photolon for diagnostic purposes, for which the Photolon PL can still be observed. It was demonstrated that quantification of PS concentration, choice of proper photoexcitation source, appropriate adjustment of light dose and PS penetration of cancer cells may improve the low-level luminescence photodynamic diagnostics performance. CONCLUSIONS Practical effectiveness of the PDD strongly depends on irradiation source parameters (bandwidth, maximum intensity, half-width) and their optimization is the main conditioning factor for low-level intensity and low-cost PDD.
Collapse
Affiliation(s)
- Igor Buzalewicz
- Bio-Optics Group, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Iwona Hołowacz
- Bio-Optics Group, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw, Poland
| | - Agnieszka Ulatowska-Jarża
- Bio-Optics Group, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw, Poland
| | - Halina Podbielska
- Bio-Optics Group, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw, Poland
| |
Collapse
|
13
|
Protti S, Albini A, Viswanathan R, Greer A. Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Field—The Photochemist's Role. Photochem Photobiol 2017; 93:1139-1153. [DOI: 10.1111/php.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Stefano Protti
- PhotoGreen Lab Department of Chemistry University of Pavia Pavia Italy
| | - Angelo Albini
- PhotoGreen Lab Department of Chemistry University of Pavia Pavia Italy
| | | | - Alexander Greer
- Department of Chemistry Brooklyn College Brooklyn NY
- Ph.D. Program in Chemistry The Graduate Center of the City University of New York New York City NY
| |
Collapse
|
14
|
Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T. Beyond the Barriers of Light Penetration: Strategies, Perspectives and Possibilities for Photodynamic Therapy. Theranostics 2016; 6:2458-2487. [PMID: 27877247 PMCID: PMC5118607 DOI: 10.7150/thno.16183] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a photochemistry based treatment modality that involves the generation of cytotoxic species through the interactions of a photosensitizer molecule with light irradiation of an appropriate wavelength. PDT is an approved therapeutic modality for several cancers globally and in several cases has proved to be effective where traditional treatments have failed. The key parameters that determine PDT efficacy are 1. the photosensitizer (nature of the molecules, selectivity, and macroscopic and microscopic localization etc.), 2. light application (wavelength, fluence, fluence rate, irradiation regimes etc.) and 3. the microenvironment (vascularity, hypoxic regions, stromal tissue density, molecular heterogeneity etc.). Over the years, several groups aimed to monitor and manipulate the components of these critical parameters to improve the effectiveness of PDT treatments. However, PDT is still misconstrued to be a surface treatment primarily due to the limited depths of light penetration. In this review, we present the recent advances, strategies and perspectives in PDT approaches, particularly in cancer treatment, that focus on increasing the 'damage zone' beyond the reach of light in the body. This is enabled by a spectrum of approaches that range from innovative photosensitizer excitation strategies, increased specificity of phototoxicity, and biomodulatory approaches that amplify the biotherapeutic effects induced by photodynamic action. Along with the increasing depth of understanding of the underlying physical, chemical and physiological mechanisms, it is anticipated that with the convergence of these strategies, the clinical utility of PDT will be expanded to a powerful modality in the armamentarium for the management of cancer.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sriram Anbil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815
- The University of Texas School of Medicine at San Antonio, San Antonio, TX 78229
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
15
|
Pogue BW, Elliott JT, Kanick SC, Davis SC, Samkoe KS, Maytin EV, Pereira SP, Hasan T. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Phys Med Biol 2016; 61:R57-89. [PMID: 26961864 DOI: 10.1088/0031-9155/61/7/r57] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment based upon each patients measured bleaching needs to be attempted. In the case of ALA, lack of PpIX is more likely an indicator that alternative PpIX production methods must be implemented. Parsimonious dosimetry, using surrogate measurements that are clinically acceptable, might strategically help to advance PDT in a medical world that is increasingly cost and time sensitive. Careful attention to methodologies that can identify and advance the most critical dosimetric measurements, either direct or surrogate, are needed to ensure successful incorporation of PDT into niche clinical procedures.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. Department of Surgery, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Swartling J, Höglund OV, Hansson K, Södersten F, Axelsson J, Lagerstedt AS. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:28002. [PMID: 26886806 DOI: 10.1117/1.jbo.21.2.028002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.
Collapse
Affiliation(s)
| | - Odd V Höglund
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Box 7054, Uppsala 750 07, Sweden
| | - Kerstin Hansson
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Box 7054, Uppsala 750 07, Sweden
| | - Fredrik Södersten
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Box 7028, Uppsala 750 07, Sweden
| | - Johan Axelsson
- Lund University, Division of Atomic Physics, Physics Department, Box 118, Lund 221 00, Sweden
| | - Anne-Sofie Lagerstedt
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Box 7054, Uppsala 750 07, Sweden
| |
Collapse
|
17
|
Baran TM, Foster TH. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy. Med Phys 2014; 41:022701. [PMID: 24506647 DOI: 10.1118/1.4862078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. METHODS Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D90) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. RESULTS When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180-8080 J in order to deposit 90 J/cm(2) in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270-2350 J (333-1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485-3600 J were required, compared to ten flat cleaved fibers delivering 2780-3600 J. CONCLUSIONS For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.
Collapse
Affiliation(s)
- Timothy M Baran
- Department of Imaging Sciences, University of Rochester, Rochester, New York 14642
| | - Thomas H Foster
- Department of Imaging Sciences, University of Rochester, Rochester, New York 14642
| |
Collapse
|
18
|
Kannen H, Hazama H, Kaneda Y, Fujino T, Awazu K. Development of laser ionization techniques for evaluation of the effect of cancer drugs using imaging mass spectrometry. Int J Mol Sci 2014; 15:11234-44. [PMID: 24968266 PMCID: PMC4139779 DOI: 10.3390/ijms150711234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 12/31/2022] Open
Abstract
Recently, combined therapy using chemotherapy and photodynamic therapy (PDT) has been proposed as a means of improving treatment outcomes. In order to evaluate the efficacy of combined therapy, it is necessary to determine the distribution of the anticancer drug and the photosensitizer. We investigated the use of imaging mass spectrometry (IMS) to simultaneously observe the distributions of an anticancer drug and photosensitizer administered to cancer cells. In particular, we sought to increase the sensitivity of detection of the anticancer drug docetaxel and the photosensitizer protoporphyrin IX (PpIX) by optimizing the ionization-assisting reagents. When we used a matrix consisting of equal weights of a zeolite (NaY5.6) and a conventional organic matrix (6-aza-2-thiothymine) in matrix-assisted laser desorption/ionization, the signal intensity of the sodium-adducted ion of docetaxel (administered at 100 μM) increased about 13-fold. Moreover, we detected docetaxel with the zeolite matrix using the droplet method, and detected PpIX by fluorescence and IMS with α-cyano-4-hydroxycinnamic acid (CHCA) using the spray method.
Collapse
Affiliation(s)
- Hiroki Kannen
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hisanao Hazama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yasufumi Kaneda
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tatsuya Fujino
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa Hachioji, Tokyo 192-0397, Japan.
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
19
|
Yin H, Stephenson M, Gibson J, Sampson E, Shi G, Sainuddin T, Monro S, McFarland SA. In vitro multiwavelength PDT with 3IL states: teaching old molecules new tricks. Inorg Chem 2014; 53:4548-59. [PMID: 24725142 DOI: 10.1021/ic5002368] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of the present investigation was to ascertain whether (3)IL excited states with microsecond lifetimes are universally potent for photodynamic applications, and if these long-lived states are superior to their (3)MLCT counterparts as in vitro PDT agents. A family of blue-green absorbing, Ru(II)-based transition metal complexes derived from the π-expansive dppn ligand was prepared and characterized according to its photodynamic activity against HL-60 cells, and toward DNA in cell-free media. Complexes in this series that are characterized by low-energy and long-lived (3)IL excited states photocleaved DNA with blue, green, red, and near-IR light. This panchromatic photodynamic effect translated to in vitro multiwavelength photodynamic therapy (PDT) with red-light cytotoxicities as low as 1.5 μM (EC50) for the parent complex and 400 nM for its more lipophilic counterpart. This potency is similar to that achieved with Ru(II)-based dyads containing long-lived (3)IL excitons located on appended pyrenyl units, and appears to be a general property of sufficiently long-lived excited states. Moreover, the red PDT observed for certain members of this family was almost 5 times more potent than Photofrin with therapeutic indices 30 times greater. Related Ru(II) complexes having lowest-lying (3)MLCT states of much shorter duration (≤1 μs) did not yield DNA photodamage or in vitro PDT with red or near-IR light, nor did the corresponding Os(II) complex with a submicrosecond (3)IL excited state lifetime. Therefore, metal complexes that utilize highly photosensitizing (3)IL excited states, with suitably long lifetimes (≫ 1 μs), are well-poised to elicit PDT at wavelengths even where their molar extinction coefficients are very low (<100 M(-1) cm(-1)). Herein we demonstrate that such unexpected reactivity gives rise to very effective PDT in the typical therapeutic window (600-850 nm).
Collapse
Affiliation(s)
- Huimin Yin
- Department of Chemistry, Acadia University , 6 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Baran TM, Fenn MC, Foster TH. Determination of optical properties by interstitial white light spectroscopy using a custom fiber optic probe. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:107007. [PMID: 24150093 PMCID: PMC3805060 DOI: 10.1117/1.jbo.18.10.107007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/24/2013] [Indexed: 05/05/2023]
Abstract
We demonstrate interstitial recovery of absorption and scattering coefficients using a custom optical probe and a Monte Carlo (MC)-based recovery algorithm. The probe consists of six side-firing spectroscopy fibers contained in a 1.1-mm outer diameter cladding, with each fiber having a different axial and angular position on the probe. Broadband white light is delivered by one of the fibers and is detected steady-state by the remaining fibers. These spatially and spectrally resolved data are analyzed using a MC-based fitting algorithm in order to extract the local optical properties. The technique was verified in tissue-simulating phantoms consisting of Intralipid-20% as a scatterer and either manganese meso-tetra (4-sulfanatophenyl) porphine or intact human erythrocytes as an absorber. Absorption coefficients were recovered with a mean error of 9% and scattering coefficients were recovered with a mean error of 19%, whereas the hemoglobin oxygen saturation was recovered with a mean error of 12%. These results demonstrate the feasibility of optical property recovery for situations in which surface-contact spectroscopy is not a possibility, and where only a single probe can be inserted into the tissue.
Collapse
Affiliation(s)
- Timothy M. Baran
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York 14642
- Address all correspondence to: Timothy M. Baran, University of Rochester Medical Center, Department of Imaging Sciences, 601 Elmwood Avenue, Box 648, Rochester, New York 14642. Tel: +(585) 276-3188; Fax: +(585) 273-1033; E-mail:
| | - Michael C. Fenn
- University of Rochester, Department of Physics & Astronomy, Rochester, New York 14627
| | - Thomas H. Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York 14642
- University of Rochester, Department of Physics & Astronomy, Rochester, New York 14627
| |
Collapse
|
21
|
Liang X, Wang KKH, Zhu TC. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fibers for prostate PDT. Phys Med Biol 2013; 58:3461-80. [PMID: 23629149 DOI: 10.1088/0031-9155/58/10/3461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1 cm(-2)) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT.
Collapse
Affiliation(s)
- Xing Liang
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, PA 19104, USA
| | | | | |
Collapse
|
22
|
Jarvi MT, Patterson MS, Wilson BC. Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements. Biophys J 2012; 102:661-71. [PMID: 22325290 DOI: 10.1016/j.bpj.2011.12.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/30/2011] [Accepted: 12/01/2011] [Indexed: 11/27/2022] Open
Abstract
Photodynamic therapy (PDT) is generally based on the generation of highly reactive singlet oxygen ((1)O(2)) through interactions of photosensitizer, light, and oxygen ((3)O(2)). These three components are highly interdependent and dynamic, resulting in variable temporal and spatial (1)O(2) dose deposition. Robust dosimetry that accounts for this complexity could improve treatment outcomes. Although the 1270 nm luminescence emission from (1)O(2) provides a direct and predictive PDT dose metric, it may not be clinically practical. We used (1)O(2) luminescence (or singlet oxygen luminescence (SOL)) as a gold-standard metric to evaluate potentially more clinically feasible dosimetry based on photosensitizer bleaching. We performed in vitro dose-response studies with simultaneous SOL and photosensitizer fluorescence measurements under various conditions, including variable (3)O(2), using the photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC). The results show that SOL was always predictive of cytotoxicity and immune to PDT's complex dynamics, whereas photobleaching-based dosimetry failed under hypoxic conditions. However, we identified a previously unreported 613 nm emission from mTHPC that indicates critically low (3)O(2) levels and can be used to salvage photobleaching-based dosimetry. These studies improve our understanding of PDT processes, demonstrate that SOL is a valuable gold-standard dose metric, and show that when used judiciously, photobleaching can serve as a surrogate for (1)O(2) dose.
Collapse
Affiliation(s)
- Mark T Jarvi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
23
|
Tyrrell J, Thorn C, Shore A, Campbell S, Curnow A. Oxygen saturation and perfusion changes during dermatological methylaminolaevulinate photodynamic therapy. Br J Dermatol 2011; 165:1323-31. [DOI: 10.1111/j.1365-2133.2011.10554.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Baran TM, Foster TH. New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:085003. [PMID: 21895311 PMCID: PMC3166340 DOI: 10.1117/1.3613920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 05/22/2023]
Abstract
We present a new Monte Carlo model of cylindrical diffusing fibers that is implemented with a graphics processing unit. Unlike previously published models that approximate the diffuser as a linear array of point sources, this model is based on the construction of these fibers. This allows for accurate determination of fluence distributions and modeling of fluorescence generation and collection. We demonstrate that our model generates fluence profiles similar to a linear array of point sources, but reveals axially heterogeneous fluorescence detection. With axially homogeneous excitation fluence, approximately 90% of detected fluorescence is collected by the proximal third of the diffuser for μ(s)'∕μ(a) = 8 in the tissue and 70 to 88% is collected in this region for μ(s)'∕μ(a) = 80. Increased fluorescence detection by the distal end of the diffuser relative to the center section is also demonstrated. Validation of these results was performed by creating phantoms consisting of layered fluorescent regions. Diffusers were inserted into these layered phantoms and fluorescence spectra were collected. Fits to these spectra show quantitative agreement between simulated fluorescence collection sensitivities and experimental results. These results will be applicable to the use of diffusers as detectors for dosimetry in interstitial photodynamic therapy.
Collapse
Affiliation(s)
- Timothy M Baran
- University of Rochester, The Institute of Optics, Rochester, New York 14627, USA
| | | |
Collapse
|
25
|
Honda N, Ishii K, Terada T, Nanjo T, Awazu K. Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:058003. [PMID: 21639587 DOI: 10.1117/1.3581111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Photodynamic therapy (PDT) efficacy depends on the amount of light distribution within the tissue. However, conventional PDT does not consider the laser irradiation dose during PDT. The optical properties of biological tissues (absorption coefficient μ(a), reduced scattering coefficient μ's), anisotropy factor g, refractive index, etc.) help us to recognize light propagation through the tissue. The goal of this paper is to acquire the knowledge of the light propagation within tissue during and after PDT with the optical property of PDT-performed mouse tumor tissue. The optical properties of mouse tumor tissues were evaluated using a double integrating sphere setup and the algorithm based on the inverse Monte Carlo method in the wavelength range from 350 to 1000 nm. During PDT, the μ(a) and μ's were not changed after 1 and 5 min of irradiation. After PDT, the μ's in the wavelength range from 600 to 1000 nm increased with the passage of time. For seven days after PDT, the μ's increased by 1.7 to 2.0 times, which results in the optical penetration depth decreased by 1.4 to 1.8 times. To ensure an effective procedure, the adjustment of laser parameters for the decreasing penetration depth is recommended for the re-irradiation of PDT.
Collapse
Affiliation(s)
- Norihiro Honda
- Osaka University, Medical Beam Physics Laboratory, Graduate School of Engineering, 2-1-A14 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
26
|
Swartling J, Axelsson J, Ahlgren G, Kälkner KM, Nilsson S, Svanberg S, Svanberg K, Andersson-Engels S. System for interstitial photodynamic therapy with online dosimetry: first clinical experiences of prostate cancer. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:058003. [PMID: 21054129 DOI: 10.1117/1.3495720] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The first results from a clinical study for Temoporfin-mediated photodynamic therapy (PDT) of low-grade (T1c) primary prostate cancer using online dosimetry are presented. Dosimetric feedback in real time was applied, for the first time to our knowledge, in interstitial photodynamic therapy. The dosimetry software IDOSE provided dose plans, including optical fiber positions and light doses based on 3-D tissue models generated from ultrasound images. Tissue optical property measurements were obtained using the same fibers used for light delivery. Measurements were taken before, during, and after the treatment session. On the basis of these real-time measured optical properties, the light-dose plan was recalculated. The aim of the treatment was to ablate the entire prostate while minimizing exposure to surrounding organs. The results indicate that online dosimetry based on real-time tissue optical property measurements enabled the light dose to be adapted and optimized. However, histopathological analysis of tissue biopsies taken six months post-PDT treatment showed there were still residual viable cancer cells present in the prostate tissue sections. The authors propose that the incomplete treatment of the prostate tissue could be due to a too low light threshold dose, which was set to 5 J∕cm2.
Collapse
|
27
|
Svanberg K, Bendsoe N, Axelsson J, Andersson-Engels S, Svanberg S. Photodynamic therapy: superficial and interstitial illumination. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041502. [PMID: 20799780 DOI: 10.1117/1.3466579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photodynamic therapy (PDT) is reviewed using the treatment of skin tumors as an example of superficial lesions and prostate cancer as an example of deep-lying lesions requiring interstitial intervention. These two applications are among the most commonly studied in oncological PDT, and illustrate well the different challenges facing the two modalities of PDT-superficial and interstitial. They thus serve as good examples to illustrate the entire field of PDT in oncology. PDT is discussed based on the Lund University group's over 20 yr of experience in the field. In particular, the interplay between optical diagnostics and dosimetry and the delivery of the therapeutic light dose are highlighted. An interactive multiple-fiber interstitial procedure to deliver the required therapeutic dose based on the assessment of light fluence rate and sensitizer concentration and oxygen level throughout the tumor is presented.
Collapse
|
28
|
Shirmanova M, Zagaynova E, Sirotkina M, Snopova L, Balalaeva I, Krutova I, Lekanova N, Turchin I, Orlova A, Kleshnin M. In vivo study of photosensitizer pharmacokinetics by fluorescence transillumination imaging. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:048004. [PMID: 20799847 DOI: 10.1117/1.3478310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The possibility of in vivo investigation of the pharmacokinetics of photosensitizers by means of fluorescence transillumination imaging is demonstrated. An animal is scanned in the transilluminative configuration by a single source and detector pair. Transillumination is chosen as an alternative approach to reflection imaging. In comparison with the traditional back-reflection technique, transillumination is preferable for photosensitizer detection due to its higher sensitivity to deep-seated fluorophores. The experiments are performed on transplantable mouse cervical carcinomas using three drugs: photosens, alasens, and fotoditazin. For quantitative evaluation of the photosensitizer concentration in tumor tissue the fluorescence signal is calibrated using tissue phantoms. We show that the kinetics of photosensitizer tumor uptake obtained by transillumination imaging in vivo agree with data of standard ex vivo methods. The described approach enables rapid and cost-effective study of newly developed photosensitizers in small animals.
Collapse
|
29
|
Abstract
Photodynamic techniques such as photodynamic diagnosis (PDD), fluorescence-guided tumour resection (FGR) and photodynamic therapy (PDT) are currently undergoing intensive clinical investigations as adjuvant treatment for malignant brain tumours. The following chapter provides an overview on the current clinical data and trials of PDT as well as photosensitizers, technical developments and indications for photodynamic application in neurosurgery. Besides many clinical phase I/II trials for PDT for malignant brain tumours, there are only few controlled clinical trials following tumour resection. Variations in treatment protocols, variation of photosensitizers and light dose make the evaluation scientifically difficult; however there is a clear trend towards prolonging median survival after one single photodynamic treatment as compared to standard therapeutic regimens. According to the meta analysis the median survival after PDT for primary glioblastoma multiforme (WHO grade IV) was 22 months and for recurrent GBM was 9 months as compared to standard conventional treatment, in which it is 15 and 3 months, respectively. Fluorescence-guided resection of the tumour demonstrated significant greater reduction of tumour burden. The combination of PDD/ FGR and intraoperative PDT ("to see and to treat") offers an exciting approach to the treatment of malignant brain tumours. PDT was generally well tolerated and side effects consisted of occasionally increased intracranial pressure and prolonged skin sensitivity against direct sunlight.
Collapse
|
30
|
Ducros N, Hervé L, Da Silva A, Dinten JM, Peyrin F. A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. Theoretical material. Phys Med Biol 2009; 54:7089-105. [DOI: 10.1088/0031-9155/54/23/004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Axelsson J, Swartling J, Andersson-Engels S. In vivo photosensitizer tomography inside the human prostate. OPTICS LETTERS 2009; 34:232-4. [PMID: 19183615 DOI: 10.1364/ol.34.000232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Interstitial photodynamic therapy (IPDT) provides a promising means to treat large cancerous tumors and solid organs inside the human body. The treatment outcome is dependent on the distributions of light, photosensitizer, and tissue oxygenation. We present a scheme for reconstructing the spatial distribution of a fluorescent photosensitizer. The reconstruction is based on measurements performed in the human prostate, acquired during an ongoing IPDT clinical trial, as well as in optical phantoms. We show that in an experimental setup we can quantitatively reconstruct a fluorescent inclusion in a fluorescent background. We also show reconstructions from a patient showing a heterogeneous distribution of the photosensitizer mTHPC in the human prostate.
Collapse
|
32
|
Moore CM, Pendse D, Emberton M. Photodynamic therapy for prostate cancer—a review of current status and future promise. ACTA ACUST UNITED AC 2009; 6:18-30. [DOI: 10.1038/ncpuro1274] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/17/2008] [Indexed: 11/09/2022]
|
33
|
Ascencio M, Collinet P, Farine MO, Mordon S. Protoporphyrin IX fluorescence photobleaching is a useful tool to predict the response of rat ovarian cancer following hexaminolevulinate photodynamic therapy. Lasers Surg Med 2008; 40:332-41. [PMID: 18563777 DOI: 10.1002/lsm.20629] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Accurate dosimetry was shown to be critical to achieve effective photodynamic therapy (PDT). This study aimed to assess the reliability of in vivo protoporphyrin IX (PpIX) fluorescence photobleaching as a predictive tool of the hexaminolevulinate PDT (HAL-PDT) response in a rat model of advanced ovarian cancer. MATERIALS AND METHODS Intraperitoneal 10(6) NuTu 19 cells were injected in 26 female rats Fisher 344. Peritoneal carcinomatosis was obtained 26 days post-tumor induction. Four hours post-intraperitoneal HAL (Photocure ASA, Oslo, Norway) injection, a laparoscopic procedure (D-light AutoFluorescence system, Karl Storz endoscope, Tuttlingen, Germany) and a fluorescence examination were made for 22 rats. The first group (LASER group, n=26) was illuminated with laser light using a 532 nm KTP laser (Laser Quantum, Stockport, UK) on 1 cm(2) surface at 45 J/cm(2). The second group (NO LASER group, n=26) served as controls. Biopsies were taken 24 hours after PDT. Semi-quantitative histology was performed and necrosis value was determined: 0--no necrosis to 4--full necrosis. Fluorescence was monitored before and after illumination on complete responders (NV=3-4; n=20) and non-responders (NV=0-2; n=6). RESULTS High PpIX photobleaching corresponded with complete responders whereas low photobleaching corresponded with non-responders (P<0.05). A direct linear correlation was shown between photobleaching and necrosis (R(2)=0.89). CONCLUSION In vivo PpIX fluorescence photobleaching is useful to predict the tissue response to HAL-PDT.
Collapse
Affiliation(s)
- Manuel Ascencio
- Department of Gynecology and Obstetrics, Lille University Hospital, Lille, France
| | | | | | | |
Collapse
|
34
|
Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Chen YK. Photodynamic therapy for treatment of solid tumors--potential and technical challenges. Technol Cancer Res Treat 2008; 7:309-20. [PMID: 18642969 DOI: 10.1177/153303460800700405] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Photodynamic therapy (PDT) involves the administration of photosensitizer followed by local illumination with visible light of specific wavelength(s). In the presence of oxygen molecules, the light illumination of photosensitizer can lead to a series of photochemical reactions and consequently the generation of cytotoxic species. The quantity and location of PDT-induced cytotoxic species determine the nature and consequence of PDT. Much progress has been seen in both basic research and clinical application in recent years. Although the majority of approved PDT clinical protocols have primarily been used for the treatment of superficial lesions of both malignant and non-malignant diseases, interstitial PDT for the ablation of deep-seated solid tumors are now being investigated worldwide. The complexity of the geometry and non-homogeneity of solid tumor pose a great challenge on the implementation of minimally invasive interstitial PDT and the estimation of PDT dosimetry. This review will discuss the recent progress and technical challenges of various forms of interstitial PDT for the treatment of parenchymal and/or stromal tissues of solid tumors.
Collapse
Affiliation(s)
- Zheng Huang
- University of Colorado Denver, Aurora Campus, CO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components -- light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.
Collapse
Affiliation(s)
- Brian C Wilson
- Division of Biophysics and Bioimaging, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
36
|
Zhang Y, Aslan K, Previte MJR, Geddes CD. Plasmonic engineering of singlet oxygen generation. Proc Natl Acad Sci U S A 2008; 105:1798-802. [PMID: 18252825 PMCID: PMC2538842 DOI: 10.1073/pnas.0709501105] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Indexed: 11/18/2022] Open
Abstract
In this article, we report metal-enhanced singlet oxygen generation (ME(1)O2). We demonstrate a direct relationship between the singlet oxygen yield of a common photosensitizer (Rose Bengal) and the theoretical electric field enhancement or enhanced absorption of the photosensitizer in proximity to metallic nanoparticles. Using a series of photosensitizers, sandwiched between silver island films (SiFs), we report that the extent of singlet oxygen enhancement is inversely proportional to the free space singlet oxygen quantum yield. By modifying plasmon coupling parameters, such as nanoparticle size and shape, fluorophore/particle distance, and the excitation wavelength of the coupling photosensitizer, we can readily tune singlet oxygen yields for applications in singlet oxygen-based clinical therapy.
Collapse
Affiliation(s)
- Yongxia Zhang
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Kadir Aslan
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Michael J. R. Previte
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Chris D. Geddes
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| |
Collapse
|
37
|
Johansson A, Axelsson J, Andersson-Engels S, Swartling J. Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate. Med Phys 2007; 34:4309-21. [DOI: 10.1118/1.2790585] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 2007; 39:386-93. [PMID: 17565715 DOI: 10.1002/lsm.20507] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Limited knowledge of the light and temperature distribution within the target volume in combination with non-selective accumulation of the applied photosensitizers (PS) has hampered the clinical relevance of interstitial photodynamic therapy (iPDT) for treatment of malignant glioma patients. The current pilot study focused on the development and the clinical implementation of an accurate and reproducible irradiation scheme for iPDT using 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PPIX) as a selectively working PS. STUDY DESIGN/MATERIALS AND METHODS Monte Carlo simulations of fluence rate and heat transport simulations were performed using the optical properties of normal brain tissue infiltrated by tumor cells (absorption coefficient micro(a) = 0.2 cm(-1), reduced scattering coefficient: micro'(s) = 20 cm(-1)). A modified 3-D treatment-planning software was used to calculate both, the treatment-volume and the exact position of the light diffusers within the lesion. The feasibility and the risk of iPDT were tested in 10 patients with small and circumscribed recurrent malignant gliomas. RESULTS The optimum distance between the implanted light diffusers was determined to be 9 mm with regard to both fluence rate and temperature distribution. For this distance a temperature increase above 42 degrees C was not expected to occur. Up to six cylindrical light diffusers were stereotactically implanted to achieve a complete irradiation of the tumor volume, which was possible in every single patient (mean tumor volume: 5.9 cm3). The total applied light fluence was between 4,320 J and 11,520 J. Side effects of iPDT were not observed. Median survival was 15 months. CONCLUSION 5-ALA iPDT in combination with a 3-D treatment-planning (which was based on optical and thermal simulations) is a safe and feasible treatment modality. The clinical impact of these findings deserves further prospective evaluation.
Collapse
Affiliation(s)
- Tobias J Beck
- Laser Research Laboratory, Ludwig-Maximilians-University, Marchioninistr. 23, 81377 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Woodhams JH, Macrobert AJ, Bown SG. The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry. Photochem Photobiol Sci 2007; 6:1246-56. [PMID: 18046479 DOI: 10.1039/b709644e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding of the biology of photodynamic therapy (PDT) has expanded tremendously over the past few years. However, in the clinical situation, it is still a challenge to match the extent of PDT effects to the extent of the disease process being treated. PDT requires drug, light and oxygen, any of which can be the limiting factor in determining efficacy at each point in a target organ. This article reviews techniques available for monitoring tissue oxygenation during PDT. Point measurements can be made using oxygen electrodes or luminescence-based optodes for direct measurements of tissue pO2, or using optical spectroscopy for measuring the oxygen saturation of haemoglobin. Imaging is considerably more complex, but may become feasible with techniques like BOLD MRI. Pre-clinical studies have shown dramatic changes in oxygenation during PDT, which vary with the photosensitizer used and the light delivery regimen. Better oxygenation throughout treatment is achieved if the light fluence rate is kept low as this reduces the rate of oxygen consumption. The relationship between tissue oxygenation and PDT effect is complex and remarkably few studies have directly correlated oxygenation changes during PDT with the final biological effect, although those that have confirm the value of maintaining good oxygenation. Real time monitoring to ensure adequate oxygenation at strategic points in target tissues during PDT is likely to be important, particularly in the image guided treatment of tumours of solid organs.
Collapse
Affiliation(s)
- Josephine H Woodhams
- National Medical Laser Centre, Royal Free and University College Medical School, University College London, Charles Bell House, 67-73 Riding House Street, London, UKW1W 7EJ
| | | | | |
Collapse
|
40
|
Stepp H, Beck T, Beyer W, Pfaller C, Schuppler M, Sroka R, Baumgartner R. Measurement of fluorophore concentration in turbid media by a single optical fiber. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.mla.2006.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Jarvi MT, Niedre MJ, Patterson MS, Wilson BC. Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects. Photochem Photobiol 2007; 82:1198-210. [PMID: 16808593 DOI: 10.1562/2006-05-03-ir-891] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As photodynamic therapy (PDT) continues to develop and find new clinical indications, robust individualized dosimetry is warranted to achieve effective treatments. We posit that the most direct PDT dosimetry is achieved by monitoring singlet oxygen (1O2), the major cytotoxic species generated photochemically during PDT. Its detection and quantification during PDT have been long-term goals for PDT dosimetry and the development of techniques for this, based on detection of its near-infrared luminescence emission (1270 nm), is at a noteworthy stage of development. We begin by discussing the theory behind singlet-oxygen luminescence dosimetry (SOLD) and the seminal contributions that have brought SOLD to its current status. Subsequently, technology developments that could potentially improve SOLD are discussed, together with future areas of research, as well as the potential limitations of this method. We conclude by examining the major thrusts for future SOLD applications: as a tool for quantitative photobiological studies, a point of reference to evaluate other PDT dosimetry techniques, the optimal means to evaluate new photosensitizers and delivery methods and, potentially, a direct and robust clinical dosimetry system.
Collapse
Affiliation(s)
- Mark T Jarvi
- Department of Medical Biophysics, Ontario Cancer Institute and University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Influence of treatment-induced changes in tissue absorption on treatment volume during interstitial photodynamic therapy. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.mla.2006.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Johansson A, Johansson T, Thompson MS, Bendsoe N, Svanberg K, Svanberg S, Andersson-Engels S. In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:34029. [PMID: 16822078 DOI: 10.1117/1.2204027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A system for interstitial photodynamic therapy is used in the treatment of thick skin tumors. The system allows simultaneous measurements of light fluence rate, sensitizer fluorescence, and tissue oxygen saturation by using the same fibers as for therapeutic light delivery. Results from ten tumor treatments using delta-aminolevulinic acid (ALA)-induced protoporphyrin IX show a significant, treatment-induced increase in tissue absorption at the therapeutic wavelength, and rapid sensitizer photobleaching. The changes in oxy- and deoxyhemoglobin content are monitored by means of near-infrared spectroscopy, revealing a varying tissue oxygenation and significant changes in blood volume during treatment. These changes are consistent with the temporal profiles of the light fluence rate at the therapeutic wavelength actually measured. We therefore propose the observed absorption increase to be due to treatment-induced deoxygenation in combination with changes in blood concentration within the treated volume. A higher rate of initial photobleaching is found to correlate with a less pronounced increase in tissue absorption. Based on the measured signals, we propose how real-time treatment supervision and feedback can be implemented. Simultaneous study of the fluence rate, sensitizer fluorescence, and local tissue oxygen saturation level may contribute to the understanding of the threshold dose for photodynamic therapy.
Collapse
Affiliation(s)
- Ann Johansson
- Lund Institute of Technology, Department of Physics, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
BACKGROUND AND OBJECTIVE Herein an overview is provided of the causes, consequences, and significance of photodynamic therapy (PDT)-mediated effects on tumor oxygenation and blood flow during illumination. STUDY DESIGN/MATERIALS AND METHODS Techniques particularly valuable to this research have included tissue oxygen tension measurement by the Eppendorf pO2 Histograph; spatial quantification of hypoxia by EF3 and EF5; and tissue oxygenation/blood flow monitoring by diffuse reflectance/correlation spectroscopy. RESULTS Severe hypoxia was measured in vivo during PDT and is shown to be a consequence of photochemical oxygen consumption and/or compromised vascular perfusion. Oxygen depletion can be controlled by treatment regimen, occurs in a spatially-definable pattern, and is therapy-limiting. PDT-induced changes in tumor oxygenation during illumination are correlated with outcome. In PDT-treated tissues, blood flow also is determined by treatment regimen and correlates with treatment response. CONCLUSIONS Photodynamic therapy creates distinct, measurable changes in tumor oxygen and blood flow during illumination. These physiological changes may ultimately affect treatment efficacy.
Collapse
Affiliation(s)
- Theresa M Busch
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6072, USA.
| |
Collapse
|