1
|
Liu Y, Dong J, Schmidt C, Boquet-Pujadas A, Extermann J, Unser M. Artifacts in optical projection tomography due to refractive-index mismatch: model and correction. OPTICS LETTERS 2022; 47:2618-2621. [PMID: 35648888 DOI: 10.1364/ol.457144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Optical projection tomography (OPT) is a powerful tool for three-dimensional (3D) imaging of mesoscopic samples. While it is able to achieve resolution of a few tens of microns over a sample volume of several cubic centimeters, the reconstructed images often suffer from artifacts caused by inaccurate calibration. In this work, we focus on the refractive-index mismatch between the sample and the surrounding medium. We derive a 3D cone-beam forward model of OPT that approximates the effect of refractive-index mismatch. We then implement a fast and efficient reconstruction method to correct for the induced seagull-shaped artifacts on experimental images of fluorescent beads.
Collapse
|
2
|
Stockton PA, Field JJ, Squier J, Pezeshki A, Bartels RA. Single-pixel fluorescent diffraction tomography. OPTICA 2020; 7:1617-1620. [PMID: 34926724 PMCID: PMC8682970 DOI: 10.1364/optica.400547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/21/2020] [Indexed: 06/14/2023]
Abstract
Optical diffraction tomography (ODT) is an indispensable tool for studying objects in three dimensions. Until now, ODT has been limited to coherent light because spatial phase information is required to solve the inverse scattering problem. We introduce a method that enables ODT to be applied to imaging incoherent contrast mechanisms such as fluorescent emission. Our strategy mimics the coherent scattering process with two spatially coherent illumination beams. The interferometric illumination pattern encodes spatial phase in temporal variations of the fluorescent emission, thereby allowing incoherent fluorescent emission to mimic the behavior of coherent illumination. The temporal variations permit recovery of the spatial distribution of fluorescent emission with an inverse scattering model. Simulations and experiments demonstrate isotropic resolution in the 3D reconstruction of a fluorescent object.
Collapse
Affiliation(s)
- Patrick A. Stockton
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jeffrey J. Field
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Center for Imaging and Surface Science, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jeff Squier
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Ali Pezeshki
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Randy A. Bartels
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
3
|
Zhang H, Waldmann L, Manuel R, Boije H, Haitina T, Allalou A. zOPT: an open source optical projection tomography system and methods for rapid 3D zebrafish imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:4290-4305. [PMID: 32923043 PMCID: PMC7449731 DOI: 10.1364/boe.393519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Optical projection tomography (OPT) is a 3D imaging alternative to conventional microscopy which allows imaging of millimeter-sized object with isotropic micrometer resolution. The zebrafish is an established model organism and an important tool used in genetic and chemical screening. The size and optical transparency of the embryo and larva makes them well suited for imaging using OPT. Here, we present an open-source implementation of an OPT platform, built around a customized sample stage, 3D-printed parts and open source algorithms optimized for the system. We developed a versatile automated workflow including a two-step image processing approach for correcting the center of rotation and generating accurate 3D reconstructions. Our results demonstrate high-quality 3D reconstruction using synthetic data as well as real data of live and fixed zebrafish. The presented 3D-printable OPT platform represents a fully open design, low-cost and rapid loading and unloading of samples. Our system offers the opportunity for researchers with different backgrounds to setup and run OPT for large scale experiments, particularly in studies using zebrafish larvae as their key model organism.
Collapse
Affiliation(s)
- Hanqing Zhang
- Division of Visual Information and
Interaction, Department of Information Technology, Uppsala University,
S-75105 Uppsala, Sweden
- BioImage Informatics Facility at
SciLifeLab, S-75105 Uppsala, Sweden
| | - Laura Waldmann
- Department of Organismal Biology, Uppsala
University, S-75236 Uppsala, Sweden
| | - Remy Manuel
- Department of Neuroscience, Uppsala
University, S-75124 Uppsala, Sweden
| | - Henrik Boije
- Department of Neuroscience, Uppsala
University, S-75124 Uppsala, Sweden
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala
University, S-75236 Uppsala, Sweden
| | - Amin Allalou
- Division of Visual Information and
Interaction, Department of Information Technology, Uppsala University,
S-75105 Uppsala, Sweden
- BioImage Informatics Facility at
SciLifeLab, S-75105 Uppsala, Sweden
| |
Collapse
|
4
|
Optical Projection Tomography Using a Commercial Microfluidic System. MICROMACHINES 2020; 11:mi11030293. [PMID: 32168806 PMCID: PMC7142877 DOI: 10.3390/mi11030293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/17/2023]
Abstract
Optical projection tomography (OPT) is the direct optical equivalent of X-ray computed tomography (CT). To obtain a larger depth of field, traditional OPT usually decreases the numerical aperture (NA) of the objective lens to decrease the resolution of the image. So, there is a trade-off between sample size and resolution. Commercial microfluidic systems can observe a sample in flow mode. In this paper, an OPT instrument is constructed to observe samples. The OPT instrument is combined with commercial microfluidic systems to obtain a three-dimensional and time (3D + T)/four-dimensional (4D) video of the sample. “Focal plane scanning” is also used to increase the images’ depth of field. A series of two-dimensional (2D) images in different focal planes was observed and compared with images simulated using our program. Our work dynamically monitors 3D OPT images. Commercial microfluidic systems simulate blood flow, which has potential application in blood monitoring and intelligent drug delivery platforms. We design an OPT adaptor to perform OPT on a commercial wide-field inverted microscope (Olympusix81). Images in different focal planes are observed and analyzed. Using a commercial microfluidic system, a video is also acquired to record motion pictures of samples at different flow rates. To our knowledge, this is the first time an OPT setup has been combined with a microfluidic system.
Collapse
|
5
|
Chen L, Li G, Tang L, Zhang M, Liu L, Liu A, McGinty J, Ruan S. Hyperspectral scanning laser optical tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201800221. [PMID: 30187691 DOI: 10.1002/jbio.201800221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
In order to study physical relationships within tissue volumes or even organism-level systems, the spatial distribution of multiple fluorescent markers needs to be resolved efficiently in three dimensions. Here, rather than acquiring discrete spectral images sequentially using multiple emission filters, a hyperspectral scanning laser optical tomography system is developed to obtain hyperspectral volumetric data sets with 2-nm spectral resolution of optically transparent mesoscopic (millimeter-centimeter) specimens. This is achieved by acquiring a series of point-scanning hyperspectral extended depth of field images at different angles and subsequently tomographically reconstructing the 3D intensity distribution for each wavelength. This technique is demonstrated to provide robust measurements via the comparison of spectral and intensity profiles of fluorescent bead phantoms. Due to its enhanced spectral resolving ability, this technique is also demonstrated to resolve largely overlapping fluorophores, as demonstrated by the 3D fluorescence hyperspectral reconstruction of a dual-labeled mouse thymus gland sample and the ability to distinguish tumorous and normal tissues of an unlabeled mouse intestine sample.
Collapse
Affiliation(s)
- Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, China
| | - Guiye Li
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, China
| | - Li Tang
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
- Department of Medicine, Shenzhen University, Shenzhen, China
| | - Meng Zhang
- School of Electronics and information Engineering, Beihang University, Beijing, China
| | - Lina Liu
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - Ang Liu
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - Shuangchen Ruan
- Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
6
|
Dou S, Liu J, Yang L. Dual-modality optical projection tomography reconstruction method from fewer views. JOURNAL OF BIOPHOTONICS 2019; 12:e201800407. [PMID: 30578626 DOI: 10.1002/jbio.201800407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
In optical projection tomography (OPT), for longitudinal living model studies, multiple measurements of the same sample are required at different time points. It is important to decrease both the total acquisition time and the light dose to the sample. We improved the ordered subsets expectation maximization reconstruction algorithm for OPT, which reduces the acquisition time and number of projections greatly compared with filtered back projection (FBP), and obtained satisfactory reconstructed images. Using zebrafish, in transmission and fluorescence mode, we demonstrate the capability of the method to reconstruct image from downsampled projection subsets. The result shows that the reconstruction image quality of the proposed method using 30 projections is comparable to that of FBP using 720 projections. The total acquisition procedure can be finished in a few seconds. The method also provides OPT with the remarkable capability to resist noises and artifacts. Projection image and fused image of zebrafish.
Collapse
Affiliation(s)
- Shaobin Dou
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China
| | - Jinhuai Liu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China
| | | |
Collapse
|
7
|
Birk U, Hase JV, Cremer C. Super-resolution microscopy with very large working distance by means of distributed aperture illumination. Sci Rep 2017; 7:3685. [PMID: 28623362 PMCID: PMC5473833 DOI: 10.1038/s41598-017-03743-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/05/2017] [Indexed: 02/03/2023] Open
Abstract
The limits of conventional light microscopy ("Abbe-Limit") depend critically on the numerical aperture (NA) of the objective lens. Imaging at large working distances or a large field-of-view typically requires low NA objectives, thereby reducing the optical resolution to the multi micrometer range. Based on numerical simulations of the intensity field distribution, we present an illumination concept for a super-resolution microscope which allows a three dimensional (3D) optical resolution around 150 nm for working distances up to the centimeter regime. In principle, the system allows great flexibility, because the illumination concept can be used to approximate the point-spread-function of conventional microscope optics, with the additional benefit of a customizable pupil function. Compared with the Abbe-limit using an objective lens with such a large working distance, a volume resolution enhancement potential in the order of 104 is estimated.
Collapse
Affiliation(s)
- Udo Birk
- Superresolution Microscopy, Institute of Molecular Biology (IMB), D-55128, Mainz, Germany
- Physics Department University Mainz (JGU), D-55128, Mainz, Germany
- Kirchhoff Institute for Physics, University Heidelberg, D-69120, Heidelberg, Germany
| | - Johann V Hase
- Institute of Pharmacy&Molecular Biotechnology (IPMB), University Heidelberg, D-69120, Heidelberg, Germany
| | - Christoph Cremer
- Superresolution Microscopy, Institute of Molecular Biology (IMB), D-55128, Mainz, Germany.
- Physics Department University Mainz (JGU), D-55128, Mainz, Germany.
- Kirchhoff Institute for Physics, University Heidelberg, D-69120, Heidelberg, Germany.
- Institute of Pharmacy&Molecular Biotechnology (IPMB), University Heidelberg, D-69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Cremer C, Szczurek A, Schock F, Gourram A, Birk U. Super-resolution microscopy approaches to nuclear nanostructure imaging. Methods 2017; 123:11-32. [PMID: 28390838 DOI: 10.1016/j.ymeth.2017.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
The human genome has been decoded, but we are still far from understanding the regulation of all gene activities. A largely unexplained role in these regulatory mechanisms is played by the spatial organization of the genome in the cell nucleus which has far-reaching functional consequences for gene regulation. Until recently, it appeared to be impossible to study this problem on the nanoscale by light microscopy. However, novel developments in optical imaging technology have radically surpassed the limited resolution of conventional far-field fluorescence microscopy (ca. 200nm). After a brief review of available super-resolution microscopy (SRM) methods, we focus on a specific SRM approach to study nuclear genome structure at the single cell/single molecule level, Spectral Precision Distance/Position Determination Microscopy (SPDM). SPDM, a variant of localization microscopy, makes use of conventional fluorescent proteins or single standard organic fluorophores in combination with standard (or only slightly modified) specimen preparation conditions; in its actual realization mode, the same laser frequency can be used for both photoswitching and fluorescence read out. Presently, the SPDM method allows us to image nuclear genome organization in individual cells down to few tens of nanometer (nm) of structural resolution, and to perform quantitative analyses of individual small chromatin domains; of the nanoscale distribution of histones, chromatin remodeling proteins, and transcription, splicing and repair related factors. As a biomedical research application, using dual-color SPDM, it became possible to monitor in mouse cardiomyocyte cells quantitatively the effects of ischemia conditions on the chromatin nanostructure (DNA). These novel "molecular optics" approaches open an avenue to study the nuclear landscape directly in individual cells down to the single molecule level and thus to test models of functional genome architecture at unprecedented resolution.
Collapse
Affiliation(s)
- Christoph Cremer
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany; Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany. http://www.optics.imb-mainz.de
| | - Aleksander Szczurek
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Florian Schock
- Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany
| | - Amine Gourram
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Udo Birk
- Superresolution Microscopy, Institute of Molecular Biology (IMB), Mainz, Germany; Department of Physics, University of Mainz (JGU), Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), and Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Dekker KH, Battista JJ, Jordan KJ. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector. Med Phys 2016; 43:4585. [DOI: 10.1118/1.4957308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
Malek M, Khelfa H, Picart P, Mounier D, Poilâne C. Microtomography imaging of an isolated plant fiber: a digital holographic approach. APPLIED OPTICS 2016; 55:A111-A121. [PMID: 26835942 DOI: 10.1364/ao.55.00a111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper describes a method for optical projection tomography for the 3D in situ characterization of micrometric plant fibers. The proposed approach is based on digital holographic microscopy, the holographic capability being convenient to compensate for the runout of the fiber during rotations. The setup requires a telecentric alignment to prevent from the changes in the optical magnification, and calibration results show the very good experimental adjustment. Amplitude images are obtained from the set of recorded and digitally processed holograms. Refocusing of blurred images and correction of both runout and jitter are carried out to get appropriate amplitude images. The 3D data related to the plant fiber are computed from the set of images using a dedicated numerical processing. Experimental results exhibit the internal and external shapes of the plant fiber. These experimental results constitute the first attempt to obtain 3D data of flax fiber, about 12 μm×17 μm in apparent diameter, with a full-field optical tomography approach using light in the visible range.
Collapse
|
11
|
Unleashing Optics and Optoacoustics for Developmental Biology. Trends Biotechnol 2015; 33:679-691. [PMID: 26435161 DOI: 10.1016/j.tibtech.2015.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
The past decade marked an optical revolution in biology: an unprecedented number of optical techniques were developed and adopted for biological exploration, demonstrating increasing interest in optical imaging and in vivo interrogations. Optical methods have become faster and have reached nanoscale resolution, and are now complemented by optoacoustic (photoacoustic) methods capable of imaging whole specimens in vivo. Never before were so many optical imaging barriers broken in such a short time-frame: with new approaches to optical microscopy and mesoscopy came an increased ability to image biology at unprecedented speed, resolution, and depth. This review covers the most relevant techniques for imaging in developmental biology, and offers an outlook on the next steps for these technologies and their applications.
Collapse
|
12
|
Figueiras E, Soto AM, Jesus D, Lehti M, Koivisto J, Parraga JE, Silva-Correia J, Oliveira JM, Reis RL, Kellomäki M, Hyttinen J. Optical projection tomography as a tool for 3D imaging of hydrogels. BIOMEDICAL OPTICS EXPRESS 2014; 5:3443-9. [PMID: 25360363 PMCID: PMC4206315 DOI: 10.1364/boe.5.003443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 05/22/2023]
Abstract
An Optical Projection Tomography (OPT) system was developed and optimized to image 3D tissue engineered products based in hydrogels. We develop pre-reconstruction algorithms to get the best result from the reconstruction procedure, which include correction of the illumination and determination of sample center of rotation (CoR). Existing methods for CoR determination based on the detection of the maximum variance of reconstructed slices failed, so we develop a new CoR search method based in the detection of the variance sharpest local maximum. We show the capabilities of the system to give quantitative information of different types of hydrogels that may be useful in its characterization.
Collapse
Affiliation(s)
- Edite Figueiras
- Tampere University of Technology, ELT, BioMediTech, Tampere, Finland
| | - Ana M. Soto
- Tampere University of Technology, ELT, BioMediTech, Tampere, Finland
| | - Danilo Jesus
- Tampere University of Technology, ELT, BioMediTech, Tampere, Finland
| | - M. Lehti
- Tampere University of Technology, ELT, BioMediTech, Tampere, Finland
| | - J. Koivisto
- Tampere University of Technology, ELT, BioMediTech, Tampere, Finland
- University of Tampere, BioMediTech, Tampere, Finland
| | - J. E. Parraga
- Tampere University of Technology, ELT, BioMediTech, Tampere, Finland
| | - J. Silva-Correia
- 3Bs- Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs- Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs- Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M. Kellomäki
- Tampere University of Technology, ELT, BioMediTech, Tampere, Finland
| | - J. Hyttinen
- Tampere University of Technology, ELT, BioMediTech, Tampere, Finland
| |
Collapse
|
13
|
Gualda E, Moreno N, Tomancak P, Martins GG. Going "open" with mesoscopy: a new dimension on multi-view imaging. PROTOPLASMA 2014; 251:363-372. [PMID: 24442669 DOI: 10.1007/s00709-013-0599-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
OpenSPIM and OpenSpinMicroscopy emerged as open access platforms for Light Sheet and Optical Projection Imaging, often called as optical mesoscopy techniques. Both projects can be easily reproduced using comprehensive online instructions that should foster the implementation and further development of optical imaging techniques with sample rotation control. This additional dimension in an open system offers the possibility to make multi-view microscopy easily modified and will complement the emerging commercial solutions. Furthermore, it is deeply based on other open platforms such as MicroManager and Arduino, enabling development of tailored setups for very specific biological questions. In our perspective, the open access principle of OpenSPIM and OpenSpinMicroscopy is a game-changer, helping the concepts of light sheet and optical projection tomography (OPT) to enter the mainstream of biological imaging.
Collapse
Affiliation(s)
- Emilio Gualda
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | | | | |
Collapse
|
14
|
Arranz A, Dong D, Zhu S, Rudin M, Tsatsanis C, Tian J, Ripoll J. Helical optical projection tomography. OPTICS EXPRESS 2013; 21:25912-25. [PMID: 24216818 DOI: 10.1364/oe.21.025912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A new technique termed Helical Optical Projection Tomography (hOPT) has been developed with the aim to overcome some of the limitations of current 3D optical imaging techniques. hOPT is based on Optical Projection Tomography (OPT) with the major difference that there is a translation of the sample in the vertical direction during the image acquisition process, requiring a new approach to image reconstruction. Contrary to OPT, hOPT makes possible to obtain 3D-optical images of intact long samples without imposing limits on the sample length. This has been tested using hOPT to image long murine tissue samples such as spinal cords and large intestines. Moreover, 3D-reconstructed images of the colon of DSS-treated mice, a model for Inflammatory Bowel Disease, allowed the identification of the structural alterations. Finally, the geometry of the hOPT device facilitates the addition of a Selective Plane Illumination Microscopy (SPIM) arm, providing the possibility of delivering high resolution images of selected areas together with complete volumetric information.
Collapse
|
15
|
Dong D, Zhu S, Qin C, Kumar V, Stein JV, Oehler S, Savakis C, Tian J, Ripoll J. Automated recovery of the center of rotation in optical projection tomography in the presence of scattering. IEEE J Biomed Health Inform 2012; 17:198-204. [PMID: 23008264 DOI: 10.1109/titb.2012.2219588] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Finding the center of rotation is an essential step for accurate three-dimensional reconstruction in optical projection tomography (OPT). Unfortunately current methods are not convenient since they require either prior scanning of a reference phantom, small structures of high intensity existing in the specimen, or active participation during the centering procedure. To solve these problems this paper proposes a fast and automatic center of rotation search method making use of parallel programming in graphics processing units (GPUs). Our method is based on a two step search approach making use only of those sections of the image with high signal to noise ratio. We have tested this method both in non-scattering ex vivo samples and in in vivo specimens with a considerable contribution of scattering such as Drosophila melanogaster pupae, recovering in all cases the center of rotation with a precision 1/4 pixel or less.
Collapse
|
16
|
Soloviev VY, Zacharakis G, Spiliopoulos G, Favicchio R, Correia T, Arridge SR, Ripoll J. Tomographic imaging with polarized light. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:980-8. [PMID: 22673429 DOI: 10.1364/josaa.29.000980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report three-dimensional tomographic reconstruction of optical parameters for the mesoscopic light scattering regime from experimentally obtained datasets by using polarized light. We present a numerically inexpensive approximation to the radiative transfer equation governing the polarized light transport. This approximation is employed in the reconstruction algorithm, which computes two optical parameters by using parallel and perpendicular polarizations of transmitted light. Datasets were obtained by imaging a scattering phantom embedding highly absorbing inclusions. Reconstruction results are presented and discussed.
Collapse
Affiliation(s)
- Vadim Y Soloviev
- Department of Computer Science, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen L, McGinty J, Taylor HB, Bugeon L, Lamb JR, Dallman MJ, French PMW. Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction. OPTICS EXPRESS 2012; 20:7323-37. [PMID: 22453413 DOI: 10.1364/oe.20.007323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We demonstrate two techniques to improve the quality of reconstructed optical projection tomography (OPT) images using the modulation transfer function (MTF) as a function of defocus experimentally determined from tilted knife-edge measurements. The first employs a 2-D binary filter based on the MTF frequency cut-off as an additional filter during back-projection reconstruction that restricts the high frequency information to the region around the focal plane and progressively decreases the spatial frequency bandwidth with defocus. This helps to suppress "streak" artifacts in OPT data acquired at reduced angular sampling, thereby facilitating faster OPT acquisitions. This method is shown to reduce the average background by approximately 72% for an NA of 0.09 and by approximately 38% for an NA of 0.07 compared to standard filtered back-projection. As a biological illustration, a Fli:GFP transgenic zebrafish embryo (3 days post-fertilisation) was imaged to demonstrate the improved imaging speed (a quarter of the acquisition time). The second method uses the MTF to produce an appropriate deconvolution filter that can be used to correct for the spatial frequency modulation applied by the imaging system.
Collapse
Affiliation(s)
- Lingling Chen
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cheddad A, Svensson C, Sharpe J, Georgsson F, Ahlgren U. Image processing assisted algorithms for optical projection tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1-15. [PMID: 21768046 DOI: 10.1109/tmi.2011.2161590] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Since it was first presented in 2002, optical projection tomography (OPT) has emerged as a powerful tool for the study of biomedical specimen on the mm to cm scale. In this paper, we present computational tools to further improve OPT image acquisition and tomographic reconstruction. More specifically, these methods provide: semi-automatic and precise positioning of a sample at the axis of rotation and a fast and robust algorithm for determination of postalignment values throughout the specimen as compared to existing methods. These tools are easily integrated for use with current commercial OPT scanners and should also be possible to implement in "home made" or experimental setups for OPT imaging. They generally contribute to increase acquisition speed and quality of OPT data and thereby significantly simplify and improve a number of three-dimensional and quantitative OPT based assessments.
Collapse
Affiliation(s)
- Abbas Cheddad
- Umeå Centre for Molecular Medicine, Umeå University, S-901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|