1
|
Zhu L, Wang M, Fu P, Liu Y, Zhang H, Roe AW, Xi W. Precision 1070 nm Ultrafast Laser-Induced Photothrombosis of Depth-Targeted Vessels In Vivo. SMALL METHODS 2023; 7:e2200917. [PMID: 36286988 DOI: 10.1002/smtd.202200917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The cerebrovasculature plays an essential role in neurovascular and homeostatic functions in health and disease conditions. Many efforts have been made for developing vascular thrombosis methods to study vascular dysfunction in vivo, while technical challenges remain, such as accuracy and depth-selectivity to target a single vessel in the cerebral cortex. Herein, this paper first demonstrates the evaluation and quantification of the feasibility and effects of Rose Bengal (RB)-induced photothrombosis with 720-1070 nm ultrafast lasers in a raster scan. A flexible and reproducible approach is then proposed to employ a 1070 nm ultrafast laser with a spiral scan for producing RB-induced occlusion, which is described as precision ultrafast laser-induced photothrombosis (PLP). Combine with two-photon microscopy imaging, this PLP displays highly precise and fast occlusion induction of various vessel types, sizes, and depths, which enhances the precision and power of the photothrombosis protocol. Overall, the PLP method provides a real-time, practical, precise, and depth-selected single-vessel photothrombosis technology in the cerebral cortex with commercially available optical equipment, which is crucial for exploring brain vascular function with high spatial-temporal resolution in the brain.
Collapse
Affiliation(s)
- Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Fukuda M, Matsumura T, Suda T, Hirase H. Depth-targeted intracortical microstroke by two-photon photothrombosis in rodent brain. NEUROPHOTONICS 2022; 9:021910. [PMID: 35311215 PMCID: PMC8929553 DOI: 10.1117/1.nph.9.2.021910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/24/2022] [Indexed: 05/21/2023]
Abstract
Significance: Photothrombosis is a widely used model of ischemic stroke in rodent experiments. In the photothrombosis model, the photosensitizer rose bengal (RB) is systemically introduced into the blood stream and activated by green light to induce aggregation of platelets that eventually cause vessel occlusion. Since the activation of RB is a one-photon phenomenon and the molecules in the illuminated area (light path) are subject to excitation, targeting of thrombosis is unspecific, especially in the depth dimension. We developed a photothrombosis protocol that can target a single vessel in the cortical parenchyma by two-photon excitation. Aim: We aim to induce a thrombotic stroke in the cortical parenchyma by two-photon activation of RB to confine photothrombosis within a vessel of a target depth. Approach: FITC-dextran is injected into the blood stream to visualize the cerebral blood flow in anesthetized adult mice with a cranial window. After a target vessel is chosen by two-photon imaging (950 nm), RB is injected into the blood stream. The scanning wavelength is changed to 720 nm, and photothrombosis is induced by scanning the target vessel. Results: Two-photon depth-targeted single-vessel photothrombosis was achieved with a success rate of 84.9 % ± 1.7 % and an irradiation duration of < 80 s . Attempts without RB (i.e., only with FITC) did not result in photothrombosis at the excitation wavelength of 720 nm. Conclusions: We described a protocol that achieves depth-targeted single-vessel photothrombosis by two-photon excitation. Simultaneous imaging of blood flow in the targeted vessel using FITC dextran enabled the confirmation of vessel occlusion and prevention of excess irradiation that possibly induces unintended photodamage.
Collapse
Affiliation(s)
- Masahiro Fukuda
- Kumamoto University, International Research Center for Medical Sciences, Kumamoto, Japan
- Duke-NUS Medical School, Signature Program in Neuroscience and Behavioral Disorders, Singapore
- Address all correspondence to Masahiro Fukuda, ; Hajime Hirase,
| | - Takayoshi Matsumura
- Jichi Medical University, Division of Inflammation Research, Center for Molecular Medicine, Tochigi, Japan
- National University of Singapore, Cancer Science Institute of Singapore, Singapore
| | - Toshio Suda
- Kumamoto University, International Research Center for Medical Sciences, Kumamoto, Japan
- National University of Singapore, Cancer Science Institute of Singapore, Singapore
| | - Hajime Hirase
- University of Copenhagen, Center for Translational Neuromedicine, Faculty of Health and Life Sciences, Copenhagen, Denmark
- Address all correspondence to Masahiro Fukuda, ; Hajime Hirase,
| |
Collapse
|
3
|
Wu Y, Knox W. Directional phase-unwrapping algorithm and phase shift technique on hydrogel. APPLIED OPTICS 2021; 60:3901-3908. [PMID: 33983328 DOI: 10.1364/ao.420397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Refractive index microstructures, which can be written by multiphoton absorption with femtosecond lasers, have many applications. Here we present a directional phase-unwrapping algorithm with phase-shifting technique and apply it to the metrology of hydrogel microstructures. A staircase phase-unwrapping algorithm is demonstrated. This fast quality-guided path phase-unwrapping applies well to situations that are geometrically well defined and is quite tolerant of phase noise. To achieve precise very small phase shifts, we also present a slant angle technique on a DC servo stage along with phase shift measurement, allowing us to achieve 6.5 nm step sizes.
Collapse
|
4
|
Sola D, Milles S, Lasagni AF. Direct Laser Interference Patterning of Diffraction Gratings in Safrofilcon-A Hydrogel: Fabrication and Hydration Assessment. Polymers (Basel) 2021; 13:polym13050679. [PMID: 33668214 PMCID: PMC7956354 DOI: 10.3390/polym13050679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
Refractive index modification by laser micro-structuration of diffractive optical devices in ophthalmic polymers has recently been applied for refractive correction in the fields of optics and ophthalmology. In this work, Safrofilcon-A hydrogel, used as soft contact lenses, was processed by direct laser interference patterning (DLIP) to fabricate linear periodic patterns on the surface of the samples. Periodic modulation of the surface was attained under two-beam interference by using a Q-switched laser source with emission at 263 nm and 4 ns pulse duration. Features of processed areas were studied as a function of both the interference spatial period and the laser fluence. Optical confocal microscopy used to evaluate the topography of the processed samples showed that both structured height and surface roughness increased with laser fluence. Static water contact angle (WCA) measurements were carried out with deionized water droplets on the structured areas to evaluate the hydration properties of DLIP structures. It was observed that the laser structured areas induced a delay in the hydration process. Finally, microstructural changes induced in the structured areas were assessed by confocal micro-Raman spectroscopy showing that at low laser fluences the polymer structure remained almost unaltered. In addition, Raman spectra of hydrated samples recovered the original shape of areas structured at low laser fluence.
Collapse
Affiliation(s)
- Daniel Sola
- Institut für Fertigungstechnik, Technische Universität Dresden, 01069 Dresden, Germany; (S.M.); (A.F.L.)
- Laboratorio de Óptica, Centro de Investigación en Óptica y Nanofísica, Campus Espinardo, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence:
| | - Stephan Milles
- Institut für Fertigungstechnik, Technische Universität Dresden, 01069 Dresden, Germany; (S.M.); (A.F.L.)
| | - Andrés F. Lasagni
- Institut für Fertigungstechnik, Technische Universität Dresden, 01069 Dresden, Germany; (S.M.); (A.F.L.)
- Fraunhofer Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany
| |
Collapse
|
5
|
Sola D, de Aldana JRV, Artal P. The Role of Thermal Accumulation on the Fabrication of Diffraction Gratings in Ophthalmic PHEMA by Ultrashort Laser Direct Writing. Polymers (Basel) 2020; 12:E2965. [PMID: 33322569 PMCID: PMC7763622 DOI: 10.3390/polym12122965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023] Open
Abstract
The fabrication of diffraction gratings by ultrashort direct laser writing in poly-hydroxyethyl-methacrylate (PHEMA) polymers used as soft contact lenses is reported. Diffraction gratings were inscribed by focusing laser radiation 100 µm underneath the surface of the samples. Low- and high-repetition rate Ti:sapphire lasers with 120 fs pulsewidth working at 1 kHz and 80 MHz respectively were used to assess the role of thermal accumulation on microstructural and optical characteristics. Periodic patterns were produced for different values of repetition rate, pulse energy, laser wavelength, distance between tracks, and scanning speed. Compositional and structural modifications of the processed areas were studied by micro-Raman spectroscopy showing that under certain parameters, thermal accumulation may result in local densification. Far-field diffraction patterns were recorded for the produced gratings to assess the refractive index change induced in the processed areas.
Collapse
Affiliation(s)
- Daniel Sola
- Institut für Fertigungstechnik, Technische Universität Dresden, 01069 Dresden, Germany
- Laboratorio de Óptica, Centro de Investigación en Óptica y Nanofísica, Campus Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | | | - Pablo Artal
- Laboratorio de Óptica, Centro de Investigación en Óptica y Nanofísica, Campus Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| |
Collapse
|