1
|
Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, Malhotra BD, Willander M, de la Zerda A. Gold nanomaterials for optical biosensing and bioimaging. NANOSCALE ADVANCES 2021; 3:2679-2698. [PMID: 36134176 PMCID: PMC9418567 DOI: 10.1039/d0na00961j] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Gold nanoparticles (AuNPs) are highly compelling nanomaterials for biomedical studies due to their unique optical properties. By leveraging the versatile optical properties of different gold nanostructures, the performance of biosensing and biomedical imaging can be dramatically improved in terms of their sensitivity, specificity, speed, contrast, resolution and penetration depth. Here we review recent advances of optical biosensing and bioimaging techniques based on three major optical properties of AuNPs: surface plasmon resonance, surface enhanced Raman scattering and luminescence. We summarize the fabrication methods and optical properties of different types of AuNPs, highlight the emerging applications of these AuNPs for novel optical biosensors and biomedical imaging innovations, and discuss the future trends of AuNP-based optical biosensors and bioimaging as well as the challenges of implementing these techniques in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University California 94305 USA
| | - Nasrin Razmi
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Omer Nur
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Chandra Mouli Pandey
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Magnus Willander
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University California 94305 USA
| |
Collapse
|
2
|
He Y, Hua WH, Low MC, Tsai YH, Cai CJ, Chiang HC, Yu JH, Hsiao JH, Tseng PH, Kiang YW, Yang CC, Zhang Z. Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes. NANOTECHNOLOGY 2018; 29:235101. [PMID: 29570098 DOI: 10.1088/1361-6528/aab933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.
Collapse
Affiliation(s)
- Yulu He
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049 People's Republic of China. Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Section 4, Roosevelt, Road, Taipei, 10617 Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
He Y, Hsiao JH, Yu JH, Tseng PH, Hua WH, Low MC, Tsai YH, Cai CJ, Hsieh CC, Kiang YW, Yang CC, Zhang Z. Cancer cell death pathways caused by photothermal and photodynamic effects through gold nanoring induced surface plasmon resonance. NANOTECHNOLOGY 2017; 28:275101. [PMID: 28557805 DOI: 10.1088/1361-6528/aa75ad] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The different death pathways of cancer cells under the conditions of the photothermal (PT), effect, photodynamic (PD) effect, and their combination are evaluated. By incubating cells with Au nanoring (NRI) either linked with the photosensitizer, AlPcS, or not, the illumination of a visible continuous laser for exciting the photosensitizer or an infrared femtosecond laser for exciting the localized surface plasmon resonance of Au NRI, leads to various PT and PD conditions for study. Three different staining dyes are used for identifying the cell areas of different damage conditions at different temporal points of observation. The cell death pathways and apoptotic evolution speeds under different cell treatment conditions are evaluated based on the calibration of the threshold laser fluences for causing early-apoptosis (EA) and necrosis (NE) or late-apoptosis (LA). It is found that with the PT effect only, strong cell NE is generated and the transition from EA into LA is faster than that caused by the PD effect when the EA stage is reached within 0.5 h after laser illumination. By combining the PT and PD effects, in the first few hours, the transition speed becomes lower, compared to the case of the PT effect only, when both Au NRIs internalized into cells and adsorbed on cell membrane exist. When the Au NRIs on cell membrane is removed, in the first few hours, the transition speed becomes higher, compared to the case of the PD effect only.
Collapse
Affiliation(s)
- Yulu He
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049 People's Republic of China. Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tsai MT, Tsai TY, Shen SC, Ng CY, Lee YJ, Lee JD, Yang CH. Evaluation of Laser-Assisted Trans-Nail Drug Delivery with Optical Coherence Tomography. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2111. [PMID: 27973451 PMCID: PMC5191091 DOI: 10.3390/s16122111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
The nail provides a functional protection to the fingertips and surrounding tissue from external injuries. The nail plate consists of three layers including dorsal, intermediate, and ventral layers. The dorsal layer consists of compact, hard keratins, limiting topical drug delivery through the nail. In this study, we investigate the application of fractional CO₂ laser that produces arrays of microthermal ablation zones (MAZs) to facilitate drug delivery in the nails. We utilized optical coherence tomography (OCT) for real-time monitoring of the laser-skin tissue interaction, sparing the patient from an invasive surgical sampling procedure. The time-dependent OCT intensity variance was used to observe drug diffusion through an induced MAZ array. Subsequently, nails were treated with cream and liquid topical drugs to investigate the feasibility and diffusion efficacy of laser-assisted drug delivery. Our results show that fractional CO₂ laser improves the effectiveness of topical drug delivery in the nail plate and that OCT could potentially be used for in vivo monitoring of the depth of laser penetration as well as real-time observations of drug delivery.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Ting-Yen Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Su-Chin Shen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chau Yee Ng
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ya-Ju Lee
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Jiann-Der Lee
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital, LinKou 33305, Taiwan.
| | - Chih-Hsun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
5
|
Ratheesh KM, Prabhathan P, Seah LK, Murukeshan VM. Gold nanorods with higher aspect ratio as potential contrast agent in optical coherence tomography and for photothermal applications around 1300 nm imaging window. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Oldenburg AL, Blackmon RL, Sierchio JM. Magnetic and Plasmonic Contrast Agents in Optical Coherence Tomography. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803913. [PMID: 27429543 PMCID: PMC4941814 DOI: 10.1109/jstqe.2016.2553084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical coherence tomography (OCT) has gained widespread application for many biomedical applications, yet the traditional array of contrast agents used in incoherent imaging modalities do not provide contrast in OCT. Owing to the high biocompatibility of iron oxides and noble metals, magnetic and plasmonic nanoparticles, respectively, have been developed as OCT contrast agents to enable a range of biological and pre-clinical studies. Here we provide a review of these developments within the past decade, including an overview of the physical contrast mechanisms and classes of OCT system hardware addons needed for magnetic and plasmonic nanoparticle contrast. A comparison of the wide variety of nanoparticle systems is also presented, where the figures of merit depend strongly upon the choice of biological application.
Collapse
Affiliation(s)
- Amy L. Oldenburg
- Department of Physics and Astronomy, the Department of Biomedical Engineering, and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| | - Richard L. Blackmon
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| | - Justin M. Sierchio
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| |
Collapse
|
7
|
Chu CK, Tu YC, Hsiao JH, Yu JH, Yu CK, Chen SY, Tseng PH, Chen S, Kiang YW, Yang CC. Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. NANOTECHNOLOGY 2016; 27:115102. [PMID: 26878331 DOI: 10.1088/0957-4484/27/11/115102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate effective inactivation of oral cancer cells SAS through a combination of photothermal therapy (PTT) and photodynamic therapy (PDT) effects based on localized surface plasmon resonance (LSPR) around 1064 nm in wavelength of a Au nanoring (NRI) under femtosecond (fs) laser illumination. The PTT effect is caused by the LSPR-enhanced absorption of the Au NRI. The PDT effect is generated by linking the Au NRI with the photosensitizer of sulfonated aluminum phthalocyanines (AlPcS) for producing singlet oxygen through the LSPR-enhanced two-photon absorption (TPA) excitation of AlPcS. The laser threshold intensity for cancer cell inactivation with the applied Au NRI linked with AlPcS is significantly lower when compared to that with the Au NRI not linked with AlPcS. The comparison of inactivation threshold intensity between the cases of fs and continuous laser illuminations at the same wavelength and with the same average power confirms the crucial factor of TPA under fs laser illumination for producing the PDT effect.
Collapse
Affiliation(s)
- Chih-Ken Chu
- Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617 Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chu CK, Tu YC, Chang YW, Chu CK, Chen SY, Chi TT, Kiang YW, Yang CC. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation. NANOTECHNOLOGY 2015; 26:075102. [PMID: 25642800 DOI: 10.1088/0957-4484/26/7/075102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.
Collapse
Affiliation(s)
- Che-Kuan Chu
- Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tsai MT, Chang FY, Lee CK, Gong CSA, Lin YX, Lee JD, Yang CH, Liu HL. Investigation of temporal vascular effects induced by focused ultrasound treatment with speckle-variance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:2009-2022. [PMID: 25071945 PMCID: PMC4102345 DOI: 10.1364/boe.5.002009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 05/30/2023]
Abstract
Focused ultrasound (FUS) can be used to locally and temporally enhance vascular permeability, improving the efficiency of drug delivery from the blood vessels into the surrounding tissue. However, it is difficult to evaluate in real time the effect induced by FUS and to noninvasively observe the permeability enhancement. In this study, speckle-variance optical coherence tomography (SVOCT) was implemented for the investigation of temporal effects on vessels induced by FUS treatment. With OCT scanning, the dynamic change in vessels during FUS exposure can be observed and studied. Moreover, the vascular effects induced by FUS treatment with and without the presence of microbubbles were investigated and quantitatively compared. Additionally, 2D and 3D speckle-variance images were used for quantitative observation of blood leakage from vessels due to the permeability enhancement caused by FUS, which could be an indicator that can be used to determine the influence of FUS power exposure. In conclusion, SVOCT can be a useful tool for monitoring FUS treatment in real time, facilitating the dynamic observation of temporal effects and helping to determine the optimal FUS power.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
- Graduate Institute of Electro-Optical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Feng-Yu Chang
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Cheng-Kuang Lee
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Cihun-Siyong Alex Gong
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Yu-Xiang Lin
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Jiann-Der Lee
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Chih-Hsun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, 5 Fusing Street, Kwei-Shan, Tao-Yaun 33302, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| |
Collapse
|
10
|
Chi TT, Tu YC, Li MJ, Chu CK, Chang YW, Yu CK, Kiang YW, Yang CC. Photothermal optical coherence tomography based on the localized surface plasmon resonance of Au nanoring. OPTICS EXPRESS 2014; 22:11754-69. [PMID: 24921297 DOI: 10.1364/oe.22.011754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The conventional optical coherence tomography (OCT) images based on enhanced scattering and the photothermal (PT) images based on enhanced absorption of the localized surface plasmon (LSP) resonance of Au nanorings (NRIs) in a bio-tissue sample are demonstrated with the scans of an OCT system (1310-nm system), in which the spectral range covers the LSP resonance peak wavelength, and another OCT system (1060-nm system), in which the spectral range is away from the LSP resonance peak wavelength. A PT image is formed by evaluating the modulation frequency (400 Hz) response of an excitation laser with its wavelength (1308 nm) close to the LSP resonance peak at 1305 nm of the Au NRI solution. With the scan of the 1310-nm OCT system, the Au NRI distribution in the bio-tissue sample can be observed in both conventional OCT and PT images. However, with the scan of the 1060-nm OCT system, the Au NRI distribution can be clearly observed only in the PT image. The diffusion process of Au NRIs in the bio-tissue sample can be traced with the scan of either OCT system. Based on phantom experiments, it is shown that the PT image can help in resolving the ambiguity of a conventional OCT image between the enhanced scattering of Au NRIs and the strong scattering of a tissue structure in the 1310-nm OCT scanning. Also, under the condition of weak intrinsic sample scattering, particularly in the scan of the 1060-nm system, the PT signal can be lower than a saturating level, which is determined by the excitation power. By increasing OCT system signal-to-noise ratio or M-mode scan time, the PT signal level can be enhanced.
Collapse
|
11
|
Tseng HY, Chen WF, Chu CK, Chang WY, Kuo Y, Kiang YW, Yang CC. On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application. NANOTECHNOLOGY 2013; 24:065102. [PMID: 23339885 DOI: 10.1088/0957-4484/24/6/065102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The on-substrate fabrication of a bio-conjugated Au nanoring (NRI) solution with the localized surface plasmon (LSP) resonance wavelength in the 1200-1300 nm range is demonstrated. Also, the effects of photothermal therapy through LSP resonance-induced absorption enhancement are illustrated by applying the bio-conjugated Au NRIs to human liver cancer cells and illuminating the cells with a laser of 1315 nm in wavelength. The Au NRI fabrication is based on the techniques of nano-imprint lithography and metal secondary sputtering. The procedure for on-substrate surface modification of Au NRIs leads to a high production yield of bio-conjugated NRIs. The threshold levels of the local laser intensity for injuring cancer cells based on the LSP resonances of Au NRIs of two different samples are determined.
Collapse
Affiliation(s)
- Hung-Yu Tseng
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | | | | | | | | | | | | |
Collapse
|
12
|
Furlani EP, Karampelas IH, Xie Q. Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale. LAB ON A CHIP 2012; 12:3707-3719. [PMID: 22782691 DOI: 10.1039/c2lc40495h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A study is presented of photothermal effects associated with nanosecond-pulsed laser-illuminated subwavelength metallic nanoparticles in aqueous solutions. Computational electromagnetic and fluid analysis are used to model fundamental aspects of the photothermal process taking into account energy conversion within the nanoparticle at plasmon resonance, heat transfer to the fluid, homogeneous bubble nucleation, and the dynamic behaviour of the bubble and surrounding fluid. Various nanoparticle geometries are modelled including spheres, nanorods and tori. The analysis demonstrates that the laser intensity and pulse duration can be tuned to achieve controllable bubble generation without exceeding the melting temperature of the particle. The analysis also shows that the particle geometry can be tuned to optimize photothermal energy conversion for bubble generation at wavelengths that span the UV to NIR spectrum. Multiparticle systems are studied and a cooperative heating effect is demonstrated for particles that are within a few radii of each other. This provides more robust bubble generation using substantially reduced laser energy as compared to single-particle systems. The modelling approach is discussed in detail and should be of considerable use in the development of new photothermal applications.
Collapse
Affiliation(s)
- Edward P Furlani
- Department of Electrical Engineering, University at Buffalo, The State University of New York at Buffalo (SUNY-Buffalo), New York 14260, USA.
| | | | | |
Collapse
|
13
|
Au KM, Lu Z, Matcher SJ, Armes SP. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:5792-5. [PMID: 22102372 DOI: 10.1002/adma.201103190] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Indexed: 05/03/2023]
Abstract
A near-infrared (NIR) absorbing contrast agent based on polypyrrole nanoparticles is described. Quantitative optical coherence tomography studies on tissue phantoms and Mie scattering calculations indicate their potential application for early-stage cancer diagnosis.
Collapse
Affiliation(s)
- Kin Man Au
- Department of Chemistry, The University of Sheffield, Brook Hill, Yorkshire, UK
| | | | | | | |
Collapse
|