1
|
Fazel M, Jazani S, Scipioni L, Vallmitjana A, Zhu S, Gratton E, Digman MA, Pressé S. Building Fluorescence Lifetime Maps Photon-by-Photon by Leveraging Spatial Correlations. ACS PHOTONICS 2023; 10:3558-3569. [PMID: 38406580 PMCID: PMC10890823 DOI: 10.1021/acsphotonics.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has become a standard tool in the quantitative characterization of subcellular environments. However, quantitative FLIM analyses face several challenges. First, spatial correlations between pixels are often ignored as signal from individual pixels is analyzed independently thereby limiting spatial resolution. Second, existing methods deduce photon ratios instead of absolute lifetime maps. Next, the number of fluorophore species contributing to the signal is unknown, while excited state lifetimes with <1 ns difference are difficult to discriminate. Finally, existing analyses require high photon budgets and often cannot rigorously propagate experimental uncertainty into values over lifetime maps and number of species involved. To overcome all of these challenges simultaneously and self-consistently at once, we propose the first doubly nonparametric framework. That is, we learn the number of species (using Beta-Bernoulli process priors) and absolute maps of these fluorophore species (using Gaussian process priors) by leveraging information from pulses not leading to observed photon. We benchmark our framework using a broad range of synthetic and experimental data and demonstrate its robustness across a number of scenarios including cases where we recover lifetime differences between species as small as 0.3 ns with merely 1000 photons.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sina Jazani
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Alexander Vallmitjana
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Songning Zhu
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Steve Pressé
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States; School of Molecular Science, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Fazel M, Jazani S, Scipioni L, Vallmitjana A, Gratton E, Digman MA, Pressé S. High Resolution Fluorescence Lifetime Maps from Minimal Photon Counts. ACS PHOTONICS 2022; 9:1015-1025. [PMID: 35847830 PMCID: PMC9278809 DOI: 10.1021/acsphotonics.1c01936] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) may reveal subcellular spatial lifetime maps of key molecular species. Yet, such a quantitative picture of life necessarily demands high photon budgets at every pixel under the current analysis paradigm, thereby increasing acquisition time and photodamage to the sample. Motivated by recent developments in computational statistics, we provide a direct means to update our knowledge of the lifetime maps of species of different lifetimes from direct photon arrivals, while accounting for experimental features such as arbitrary forms of the instrument response function (IRF) and exploiting information from empty laser pulses not resulting in photon detection. Our ability to construct lifetime maps holds for arbitrary lifetimes, from short lifetimes (comparable to the IRF) to lifetimes exceeding interpulse times. As our method is highly data efficient, for the same amount of data normally used to determine lifetimes and photon ratios, working within the Bayesian paradigm, we report direct blind unmixing of lifetimes with subnanosecond resolution and subpixel spatial resolution using standard raster scan FLIM images. We demonstrate our method using a wide range of simulated and experimental data.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Center
for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sina Jazani
- Center
for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Lorenzo Scipioni
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Laboratory
of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Alexander Vallmitjana
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Laboratory
of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Enrico Gratton
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Laboratory
of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Michelle A. Digman
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Laboratory
of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Steve Pressé
- Center
for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Science, Arizona State University, Tempe, Arizona 85287, United States
- E-mail:
| |
Collapse
|
3
|
Wang P, Hecht F, Ossato G, Tille S, Fraser SE, Junge JA. Complex wavelet filter improves FLIM phasors for photon starved imaging experiments. BIOMEDICAL OPTICS EXPRESS 2021; 12:3463-3473. [PMID: 34221672 PMCID: PMC8221945 DOI: 10.1364/boe.420953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 05/11/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) with phasor analysis provides easy visualization and analysis of fluorophores' lifetimes which is valuable for multiple applications including metabolic imaging, STED imaging, FRET imaging and functional imaging. However, FLIM imaging typically suffers from low photon budgets, leading to unfavorable signal to noise ratios which in many cases prevent extraction of information from the data. Traditionally, median filters are applied in phasor analysis to tackle this problem. This unfortunately degrades high spatial frequency FLIM information in the phasor analysis. These high spatial frequency components are typically edges of features and puncta, which applies to membranes, mitochondria, granules and small organelles in a biological sample. To tackle this problem, we propose a filtering strategy with complex wavelet filtering and Anscombe transform for FLIM phasor analysis. This filtering strategy preserves fine structures and reports accurate lifetimes in photon starved FLIM imaging. Moreover, this filter outperforms median filters and makes FLIM imaging with lower laser power and faster imaging possible.
Collapse
Affiliation(s)
- P. Wang
- Translational Imaging Center, Dornsife School of Letters, Arts, and Sciences, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - F. Hecht
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, Mannheim 68165, Germany
| | - G. Ossato
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, Mannheim 68165, Germany
| | - S. Tille
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, Mannheim 68165, Germany
| | - S. E. Fraser
- Translational Imaging Center, Dornsife School of Letters, Arts, and Sciences, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - J. A. Junge
- Translational Imaging Center, Dornsife School of Letters, Arts, and Sciences, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Wang S, Chacko JV, Sagar AK, Eliceiri KW, Yuan M. Nonparametric empirical Bayesian framework for fluorescence-lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:5497-5517. [PMID: 31799027 PMCID: PMC6865096 DOI: 10.1364/boe.10.005497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/31/2019] [Accepted: 09/29/2019] [Indexed: 05/02/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool used to study the molecular environment of flurophores. In time domain FLIM, extracting lifetime from fluorophores signals entails fitting data to a decaying exponential distribution function. However, most existing techniques for this purpose need large amounts of photons at each pixel and a long computation time, thus making it difficult to obtain reliable inference in applications requiring either short acquisition or minimal computation time. In this work, we introduce a new nonparametric empirical Bayesian framework for FLIM data analysis (NEB-FLIM), leading to both improved pixel-wise lifetime estimation and a more robust and computationally efficient integral property inference. This framework is developed based on a newly proposed hierarchical statistical model for FLIM data and adopts a novel nonparametric maximum likelihood estimator to estimate the prior distribution. To demonstrate the merit of the proposed framework, we applied it on both simulated and real biological datasets and compared it with previous classical methods on these datasets.
Collapse
Affiliation(s)
- Shulei Wang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenu V Chacko
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Abdul K Sagar
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Ming Yuan
- Department of Statistics, Columbia University, New York, NY 10027, USA
| |
Collapse
|
5
|
Peltier C, Winckler P, Dujourdy L, Bechoua S, Perrier-Cornet JM. Analysis of multivariate images in fluorescence microscopy. Methods Appl Fluoresc 2019; 7:035004. [PMID: 30974420 DOI: 10.1088/2050-6120/ab1886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A multivariate image is an image stack in which each pixel contains several variables. Such images are common in many fields (medicine, imaging microscopy, satellite imaging...) and their analysis requires adapted multivariate statistical methods. In fluorescence imaging microscopy, different probes or different measurements such as intensity, fluorescence lifetime or spectral information can be observed from one view. However, this is not yet analysed as multivariate images. Here, we are presenting a full approach of multivariate analysis of fluorescence microscopy images and we are proposing a free R package (multifluo) to conduct it.
Collapse
Affiliation(s)
- Caroline Peltier
- Univ. Bourgogne Franche-Comte, Agrosup Dijon, PAM UMR A 02.102, F21000 Dijon, France
| | | | | | | | | |
Collapse
|
6
|
Santra K, Smith EA, Song X, Petrich JW. A Bayesian Approach for Extracting Fluorescence Lifetimes from Sparse Data Sets and Its Significance for Imaging Experiments. Photochem Photobiol 2018; 95:773-779. [DOI: 10.1111/php.13057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Kalyan Santra
- Department of Chemistry Iowa State University Ames IA
- Ames Laboratory U.S. Department of Energy Ames IA
| | - Emily A. Smith
- Department of Chemistry Iowa State University Ames IA
- Ames Laboratory U.S. Department of Energy Ames IA
| | - Xueyu Song
- Department of Chemistry Iowa State University Ames IA
- Ames Laboratory U.S. Department of Energy Ames IA
| | - Jacob W. Petrich
- Department of Chemistry Iowa State University Ames IA
- Ames Laboratory U.S. Department of Energy Ames IA
| |
Collapse
|
7
|
Tavakoli M, Taylor JN, Li CB, Komatsuzaki T, Pressé S. Single Molecule Data Analysis: An Introduction. ADVANCES IN CHEMICAL PHYSICS 2017. [DOI: 10.1002/9781119324560.ch4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meysam Tavakoli
- Physics Department; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
| | - J. Nicholas Taylor
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
| | - Chun-Biu Li
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
- Department of Mathematics; Stockholm University; 106 91 Stockholm Sweden
| | - Tamiki Komatsuzaki
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
| | - Steve Pressé
- Physics Department; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
- Department of Cell and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- Department of Physics and School of Molecular Sciences; Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
8
|
Zhang Y, Cuyt A, Lee WS, Lo Bianco G, Wu G, Chen Y, Li DDU. Towards unsupervised fluorescence lifetime imaging using low dimensional variable projection. OPTICS EXPRESS 2016; 24:26777-26791. [PMID: 27857408 DOI: 10.1364/oe.24.026777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Analyzing large fluorescence lifetime imaging (FLIM) data is becoming overwhelming; the latest FLIM systems easily produce massive amounts of data, making an efficient analysis more challenging than ever. In this paper we propose the combination of a custom-fit variable projection method, with a Laguerre expansion based deconvolution, to analyze bi-exponential data obtained from time-domain FLIM systems. Unlike nonlinear least squares methods, which require a suitable initial guess from an experienced researcher, the new method is free from manual interventions and hence can support automated analysis. Monte Carlo simulations are carried out on synthesized FLIM data to demonstrate the performance compared to other approaches. The performance is also illustrated on real-life FLIM data obtained from the study of autofluorescence of daisy pollen and the endocytosis of gold nanorods (GNRs) in living cells. In the latter, the fluorescence lifetimes of the GNRs are much shorter than the full width at half maximum of the instrument response function. Overall, our proposed method contains simple steps and shows great promise in realising automated FLIM analysis of large data sets.
Collapse
|
9
|
Rowley MI, Coolen ACC, Vojnovic B, Barber PR. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging. PLoS One 2016; 11:e0158404. [PMID: 27355322 PMCID: PMC4927071 DOI: 10.1371/journal.pone.0158404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/15/2016] [Indexed: 11/26/2022] Open
Abstract
We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters.
Collapse
Affiliation(s)
- Mark I. Rowley
- Institute for Mathematical and Molecular Biomedicine, King’s College London, London, United Kingdom
| | - Anthonius C. C. Coolen
- Institute for Mathematical and Molecular Biomedicine, King’s College London, London, United Kingdom
| | - Borivoj Vojnovic
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul R. Barber
- Institute for Mathematical and Molecular Biomedicine, King’s College London, London, United Kingdom
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Santra K, Zhan J, Song X, Smith EA, Vaswani N, Petrich JW. What Is the Best Method to Fit Time-Resolved Data? A Comparison of the Residual Minimization and the Maximum Likelihood Techniques As Applied to Experimental Time-Correlated, Single-Photon Counting Data. J Phys Chem B 2016; 120:2484-90. [PMID: 26865463 DOI: 10.1021/acs.jpcb.6b00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The need for measuring fluorescence lifetimes of species in subdiffraction-limited volumes in, for example, stimulated emission depletion (STED) microscopy, entails the dual challenge of probing a small number of fluorophores and fitting the concomitant sparse data set to the appropriate excited-state decay function. This need has stimulated a further investigation into the relative merits of two fitting techniques commonly referred to as "residual minimization" (RM) and "maximum likelihood" (ML). Fluorescence decays of the well-characterized standard, rose bengal in methanol at room temperature (530 ± 10 ps), were acquired in a set of five experiments in which the total number of "photon counts" was approximately 20, 200, 1000, 3000, and 6000 and there were about 2-200 counts at the maxima of the respective decays. Each set of experiments was repeated 50 times to generate the appropriate statistics. Each of the 250 data sets was analyzed by ML and two different RM methods (differing in the weighting of residuals) using in-house routines and compared with a frequently used commercial RM routine. Convolution with a real instrument response function was always included in the fitting. While RM using Pearson's weighting of residuals can recover the correct mean result with a total number of counts of 1000 or more, ML distinguishes itself by yielding, in all cases, the same mean lifetime within 2% of the accepted value. For 200 total counts and greater, ML always provides a standard deviation of <10% of the mean lifetime, and even at 20 total counts there is only 20% error in the mean lifetime. The robustness of ML advocates its use for sparse data sets such as those acquired in some subdiffraction-limited microscopies, such as STED, and, more importantly, provides greater motivation for exploiting the time-resolved capacities of this technique to acquire and analyze fluorescence lifetime data.
Collapse
Affiliation(s)
- Kalyan Santra
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States.,U.S. Department of Energy , Ames Laboratory, Ames, Iowa 50011, United States
| | - Jinchun Zhan
- Department of Electrical and Computer Engineering, Iowa State University , Ames, Iowa 50011, United States
| | - Xueyu Song
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States.,U.S. Department of Energy , Ames Laboratory, Ames, Iowa 50011, United States
| | - Emily A Smith
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States.,U.S. Department of Energy , Ames Laboratory, Ames, Iowa 50011, United States
| | - Namrata Vaswani
- Department of Electrical and Computer Engineering, Iowa State University , Ames, Iowa 50011, United States
| | - Jacob W Petrich
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States.,U.S. Department of Energy , Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
|
12
|
Abstract
Optical imaging assays, especially fluorescence molecular assays, are minimally invasive if not completely noninvasive, and thus an ideal technique to be applied to live specimens. These fluorescence imaging assays are a powerful tool in biomedical sciences as they allow the study of a wide range of molecular and physiological events occurring in biological systems. Furthermore, optical imaging assays bridge the gap between the in vitro cell-based analysis of subcellular processes and in vivo study of disease mechanisms in small animal models. In particular, the application of Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM), well-known techniques widely used in microscopy, to the optical imaging assay toolbox, will have a significant impact in the molecular study of protein-protein interactions during cancer progression. This review article describes the application of FLIM-FRET to the field of optical imaging and addresses their various applications, both current and potential, to anti-cancer drug delivery and cancer research.
Collapse
Affiliation(s)
- Shilpi Rajoria
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Biomedical imaging Center and Department of Biomedical Engineering, Troy, NY 12180
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Biomedical imaging Center and Department of Biomedical Engineering, Troy, NY 12180
| | - Margarida Barroso
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208
| |
Collapse
|
13
|
Nedbal J, Visitkul V, Ortiz-Zapater E, Weitsman G, Chana P, Matthews DR, Ng T, Ameer-Beg SM. Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening. Cytometry A 2015; 87:104-18. [PMID: 25523156 PMCID: PMC4440390 DOI: 10.1002/cyto.a.22616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/12/2014] [Accepted: 12/03/2014] [Indexed: 01/22/2023]
Abstract
Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5-5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jakub Nedbal
- Division of Cancer Studies, King's College LondonUnited Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College LondonUnited Kingdom
| | - Viput Visitkul
- Randall Division of Cell and Molecular Biophysics, King's College LondonUnited Kingdom
| | - Elena Ortiz-Zapater
- Division of Asthma, Allergy & Lung Biology, King's College LondonUnited Kingdom
| | | | - Prabhjoat Chana
- Immune Monitoring Laboratory, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College LondonUnited Kingdom
| | - Daniel R Matthews
- Queensland Brain Institute, The University of QueenslandSt Lucia, Australia
| | - Tony Ng
- Division of Cancer Studies, King's College LondonUnited Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College LondonUnited Kingdom
- UCL Cancer Institute, University College LondonUnited Kingdom
| | - Simon M Ameer-Beg
- Division of Cancer Studies, King's College LondonUnited Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College LondonUnited Kingdom
| |
Collapse
|
14
|
Zheng D, Lu HP. Single-molecule enzymatic conformational dynamics: spilling out the product molecules. J Phys Chem B 2014; 118:9128-40. [PMID: 25025461 PMCID: PMC4126733 DOI: 10.1021/jp5014434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Product releasing is an essential step of an enzymatic reaction, and a mechanistic understanding primarily depends on the active-site conformational changes and molecular interactions that are involved in this step of the enzymatic reaction. Here we report our work on the enzymatic product releasing dynamics and mechanism of an enzyme, horseradish peroxidase (HRP), using combined single-molecule time-resolved fluorescence intensity, anisotropy, and lifetime measurements. Our results have shown a wide distribution of the multiple conformational states involved in active-site interacting with the product molecules during the product releasing. We have identified that there is a significant pathway in which the product molecules are spilled out from the enzymatic active site, driven by a squeezing effect from a tight active-site conformational state, although the conventional pathway of releasing a product molecule from an open active-site conformational state is still a primary pathway. Our study provides new insight into the enzymatic reaction dynamics and mechanism, and the information is uniquely obtainable from our combined time-resolved single-molecule spectroscopic measurements and analyses.
Collapse
Affiliation(s)
- Desheng Zheng
- Center for Photochemical
Sciences, Department of Chemistry, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - H. Peter Lu
- Center for Photochemical
Sciences, Department of Chemistry, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
15
|
Gu J, Fu CY, Ng BK, Gulam Razul SS, Lim SK. Quantitative diagnosis of cervical neoplasia using fluorescence lifetime imaging on haematoxylin and eosin stained tissue sections. JOURNAL OF BIOPHOTONICS 2014; 7:483-91. [PMID: 23281280 DOI: 10.1002/jbio.201200202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/02/2012] [Accepted: 12/04/2012] [Indexed: 05/20/2023]
Abstract
The use of conventional fluorescence microscopy for characterizing tissue pathological states is limited by overlapping spectra and the dependence on excitation power and fluorophore concentration. Fluorescence lifetime imaging microscopy (FLIM) can overcome these limitations due to its insensitivity to fluorophore concentration, excitation power and spectral similarity. This study investigates the diagnosis of early cervical cancer using FLIM and a neural network extreme learning machine classifier. A concurrently high sensitivity and specificity of 92.8% and 80.2%, respectively, were achieved. The results suggest that the proposed technique can be used to supplement the traditional histopathological examination of early cervical cancer.
Collapse
Affiliation(s)
- Jun Gu
- Nanyang Technological University, School of Electrical & Electronic Engineering, Singapore 639798
| | | | | | | | | |
Collapse
|
16
|
Lu Y, Lu J, Zhao J, Cusido J, Raymo FM, Yuan J, Yang S, Leif RC, Huo Y, Piper JA, Paul Robinson J, Goldys EM, Jin D. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nat Commun 2014; 5:3741. [PMID: 24796249 PMCID: PMC4024748 DOI: 10.1038/ncomms4741] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/27/2014] [Indexed: 12/23/2022] Open
Abstract
Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called 'τ-Dots'. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer. We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences.
Collapse
Affiliation(s)
- Yiqing Lu
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jie Lu
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jiangbo Zhao
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Janet Cusido
- Laboratory for Molecular Photonics, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Sean Yang
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Robert C. Leif
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Yujing Huo
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - James A. Piper
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - J Paul Robinson
- Purdue University Cytometry Laboratories, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ewa M. Goldys
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Dayong Jin
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Purdue University Cytometry Laboratories, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
17
|
Zarrabi N, Ernst S, Verhalen B, Wilkens S, Börsch M. Analyzing conformational dynamics of single P-glycoprotein transporters by Förster resonance energy transfer using hidden Markov models. Methods 2013; 66:168-79. [PMID: 23891547 DOI: 10.1016/j.ymeth.2013.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022] Open
Abstract
Single-molecule Förster resonance energy (smFRET) transfer has become a powerful tool for observing conformational dynamics of biological macromolecules. Analyzing smFRET time trajectories allows to identify the state transitions occuring on reaction pathways of molecular machines. Previously, we have developed a smFRET approach to monitor movements of the two nucleotide binding domains (NBDs) of P-glycoprotein (Pgp) during ATP hydrolysis driven drug transport in solution. One limitation of this initial work was that single-molecule photon bursts were analyzed by visual inspection with manual assignment of individual FRET levels. Here a fully automated analysis of Pgp smFRET data using hidden Markov models (HMM) for transitions up to 9 conformational states is applied. We propose new estimators for HMMs to integrate the information of fluctuating intensities in confocal smFRET measurements of freely diffusing lipid bilayer bound membrane proteins in solution. HMM analysis strongly supports that under conditions of steady state turnover, conformational states with short NBD distances and short dwell times are more populated compared to conditions without nucleotide or transport substrate present.
Collapse
Affiliation(s)
- Nawid Zarrabi
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; 3rd Institute of Physics, University of Stuttgart, 70550 Stuttgart, Germany
| | - Stefan Ernst
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Brandy Verhalen
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; 3rd Institute of Physics, University of Stuttgart, 70550 Stuttgart, Germany.
| |
Collapse
|
18
|
Leray A, Spriet C, Trinel D, Usson Y, Héliot L. Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation. J Microsc 2013; 248:66-76. [PMID: 22971219 DOI: 10.1111/j.1365-2818.2012.03651.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polar representation or phasor, which provides a fast and visual indication on the number of exponentials present in the intensity decay of the fluorescence lifetime images is increasingly used in time domain fluorescence lifetime imaging microscopy experiments. The calculations of the polar coordinates in time domain fluorescence lifetime imaging microscopy experiments involve several experimental parameters (e.g. instrumental response function, background, angular frequency, number of temporal channels) whose role has not been exhaustively investigated. Here, we study theoretically, computationally and experimentally the influence of each parameter on the polar calculations and suggest parameter optimization for minimizing errors. We identify several sources of mistakes that may occur in the calculations of the polar coordinates and propose adapted corrections to compensate for them. For instance, we demonstrate that the numerical integration method employed for integrals calculations may induce errors when the number of temporal channels is low. We report theoretical generalized expressions to compensate for these deviations and conserve the semicircle integrity, facilitating the comparison between fluorescence lifetime imaging microscopy images acquired with distinct channels number. These theoretical generalized expressions were finally corroborated with both Monte Carlo simulations and experiments.
Collapse
Affiliation(s)
- A Leray
- Institut de Recherche Interdisciplinaire, USR 3078 CNRS, Université de Lille-Nord de France, BCF, Parc de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
19
|
From FRET Imaging to Practical Methodology for Kinase Activity Sensing in Living Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:145-216. [DOI: 10.1016/b978-0-12-386932-6.00005-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Lopez SG, Ruedas-Rama MJ, Casares S, Alvarez-Pez JM, Orte A. Bulk and Single-Molecule Fluorescence Studies of the Saturation of the DNA Double Helix Using YOYO-3 Intercalator Dye. J Phys Chem B 2012; 116:11561-9. [DOI: 10.1021/jp303438d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sergio G. Lopez
- Department
of Physical Chemistry,
Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Maria J. Ruedas-Rama
- Department
of Physical Chemistry,
Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Salvador Casares
- Department of Physical Chemistry,
Faculty of Sciences, University of Granada, Fuentenueva Campus, 18071, Granada, Spain
| | - Jose M. Alvarez-Pez
- Department
of Physical Chemistry,
Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Angel Orte
- Department
of Physical Chemistry,
Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071, Granada, Spain
| |
Collapse
|
21
|
Li DDU, Ameer-Beg S, Arlt J, Tyndall D, Walker R, Matthews DR, Visitkul V, Richardson J, Henderson RK. Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays. SENSORS 2012; 12:5650-69. [PMID: 22778606 PMCID: PMC3386705 DOI: 10.3390/s120505650] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/18/2012] [Accepted: 04/26/2012] [Indexed: 11/27/2022]
Abstract
We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.
Collapse
Affiliation(s)
- David Day-Uei Li
- Department of Engineering and Design, School of Engineering and Informatics, University of Sussex, Brighton BN1 9QT, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-127-387-3513
| | - Simon Ameer-Beg
- Division of Cancer Research & Randall Division of Cell and Molecular Biophysics, Richard Dimbleby Department of Cancer Research, Guy's Campus, London SE1 1UL, UK; E-Mails: (S.A.B.); (V.V.)
| | - Jochen Arlt
- SUPA, COSMIC, School of Physics and Astronomy, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK; E-Mail:
| | - David Tyndall
- Institute for Integrated Micro and Nano Systems, The School of Engineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland, UK; E-Mails: (D.T.); (R.W.); (J.R.); (R.K.H.)
| | - Richard Walker
- Institute for Integrated Micro and Nano Systems, The School of Engineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland, UK; E-Mails: (D.T.); (R.W.); (J.R.); (R.K.H.)
| | - Daniel R. Matthews
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia; E-Mail:
| | - Viput Visitkul
- Division of Cancer Research & Randall Division of Cell and Molecular Biophysics, Richard Dimbleby Department of Cancer Research, Guy's Campus, London SE1 1UL, UK; E-Mails: (S.A.B.); (V.V.)
| | - Justin Richardson
- Institute for Integrated Micro and Nano Systems, The School of Engineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland, UK; E-Mails: (D.T.); (R.W.); (J.R.); (R.K.H.)
| | - Robert K. Henderson
- Institute for Integrated Micro and Nano Systems, The School of Engineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland, UK; E-Mails: (D.T.); (R.W.); (J.R.); (R.K.H.)
| |
Collapse
|
22
|
Chang CW, Mycek MA. Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy. JOURNAL OF BIOPHOTONICS 2012; 5:449-457. [PMID: 22415891 PMCID: PMC4106132 DOI: 10.1002/jbio.201100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/10/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
We report the first application of wavelet-based denoising (noise removal) methods to time-domain box-car fluorescence lifetime imaging microscopy (FLIM) images and compare the results to novel total variation (TV) denoising methods. Methods were tested first on artificial images and then applied to low-light live-cell images. Relative to undenoised images, TV methods could improve lifetime precision up to 10-fold in artificial images, while preserving the overall accuracy of lifetime and amplitude values of a single-exponential decay model and improving local lifetime fitting in live-cell images. Wavelet-based methods were at least 4-fold faster than TV methods, but could introduce significant inaccuracies in recovered lifetime values. The denoising methods discussed can potentially enhance a variety of FLIM applications, including live-cell, in vivo animal, or endoscopic imaging studies, especially under challenging imaging conditions such as low-light or fast video-rate imaging.
Collapse
Affiliation(s)
- Ching-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099
| | - Mary-Ann Mycek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-2099
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109-2099
| |
Collapse
|
23
|
Matthews DR, Fruhwirth GO, Weitsman G, Carlin LM, Ofo E, Keppler M, Barber PR, Tullis IDC, Vojnovic B, Ng T, Ameer-Beg SM. A multi-functional imaging approach to high-content protein interaction screening. PLoS One 2012; 7:e33231. [PMID: 22506000 PMCID: PMC3323588 DOI: 10.1371/journal.pone.0033231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/06/2012] [Indexed: 12/20/2022] Open
Abstract
Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging.
Collapse
Affiliation(s)
- Daniel R. Matthews
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Gilbert O. Fruhwirth
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Gregory Weitsman
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Leo M. Carlin
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Enyinnaya Ofo
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Melanie Keppler
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Paul R. Barber
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Iain D. C. Tullis
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Borivoj Vojnovic
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Tony Ng
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Simon M. Ameer-Beg
- Division of Cancer Studies, Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
24
|
Fruhwirth GO, Fernandes LP, Weitsman G, Patel G, Kelleher M, Lawler K, Brock A, Poland SP, Matthews DR, Kéri G, Barber PR, Vojnovic B, Ameer‐Beg SM, Coolen ACC, Fraternali F, Ng T. How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology. Chemphyschem 2011; 12:442-61. [DOI: 10.1002/cphc.201000866] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/07/2011] [Indexed: 01/22/2023]
Affiliation(s)
- Gilbert O. Fruhwirth
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Luis P. Fernandes
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Gargi Patel
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Muireann Kelleher
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Katherine Lawler
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Adrian Brock
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Simon P. Poland
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Daniel R. Matthews
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - György Kéri
- Vichem Chemie Research Ltd. Herman Ottó utca 15, Budapest, Hungary and Pathobiochemistry Research Group of Hungarian Academy of Science, Semmelweis University, Budapest, 1444 Bp 8. POB 260 (Hungary)
| | - Paul R. Barber
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ (UK)
| | - Borivoj Vojnovic
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ (UK)
| | - Simon M. Ameer‐Beg
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Anthony C. C. Coolen
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Department of Mathematics, King's College London, Strand Campus, London, WC2R 2LS (UK)
| | - Franca Fraternali
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| |
Collapse
|