1
|
Li T, Cheburkanov V, Yakovlev VV, Agarwal GS, Scully MO. Harnessing quantum light for microscopic biomechanical imaging of cells and tissues. Proc Natl Acad Sci U S A 2024; 121:e2413938121. [PMID: 39480851 DOI: 10.1073/pnas.2413938121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
The biomechanical properties of cells and tissues play an important role in our fundamental understanding of the structures and functions of biological systems at both the cellular and subcellular levels. Recently, Brillouin microscopy, which offers a label-free spectroscopic means of assessing viscoelastic properties in vivo, has emerged as a powerful way to interrogate those properties on a microscopic level in living tissues. However, susceptibility to photodamage and photobleaching, particularly when high-intensity laser beams are used to induce Brillouin scattering, poses a significant challenge. This article introduces a transformative approach designed to mitigate photodamage in biological and biomedical studies, enabling nondestructive, label-free assessments of mechanical properties in live biological samples. By leveraging quantum-light-enhanced stimulated Brillouin scattering (SBS) imaging contrast, the signal-to-noise ratio is significantly elevated, thereby increasing sample viability and extending interrogation times without compromising the integrity of living samples. The tangible impact of this methodology is evidenced by a notable three-fold increase in sample viability observed after subjecting the samples to three hours of continuous squeezed-light illumination, surpassing the traditional coherent light-based approaches. The quantum-enhanced SBS imaging holds promise across diverse fields, such as cancer biology and neuroscience where preserving sample vitality is of paramount significance. By mitigating concerns regarding photodamage and photobleaching associated with high-intensity lasers, this technological breakthrough expands our horizons for exploring the mechanical properties of live biological systems, paving the way for an era of research and clinical applications.
Collapse
Affiliation(s)
- Tian Li
- Department of Chemistry and Physics, The University of Tennessee, Chattanooga, TN 37403
- The University of Tennessee Research Institute, The University of Tennessee, Chattanooga, TN 37403
| | - Vsevolod Cheburkanov
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843
| | - Girish S Agarwal
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843
| | - Marlan O Scully
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843
| |
Collapse
|
2
|
Vasanthakumari P, Romano RA, Rosa RGT, Salvio AG, Yakovlev V, Kurachi C, Hirshburg JM, Jo JA. Pixel-level classification of pigmented skin cancer lesions using multispectral autofluorescence lifetime dermoscopy imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4557-4583. [PMID: 39346997 PMCID: PMC11427192 DOI: 10.1364/boe.523831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
There is no clinical tool available to primary care physicians or dermatologists that could provide objective identification of suspicious skin cancer lesions. Multispectral autofluorescence lifetime imaging (maFLIM) dermoscopy enables label-free biochemical and metabolic imaging of skin lesions. This study investigated the use of pixel-level maFLIM dermoscopy features for objective discrimination of malignant from visually similar benign pigmented skin lesions. Clinical maFLIM dermoscopy images were acquired from 60 pigmented skin lesions before undergoing a biopsy examination. Random forest and deep neural networks classification models were explored, as they do not require explicit feature selection. Feature pools with either spectral intensity or bi-exponential maFLIM features, and a combined feature pool, were independently evaluated with each classification model. A rigorous cross-validation strategy tailored for small-size datasets was adopted to estimate classification performance. Time-resolved bi-exponential autofluorescence features were found to be critical for accurate detection of malignant pigmented skin lesions. The deep neural network model produced the best lesion-level classification, with sensitivity and specificity of 76.84%±12.49% and 78.29%±5.50%, respectively, while the random forest classifier produced sensitivity and specificity of 74.73%±14.66% and 76.83%±9.58%, respectively. Results from this study indicate that machine-learning driven maFLIM dermoscopy has the potential to assist doctors with identifying patients in real need of biopsy examination, thus facilitating early detection while reducing the rate of unnecessary biopsies.
Collapse
Affiliation(s)
| | - Renan A. Romano
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Ramon G. T. Rosa
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Ana G. Salvio
- Skin Department of Amaral Carvalho Hospital, São Paulo, Brazil
| | - Vladislav Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, TX, USA
| | - Cristina Kurachi
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Jason M. Hirshburg
- University of Oklahoma Health Science Center, Department of Dermatology, Oklahoma City, OK, USA
| | - Javier A. Jo
- University of Oklahoma, School of Electrical and Computer Engineering, Norman, OK, USA
| |
Collapse
|
3
|
Lee JWN, Holle AW. Engineering approaches for understanding mechanical memory in cancer metastasis. APL Bioeng 2024; 8:021503. [PMID: 38605886 PMCID: PMC11008915 DOI: 10.1063/5.0194539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Understanding cancer metastasis is crucial for advancing therapeutic strategies and improving clinical outcomes. Cancer cells face dynamic changes in their mechanical microenvironment that occur on timescales ranging from minutes to years and exhibit a spectrum of cellular transformations in response to these mechanical cues. A crucial facet of this adaptive response is the concept of mechanical memory, in which mechanosensitive cell behavior and function persists even when mechanical cues are altered. This review explores the evolving mechanical landscape during metastasis, emphasizing the significance of mechanical memory and its influence on cell behavior. We then focus on engineering techniques that are being utilized to probe mechanical memory of cancer cells. Finally, we highlight promising translational approaches poised to harness mechanical memory for new therapies, thereby advancing the frontiers of bioengineering applications in cancer research.
Collapse
Affiliation(s)
- Jia Wen Nicole Lee
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | | |
Collapse
|
4
|
Coker ZN, Troyanova-Wood M, Steelman ZA, Ibey BL, Bixler JN, Scully MO, Yakovlev VV. Brillouin microscopy monitors rapid responses in subcellular compartments. PHOTONIX 2024; 5:9. [PMID: 38618142 PMCID: PMC11006764 DOI: 10.1186/s43074-024-00123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.
Collapse
Affiliation(s)
- Zachary N. Coker
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- SAIC, Fort Sam Houston, TX 78234 USA
| | | | - Zachary A. Steelman
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Bennett L. Ibey
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Joel N. Bixler
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Marlan O. Scully
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Vladislav V. Yakovlev
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, 101 Bizzell Street, College Station, TX 77843 USA
| |
Collapse
|
5
|
Romodina MN, Parmar A, Singh K. In vivo measurement of the biomechanical properties of human skin with motion-corrected Brillouin microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:1777-1784. [PMID: 38495685 PMCID: PMC10942711 DOI: 10.1364/boe.516032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Biomechanical testing of human skin in vivo is important to study the aging process and pathological conditions such as skin cancer. Brillouin microscopy allows the all-optical, non-contact visualization of the mechanical properties of cells and tissues over space. Here, we use the combination of Brillouin microscopy and optical coherence tomography for motion-corrected, depth-resolved biomechanical testing of human skin in vivo. We obtained two peaks in the Brillouin spectra for the epidermis, the first at 7 GHz and the second near 9-10 GHz. The experimentally measured Brillouin frequency shift of the dermis is lower compared to the epidermis and is 6.8 GHz, indicating the lower stiffness of the dermis.
Collapse
Affiliation(s)
- Maria N. Romodina
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Asha Parmar
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
- Department of Physics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kanwarpal Singh
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
- Department of Physics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
6
|
Martinez-Vidal L, Testi C, Pontecorvo E, Pederzoli F, Alchera E, Locatelli I, Venegoni C, Spinelli A, Lucianò R, Salonia A, Podestà A, Ruocco G, Alfano M. Progressive alteration of murine bladder elasticity in actinic cystitis detected by Brillouin microscopy. Sci Rep 2024; 14:484. [PMID: 38177637 PMCID: PMC10766652 DOI: 10.1038/s41598-023-51006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024] Open
Abstract
Bladder mechanical properties are critical for organ function and tissue homeostasis. Therefore, alterations of tissue mechanics are linked to disease onset and progression. This study aims to characterize the tissue elasticity of the murine bladder wall considering its different anatomical components, both in healthy conditions and in actinic cystitis, a state characterized by tissue fibrosis. Here, we exploit Brillouin microscopy, an emerging technique in the mechanobiology field that allows mapping tissue mechanics at the microscale, in non-contact mode and free of labeling. We show that Brillouin imaging of bladder tissues is able to recognize the different anatomical components of the bladder wall, confirmed by histopathological analysis, showing different tissue mechanical properties of the physiological bladder, as well as a significant alteration in the presence of tissue fibrosis. Our results point out the potential use of Brillouin imaging on clinically relevant samples as a complementary technique to histopathological analysis, deciphering complex mechanical alteration of each tissue layer of an organ that strongly relies on mechanical properties to perform its function.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy.
| | - Claudia Testi
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy.
| | - Emanuele Pontecorvo
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy
- CrestOptics S.p.A., Via Di Torre Rossa, 66, 00165, Roma, Italy
| | - Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Roberta Lucianò
- Pathology Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Alessandro Podestà
- Dipartimento Di Fisica "Aldo Pontremoli" and CIMAINA, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy
- Dipartimento Di Fisica, Universitá Di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| |
Collapse
|
7
|
Cheburkanov V, Keene E, Pipal J, Johns M, Applegate BE, Yakovlev VV. Porcine vocal fold elasticity evaluation using Brillouin spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:087002. [PMID: 37560326 PMCID: PMC10407566 DOI: 10.1117/1.jbo.28.8.087002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Significance The vocal folds are critically important structures within the larynx which serve the essential functions of supporting the airway, preventing aspiration, and phonation. The vocal fold mucosa has a unique multilayered architecture whose layers have discrete viscoelastic properties facilitating sound production. Perturbations in these properties lead to voice loss. Currently, vocal fold pliability is inferred clinically using laryngeal videostroboscopy and no tools are available for in vivo objective assessment. Aim The main objective of the present study is to evaluate viability of Brillouin microspectroscopy for differentiating vocal folds' mechanical properties against surrounding tissues. Approach We used Brillouin microspectroscopy as an emerging optical imaging modality capable of providing information about local viscoelastic properties of tissues in noninvasive and remote manner. Results Brillouin measurements of the porcine larynx vocal folds were performed. Elasticity-driven Brillouin spectral shifts were recorded and analyzed. Elastic properties, as assessed by Brillouin spectroscopy, strongly correlate with those acquired using classical elasticity measurements. Conclusions These results demonstrate the feasibility of Brillouin spectroscopy for vocal fold imaging. With more extensive research, this technique may provide noninvasive objective assessment of vocal fold mucosal pliability toward objective diagnoses and more targeted treatments.
Collapse
Affiliation(s)
- Vsevolod Cheburkanov
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Ethan Keene
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Tarleton State University, Department of Physics, Stephenville, Texas, United States
| | - Jason Pipal
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Tarleton State University, Department of Physics, Stephenville, Texas, United States
| | - Michael Johns
- University of Southern California, Caruso Department of Otolaryngology–Head and Neck Surgery, Los Angeles, California, United States
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology–Head and Neck Surgery, Los Angeles, California, United States
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California, United States
| | - Vladislav V. Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
8
|
Cheburkanov V, Du J, Brogan DM, Berezin MY, Yakovlev VV. Toward peripheral nerve mechanical characterization using Brillouin imaging spectroscopy. NEUROPHOTONICS 2023; 10:035007. [PMID: 37635849 PMCID: PMC10460255 DOI: 10.1117/1.nph.10.3.035007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Significance Peripheral nerves are viscoelastic tissues with unique elastic characteristics. Imaging of peripheral nerve elasticity is important in medicine, particularly in the context of nerve injury and repair. Elasticity imaging techniques provide information about the mechanical properties of peripheral nerves, which can be useful in identifying areas of nerve damage or compression, as well as assessing the success of nerve repair procedures. Aim We aim to assess the feasibility of Brillouin microspectroscopy for peripheral nerve imaging of elasticity, with the ultimate goal of developing a new diagnostic tool for peripheral nerve injury in vivo. Approach Viscoelastic properties of the peripheral nerve were evaluated with Brillouin imaging spectroscopy. Results An external stress exerted on the fixed nerve resulted in a Brillouin shift. Quantification of the shift enabled correlation of the Brillouin parameters with nerve elastic properties. Conclusions Brillouin microscopy provides sufficient sensitivity to assess viscoelastic properties of peripheral nerves.
Collapse
Affiliation(s)
- Vsevolod Cheburkanov
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Junwei Du
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University, Institute of Materials Science and Engineering, St. Louis, Missouri, United States
| | - David M. Brogan
- Washington University School of Medicine, Department of Orthopedic Surgery, St. Louis, Missouri, United States
| | - Mikhail Y. Berezin
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University, Institute of Materials Science and Engineering, St. Louis, Missouri, United States
| | - Vladislav V. Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
9
|
Willis JA, Cheburkanov V, Yakovlev VV. High-Dose Photodynamic Therapy Increases Tau Protein Signals in Drosophila. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2023; 29:7201108. [PMID: 38327699 PMCID: PMC10846862 DOI: 10.1109/jstqe.2023.3270403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Amyloid-Detection and imaging of amyloid-β plaques (Aβ) has been a focus in the field of neurodegeneration (ND) due to the high correlation with Parkinson's and Alzheimer's diseases. Here, a novel approach is being proposed and developed to induce and assess those diseases. Photodynamic therapy (PDT) is applied to the fruit fly Drosophila melanogaster as a model of systemic oxidative stress to induce rapid Aβ accumulation. Excised brains are evaluated by Brillouin-Raman spectroscopy and microscopy with UV surface emissions (MUSE) to interrogate physical property changes due to fixation and high-dose PDT. MUSE reveals reasonable autofluorescence in the spectral range of Aβ, particularly for females, with increased signal once stained. A presence of significant mechanical changes in fresh brains treated with PDT compared to healthy controls is revealed using Brillouin spectroscopy. Aβ plaque presence was confirmed with confocal analysis, with female PDT flies yielding nearly four-fold the mean intensity of controls, thus marking PDT as a potential neurodegenerative disease model. MUSE may serve as a viable early screening method for Aβ presence and quantification in a research setting. This reduces the time for sample preparation and drastically decreases the cost of Aβ quantification.
Collapse
Affiliation(s)
- Jace A. Willis
- Department of Biomedical Engineering at Texas A&M University, TX 77840, USA
| | | | - Vladislav V. Yakovlev
- Departments of Biomedical Engineering and Physics at Texas A&M University, TX 77840, USA
| |
Collapse
|
10
|
Park S, Chien AL, Brown ID, Chen J. Characterizing viscoelastic properties of human melanoma tissue using Prony series. Front Bioeng Biotechnol 2023; 11:1162880. [PMID: 37091343 PMCID: PMC10117758 DOI: 10.3389/fbioe.2023.1162880] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Melanoma is the most invasive and deadly skin cancer, which causes most of the deaths from skin cancer. It has been demonstrated that the mechanical properties of tumor tissue are significantly altered. However, data about characterizing the mechanical properties of in vivo melanoma tissue are extremely scarce. In addition, the viscoelastic or viscous properties of melanoma tissue are rarely reported. In this study, we measured and quantitated the viscoelastic properties of human melanoma tissues based on the stress relaxation test, using the indentation-based mechanical analyzer that we developed previously. The melanoma tissues from eight patients of different ages (57–95), genders (male and female patients), races (White and Asian), and sites (nose, arm, shoulder, and chest) were excised and tested. The results showed that the elastic property (i.e., shear modulus) of melanoma tissue was elevated compared to normal tissue, while the viscous property (i.e., relaxation time) was reduced. Moreover, the tissue thickness had a significant impact on the viscoelastic properties, probably due to the amount of the adipose layer. Our findings provide new insights into the role of the viscous and elastic properties of melanoma cell mechanics, which may be implicated in the disease state and progression.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, NV, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Seungman Park,
| | - Anna L. Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Isabelle D. Brown
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
11
|
Kurbanova B, Ashikbayeva Z, Amantayeva A, Sametova A, Blanc W, Gaipov A, Tosi D, Utegulov Z. Thermo-Visco-Elastometry of RF-Wave-Heated and Ablated Flesh Tissues Containing Au Nanoparticles. BIOSENSORS 2022; 13:bios13010008. [PMID: 36671844 PMCID: PMC9855978 DOI: 10.3390/bios13010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
We report non-contact laser-based Brillouin light-scattering (BLS) spectroscopy measurements of the viscoelastic properties of hyperthermally radiofrequency (RF)-heated and ablated bovine liver and chicken flesh tissues with embedded gold nanoparticles (AuNPs). The spatial lateral profile of the local surface temperature in the flesh samples during their hyperthermia was measured through optical backscattering reflectometry (OBR) using Mg−silica-NP-doped sensing fibers distributed with an RF applicator and correlated with viscoelastic variations in heat-affected and ablated tissues. Substantial changes in the tissue stiffness after heating and ablation were directly related to their heat-induced structural modifications. The main proteins responsible for muscle elasticity were denatured and irreversibly aggregated during the RF ablation. At T > 100 °C, the proteins constituting the flesh further shrank and became disorganized, leading to substantial plastic deformation of biotissues. Their uniform destruction with larger thermal lesions and a more viscoelastic network was attained via AuNP-mediated RF hyperthermal ablation. The results demonstrated here pave the way for simultaneous real-time hybrid optical sensing of viscoelasticity and local temperature in biotissues during their denaturation and gelation during hyperthermia for future applications that involve mechanical- and thermal-property-controlled theranostics.
Collapse
Affiliation(s)
- Bayan Kurbanova
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aida Amantayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Akbota Sametova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wilfried Blanc
- Université Côte d’Azur, INPHYNI, CNRS UMR7010, Avenue Joseph Vallot, 06108 Nice, France
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Astana 010000, Kazakhstan
| | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
12
|
Zhao Z, Zou J. Photoacoustic testing of shear viscoelastic properties of soft tissues using annular beam illumination. OPTICS LETTERS 2022; 47:5583-5586. [PMID: 37219276 DOI: 10.1364/ol.464551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 05/24/2023]
Abstract
This Letter reports a new, to the best of our knowledge, photoacoustic excitation method for evaluating the shear viscoelastic properties of soft tissues. By illuminating the target surface with an annular pulsed laser beam, circularly converging surface acoustic waves (SAWs) are generated, focused, and detected at the center of the annular beam. The shear elasticity and shear viscosity of the target are extracted from the dispersive phase velocity of the SAWs based on the Kelvin-Voigt model and nonlinear regression fitting. Agar phantoms with different concentrations, and animal liver and fat tissue samples have successfully been characterized. Different from previous methods, the self-focusing of the converging SAWs allows sufficient SNR to be obtained even with low pulsed laser energy density, which makes this approach well compatible with soft tissues under both ex vivo and in vivo testing conditions.
Collapse
|
13
|
Zykova VA, Surovtsev NV. Brillouin Spectroscopy of Binary Phospholipid-Cholesterol Bilayers. APPLIED SPECTROSCOPY 2022; 76:1206-1215. [PMID: 35712869 DOI: 10.1177/00037028221111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multicomponent lipid bilayers are used as models for searching the origin of spatial heterogeneities in biomembranes called lipid rafts, implying the coexistence of domains of different phases and compositions within the lipid bilayer. The spatial organization of multicomponent lipid bilayers on a scale of a hundred nanometers remains unknown. Brillouin spectroscopy providing information about the acoustic phonons with the wavelength of several hundred nanometers has an unexplored potential for this problem. Here, we applied Brillouin spectroscopy for three binary bilayers composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC), and cholesterol. The Brillouin experiment for the oriented planar multibilayers was realized for two scattering geometries involving phonons for the lateral and normal directions of the propagation. The DPPC-DOPC mixtures known for the coexistence of the solid-ordered and liquid-disordered phases had bimodal Brillouin peaks, revealing the phase domains with sizes more than a hundred nanometers. Analysis of the Brillouin data for the binary mixtures concluded that the lateral phonons are preferable for testing the lateral homogeneity of the bilayers, while the phonons spreading across the bilayers are sensitive to the layered packing at the mesoscopic scale.
Collapse
Affiliation(s)
- Valeria A Zykova
- 104673Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay V Surovtsev
- 104673Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Maksymov IS, Huy Nguyen BQ, Suslov SA. Biomechanical Sensing Using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications. BIOSENSORS 2022; 12:624. [PMID: 36005019 PMCID: PMC9406219 DOI: 10.3390/bios12080624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
Gas bubbles present in liquids underpin many natural phenomena and human-developed technologies that improve the quality of life. Since all living organisms are predominantly made of water, they may also contain bubbles-introduced both naturally and artificially-that can serve as biomechanical sensors operating in hard-to-reach places inside a living body and emitting signals that can be detected by common equipment used in ultrasound and photoacoustic imaging procedures. This kind of biosensor is the focus of the present article, where we critically review the emergent sensing technologies based on acoustically driven oscillations of bubbles in liquids and bodily fluids. This review is intended for a broad biosensing community and transdisciplinary researchers translating novel ideas from theory to experiment and then to practice. To this end, all discussions in this review are written in a language that is accessible to non-experts in specific fields of acoustics, fluid dynamics and acousto-optics.
Collapse
Affiliation(s)
- Ivan S. Maksymov
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bui Quoc Huy Nguyen
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sergey A. Suslov
- Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
15
|
Fabiano E, Zhang J, Reinhart-King C. Tissue density in the progression of breast cancer: Bedside to bench and back again. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22. [DOI: 10.1016/j.cobme.2022.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Mahajan V, Beck T, Gregorczyk P, Ruland A, Alberti S, Guck J, Werner C, Schlüßler R, Taubenberger AV. Mapping Tumor Spheroid Mechanics in Dependence of 3D Microenvironment Stiffness and Degradability by Brillouin Microscopy. Cancers (Basel) 2021; 13:5549. [PMID: 34771711 PMCID: PMC8583550 DOI: 10.3390/cancers13215549] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Altered biophysical properties of cancer cells and of their microenvironment contribute to cancer progression. While the relationship between microenvironmental stiffness and cancer cell mechanical properties and responses has been previously studied using two-dimensional (2D) systems, much less is known about it in a physiologically more relevant 3D context and in particular for multicellular systems. To investigate the influence of microenvironment stiffness on tumor spheroid mechanics, we first generated MCF-7 tumor spheroids within matrix metalloproteinase (MMP)-degradable 3D polyethylene glycol (PEG)-heparin hydrogels, where spheroids showed reduced growth in stiffer hydrogels. We then quantitatively mapped the mechanical properties of tumor spheroids in situ using Brillouin microscopy. Maps acquired for tumor spheroids grown within stiff hydrogels showed elevated Brillouin frequency shifts (hence increased longitudinal elastic moduli) with increasing hydrogel stiffness. Maps furthermore revealed spatial variations of the mechanical properties across the spheroids' cross-sections. When hydrogel degradability was blocked, comparable Brillouin frequency shifts of the MCF-7 spheroids were found in both compliant and stiff hydrogels, along with similar levels of growth-induced compressive stress. Under low compressive stress, single cells or free multicellular aggregates showed consistently lower Brillouin frequency shifts compared to spheroids growing within hydrogels. Thus, the spheroids' mechanical properties were modulated by matrix stiffness and degradability as well as multicellularity, and also to the associated level of compressive stress felt by tumor spheroids. Spheroids generated from a panel of invasive breast, prostate and pancreatic cancer cell lines within degradable stiff hydrogels, showed higher Brillouin frequency shifts and less cell invasion compared to those in compliant hydrogels. Taken together, our findings contribute to a better understanding of the interplay between cancer cells and microenvironment mechanics and degradability, which is relevant to better understand cancer progression.
Collapse
Affiliation(s)
- Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| | - Timon Beck
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstr. 2, 91058 Erlangen, Germany;
| | - Paulina Gregorczyk
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| | - André Ruland
- Max Bergmann Center, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany; (A.R.); (C.W.)
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstr. 2, 91058 Erlangen, Germany;
| | - Carsten Werner
- Max Bergmann Center, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany; (A.R.); (C.W.)
| | - Raimund Schlüßler
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| | - Anna Verena Taubenberger
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| |
Collapse
|
17
|
Villalba-Orero M, Jiménez-Riobóo RJ, Gontán N, Sanderson D, López-Olañeta M, García-Pavía P, Desco M, Lara-Pezzi E, Gómez-Gaviro MV. Assessment of myocardial viscoelasticity with Brillouin spectroscopy in myocardial infarction and aortic stenosis models. Sci Rep 2021; 11:21369. [PMID: 34725389 PMCID: PMC8560820 DOI: 10.1038/s41598-021-00661-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Heart diseases are associated with changes in the biomechanical properties of the myocardial wall. However, there is no modality available to assess myocardial stiffness directly. Brillouin microspectroscopy (mBS) is a consolidated mechanical characterization technique, applied to the study of the viscoelastic and elastic behavior of biological samples and may be a valuable tool for assessing the viscoelastic properties of the cardiac tissue. In this work, viscosity and elasticity were assessed using mBS in heart samples obtained from healthy and unhealthy mice (n = 6 per group). Speckle-tracking echocardiography (STE) was performed to evaluate heart deformation. We found that mBS was able to detect changes in stiffness in the ventricles in healthy myocardium. The right ventricle showed reduced stiffness, in agreement with its increased compliance. mBS measurements correlated strongly with STE data, highlighting the association between displacement and stiffness in myocardial regions. This correlation was lost in pathological conditions studied. The scar region in the infarcted heart presented changes in stiffness when compared to the rest of the heart, and the hypertrophied left ventricle showed increased stiffness following aortic stenosis, compared to the right ventricle. We demonstrate that mBS can be applied to determine myocardial stiffness, that measurements correlate with functional parameters and that they change with disease.
Collapse
Affiliation(s)
- María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain
| | - Rafael J Jiménez-Riobóo
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain
| | - Marina López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Pablo García-Pavía
- Hospital Puerta de Hierro Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.,Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain. .,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain. .,Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007, Madrid, Spain.
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain. .,Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007, Madrid, Spain.
| |
Collapse
|
18
|
Rioboó RJJ, Gontán N, Sanderson D, Desco M, Gómez-Gaviro MV. Brillouin Spectroscopy: From Biomedical Research to New Generation Pathology Diagnosis. Int J Mol Sci 2021; 22:8055. [PMID: 34360822 PMCID: PMC8347166 DOI: 10.3390/ijms22158055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Brillouin spectroscopy has recently gained considerable interest within the biomedical field as an innovative tool to study mechanical properties in biology. The Brillouin effect is based on the inelastic scattering of photons caused by their interaction with thermodynamically driven acoustic modes or phonons and it is highly dependent on the material's elasticity. Therefore, Brillouin is a contactless, label-free optic approach to elastic and viscoelastic analysis that has enabled unprecedented analysis of ex vivo and in vivo mechanical behavior of several tissues with a micrometric resolution, paving the way to a promising future in clinical diagnosis. Here, we comprehensively review the different studies of this fast-moving field that have been performed up to date to provide a quick guide of the current literature. In addition, we offer a general view of Brillouin's biomedical potential to encourage its further development to reach its implementation as a feasible, cost-effective pathology diagnostic tool.
Collapse
Affiliation(s)
- Rafael J. Jiménez Rioboó
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain;
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| |
Collapse
|
19
|
Zhu Y, Lesch A, Li X, Lin TE, Gasilova N, Jović M, Pick HM, Ho PC, Girault HH. Rapid Noninvasive Skin Monitoring by Surface Mass Recording and Data Learning. JACS AU 2021; 1:598-611. [PMID: 34056635 PMCID: PMC8154208 DOI: 10.1021/jacsau.0c00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 05/08/2023]
Abstract
Skin problems are often overlooked due to a lack of robust and patient-friendly monitoring tools. Herein, we report a rapid, noninvasive, and high-throughput analytical chemical methodology, aiming at real-time monitoring of skin conditions and early detection of skin disorders. Within this methodology, adhesive sampling and laser desorption ionization mass spectrometry are coordinated to record skin surface molecular mass in minutes. Automated result interpretation is achieved by data learning, using similarity scoring and machine learning algorithms. Feasibility of the methodology has been demonstrated after testing a total of 117 healthy, benign-disordered, or malignant-disordered skins. Remarkably, skin malignancy, using melanoma as a proof of concept, was detected with 100% accuracy already at early stages when the lesions were submillimeter-sized, far beyond the detection limit of most existing noninvasive diagnosis tools. Moreover, the malignancy development over time has also been monitored successfully, showing the potential to predict skin disorder progression. Capable of detecting skin alterations at the molecular level in a nonsurgical and time-saving manner, this analytical chemistry platform is promising to build personalized skin care.
Collapse
Affiliation(s)
- Yingdi Zhu
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", Universita degli Studi di Bologna, 40136 Bologna, Italy
| | - Xiaoyun Li
- Department of Fundamental Oncology, Université de Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Natalia Gasilova
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Milica Jović
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Horst Matthias Pick
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Université de Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Hubert H Girault
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Troyanova-Wood MA, Yakovlev VV. Multi-wavelength excitation Brillouin spectroscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27. [PMID: 34177217 DOI: 10.1109/jstqe.2021.3071955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We propose and demonstrate, first on simulated spectra and then experimentally, a novel approach to correct the undesired background distortions in the Brillouin spectra caused by molecular filter's absorption, fluorescent emission, ambient room light or any other constant contaminant. The developed multi-wavelength excitation Brillouin spectroscopy method computationally reconstructs the pure Brillouin component of the signal from multiple Brillouin spectra acquired using different excitation wavelengths. By removing the baseline distortions, the approach improves the goodness of fit of the Brillouin peaks, enabling accurate Brillouin shift and linewidth measurements from a wide range of challenging samples. In the present report, we explain the principle behind the method on a set of simulated spectra and present experimental application on an intentionally strongly-distorted spectrum. Utilizing the multi-excitation Brillouin spectroscopy approach, we successfully reconstruct Brillouin spectra of a highly-scattering sample, initially rendered not analyzable by excessive iodine absorption and contamination by out-of-focus light.
Collapse
Affiliation(s)
- Maria A Troyanova-Wood
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA. She is now in Air Force Science and Technology Fellowship Program (formerly National Research Council Research Associateship Program) at Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234 USA
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
21
|
Zhang J, Scarcelli G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat Protoc 2021; 16:1251-1275. [PMID: 33452504 PMCID: PMC8218248 DOI: 10.1038/s41596-020-00457-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023]
Abstract
Several techniques have been developed over the past few decades to assess the mechanical properties of biological samples, which has fueled a rapid growth in the fields of biophysics, bioengineering, and mechanobiology. In this context, Brillouin optical spectroscopy has long been known as an intriguing modality for noncontact material characterization. However, limited by speed and sample damage, it had not translated into a viable imaging modality for biomedically relevant materials. Recently, based on a novel spectroscopy strategy that substantially improves the speed of Brillouin measurement, confocal Brillouin microscopy has emerged as a unique complementary tool to traditional methods as it allows noncontact, nonperturbative, label-free measurements of material mechanical properties. The feasibility and potential of this innovative technique at both the cell and tissue level have been extensively demonstrated over the past decade. As Brillouin technology is rapidly recognized, a standard approach for building and operating Brillouin microscopes is required to facilitate the widespread adoption of this technology. In this protocol, we aim to establish a robust approach for instrumentation, and data acquisition and analysis. By carefully following this protocol, we expect that a Brillouin instrument can be built in 5-9 days by a person with basic optics knowledge and alignment experience; the data acquisition as well as postprocessing can be accomplished within 2-8 h.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
22
|
Rix J, Koch E, Kirsch M, Schackert G, Uckermann O, Galli R. Combined Brillouin and Raman system for biomedical applications. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023804007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A VIPA based Brillouin spectrometer consisting of commercially available components has been combined with a standard Raman spectrometer and a confocal microscope allowing simultaneous and co-localized measurements of biological samples and tissues.
Collapse
|
23
|
D'Acunto M, Gaeta R, Capanna R, Franchi A. Contribution of Raman Spectroscopy to Diagnosis and Grading of Chondrogenic Tumors. Sci Rep 2020; 10:2155. [PMID: 32034187 PMCID: PMC7005702 DOI: 10.1038/s41598-020-58848-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/19/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decade, Raman Spectroscopy has demonstrated to be a label-free and non-destructive optical spectroscopy able to improve diagnostic accuracy in cancer diagnosis. This is because Raman spectroscopic measurements can reveal a deep molecular understanding of the biochemical changes in cancer tissues in comparison with non-cancer tissues. In this pilot study, we apply Raman spectroscopy imaging to the diagnosis and grading of chondrogenic tumors, including enchondroma and chondrosarcomas of increasing histologic grades. The investigation included the analysis of areas of 50×50 μm2 to approximately 200×200 μm2, respectively. Multivariate statistical analysis, based on unsupervised (Principal Analysis Components) and supervised (Linear Discriminant Analysis) methods, differentiated between the various tumor samples, between cells and extracellular matrix, and between collagen and non-collagenous components. The results dealt out basic biochemical information on tumor progression giving the possibility to grade with certainty the malignant cartilaginous tumors under investigation. The basic processes revealed by Raman Spectroscopy are the progressive degrading of collagen type-II components, the formation of calcifications and the cell proliferation in tissues ranging from enchondroma to chondrosarcomas. This study highlights that Raman spectroscopy is particularly effective when cartilaginous tumors need to be subjected to histopathological analysis.
Collapse
Affiliation(s)
- Mario D'Acunto
- IBF-CNR, Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa, via Moruzzi 1, I-56124, Pisa, Italy.
| | - Raffaele Gaeta
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rodolfo Capanna
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Elsayad K, Palombo F, Dehoux T, Fioretto D. Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue. BIOMEDICAL OPTICS EXPRESS 2019; 10:2670-2673. [PMID: 31143507 PMCID: PMC6524607 DOI: 10.1364/boe.10.002670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 06/09/2023]
Abstract
There has been a marked revival of interest in brillouin light scattering spectroscopy/microscopy over the last decade in regards to applications related to all optically studying the mechanical problems associated with systems of biological and medical interest. This revival has been driven by advancements in spectrometer design, together with mounting evidence of the critical role that mechanical properties can play in biological processes as well as the onset of diverse diseases. This feature issue contains a series of papers spanning some of the latest developments in the field of Brillouin light scattering spectroscopy and microscopy as applied to systems of biomedical interest.
Collapse
Affiliation(s)
- Kareem Elsayad
- VBCF-Advanced Microscopy, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna, A-1030, Austria
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Thomas Dehoux
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Daniele Fioretto
- Istituto Officina dei Materiali del CNR (CNR-IOM) - Unita` di Perugia, c/o Dipartimento di Fisica e Geologia, Perugia I-06100, Italy
| |
Collapse
|