1
|
Song J, Guo W, Zeng N, Ma H. Polarization phase unwrapping by a dual-wavelength Mueller matrix imaging system. OPTICS LETTERS 2023; 48:2058-2061. [PMID: 37058641 DOI: 10.1364/ol.488675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
In this Letter, we report a dual-wavelength Mueller matrix imaging system for polarization phase unwrapping, allowing simultaneous acquisition of the polarization images at 633 nm and 870 nm. After phase unwrapping, the relative error of linear retardance is controlled to be 3% and the absolute error of birefringence orientation is about 6°. We first show that polarization phase wrapping occurs when the samples are thick or present obvious birefringence effects, and further analyze the effect of phase wrapping on anisotropy parameters via Monte Carlo simulations. Then, experiments on porous alumina with different thicknesses and multilayer tapes are performed to verify the feasibility of phase unwrapping by a dual-wavelength Mueller matrix system. Finally, by comparing the temporal characteristics of linear retardance during tissue dehydration before and after phase unwrapping, we emphasize the significance of the dual-wavelength Mueller matrix imaging system not only for anisotropy analysis in static samples, but also for determining the trend in polarization properties of dynamic samples.
Collapse
|
2
|
Probing Dynamic Variation of Layered Microstructure Using Backscattering Polarization Imaging. PHOTONICS 2022. [DOI: 10.3390/photonics9030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polarization imaging can quantitatively probe the microscopic structure of biological tissues which can be complex and consist of layered structures. In this paper, we established a fast-backscattering Mueller matrix imaging system to characterize the dynamic variation in the microstructure of single-layer and double-layer tissues as glycerin solution penetrated into the samples. The characteristic response of Mueller matrix elements, as well as polarization parameters with clearer physics meanings, show that polarization imaging can capture the dynamic variation in the layered microstructure. The experimental results are confirmed by Monte Carlo simulations. Further examination on the accuracy of Mueller matrix measurements also shows that much faster speed has to be considered when backscattering Mueller matrix imaging is applied to living samples.
Collapse
|
3
|
Liu CJ, Ammon W, Jones RJ, Nolan J, Wang R, Chang S, Frosch MP, Yendiki A, Boas DA, Magnain C, Fischl B, Wang H. Refractive-index matching enhanced polarization sensitive optical coherence tomography quantification in human brain tissue. BIOMEDICAL OPTICS EXPRESS 2022; 13:358-372. [PMID: 35154876 PMCID: PMC8803034 DOI: 10.1364/boe.443066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 05/11/2023]
Abstract
The importance of polarization-sensitive optical coherence tomography (PS-OCT) has been increasingly recognized in human brain imaging. Despite the recent progress of PS-OCT in revealing white matter architecture and orientation, quantification of fine-scale fiber tracts in the human brain cortex has been a challenging problem, due to a low birefringence in the gray matter. In this study, we investigated the effect of refractive index matching by 2,2'-thiodiethanol (TDE) immersion on the improvement of PS-OCT measurements in ex vivo human brain tissue. We show that we can obtain fiber orientation maps of U-fibers that underlie sulci, as well as cortical fibers in the gray matter, including radial fibers in gyri and distinct layers of fibers exhibiting laminar organization. Further analysis shows that index matching reduces the noise in axis orientation measurements by 56% and 39%, in white and gray matter, respectively. Index matching also enables precise measurements of apparent birefringence, which was underestimated in the white matter by 82% but overestimated in the gray matter by 16% prior to TDE immersion. Mathematical simulations show that the improvements are primarily attributed to the reduction in the tissue scattering coefficient, leading to an enhanced signal-to-noise ratio in deeper tissue regions, which could not be achieved by conventional noise reduction methods.
Collapse
Affiliation(s)
- Chao J Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - William Ammon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert J Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jackson Nolan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruopeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Shuaibin Chang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Caroline Magnain
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
- MIT HST, Computer Science and AI Lab, Cambridge, MA 02139, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
4
|
Song J, Zeng N, Guo W, Guo J, Ma H. Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. BIOMEDICAL OPTICS EXPRESS 2021; 12:4821-4836. [PMID: 34513227 PMCID: PMC8407829 DOI: 10.1364/boe.426653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 05/09/2023]
Abstract
We propose a continuous Stokes imaging system with a refresh rate of several seconds, instead of a traditional Mueller measurement setup, to quickly track the microstructural changes of tissues during the optical clearing process. The effectiveness of this fast Stokes imaging applied in monitoring the dynamic process is first validated by three designed experiments with a polarization state that changes continuously and rapidly, and is further confirmed by gradual changes in polarization image contrast and resolution with clearing. By comparison with experiments from different tissue samples with the same agent, the fast Stokes response curve can improve the analysis ability of photon polarization behavior connected with the complicated changes of tissue characteristics.
Collapse
Affiliation(s)
- Jiawei Song
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Tsinghua University, Department of Physics, 1 Tsinghua Yuan, Beijing 100084, China
| | - Nan Zeng
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Wei Guo
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Tsinghua University, Department of Biomedical Engineering, 1 Tsinghua Yuan, Beijing 100084, China
| | - Jun Guo
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Tsinghua University, Department of Physics, 1 Tsinghua Yuan, Beijing 100084, China
- Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518071, China
| |
Collapse
|
5
|
Ahmad I, Khaliq A, Iqbal M, Khan S. Mueller matrix polarimetry for characterization of skin tissue samples: A review. Photodiagnosis Photodyn Ther 2020; 30:101708. [DOI: 10.1016/j.pdpdt.2020.101708] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
6
|
Larin KV, Zhu D, Priezzhev A, Sampson DD. Recent progress in optical probing and manipulation of tissue: introduction. BIOMEDICAL OPTICS EXPRESS 2019; 10:5159-5161. [PMID: 31646038 PMCID: PMC6788591 DOI: 10.1364/boe.10.005159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 05/03/2023]
Abstract
This feature issue of Biomedical Optics Express represents a cross-section of the most recent work in tissue optics, including exciting developments in tissue optical clearing, deep tissue imaging, optical elastography, nanophotonics in tissue, and therapeutic applications of light, amongst others. A collection of 33 papers provides a comprehensive overview of current research in tissue optics, much of it inspired and informed by the pioneering work of Prof. Valery Tuchin. The issue contains three invited manuscripts and several mini-reviews that we hope will benefit researchers in this exciting area.
Collapse
Affiliation(s)
- Kirill V Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Alexander Priezzhev
- Department of Physics and International Laser Center, Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow, 119992, Russia
| | - David D Sampson
- Surrey Biophotonics, School of Biosciences and Medicine, and Department of Physics, University of Surrey, Guildford, United Kingdom
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, University of Western Australia, 35 Stirling Highway, Perth, Western Australia
| |
Collapse
|