1
|
Zhang Y, Tan Y, Dong Y, Dai L, Ren C, Zhang F, Zeng L, An F, Li C, Huang B, Zhong G, Li J. High-Throughput Scanning Second-Harmonic-Generation Microscopy for Polar Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300348. [PMID: 36916868 DOI: 10.1002/adma.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/06/2023] [Indexed: 05/12/2023]
Abstract
The Materials Genome Initiative aims to discover, develop, manufacture, and deploy advanced materials at twice the speed of conventional approaches. To achieve this, high-throughput characterization is essential for the rapid screening of candidate materials. In this study, a high-throughput scanning second-harmonic-generation microscope with automatic partitioning, accurate positioning, and fast scanning is developed that can rapidly probe and screen polar materials. Using this technique, typical ferroelectrics, including periodically poled lithium niobate crystals and PbZr0.2 Ti0.8 O3 (PZT) thin films are first investigated, whereby the microscopic domain structures are clearly revealed. This technique is then applied to a compositional-gradient (100-x)%BaTiO3 -x%SrTiO3 film and a thickness-gradient PZT film to demonstrate its high-throughput capabilities. Since the second-harmonic-generation signal is correlated with the macroscopic remnant polarization over the probed region determined by the laser spot, it is free of artifacts arising from leakage current and electrostatic interference, while materials' symmetries and domain structures must be carefully considered in the data analysis. It is believed that this work can help promote the high-throughput development of polar materials and contribute to the Materials Genome Initiative.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yangchun Tan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Yangda Dong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Liyufen Dai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Chuanlai Ren
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Fengyuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lingping Zeng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Feng An
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Changjian Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Boyuan Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Gaokuo Zhong
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
2
|
Aghigh A, Bancelin S, Rivard M, Pinsard M, Ibrahim H, Légaré F. Second harmonic generation microscopy: a powerful tool for bio-imaging. Biophys Rev 2023; 15:43-70. [PMID: 36909955 PMCID: PMC9995455 DOI: 10.1007/s12551-022-01041-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Second harmonic generation (SHG) microscopy is an important optical imaging technique in a variety of applications. This article describes the history and physical principles of SHG microscopy and its more advanced variants, as well as their strengths and weaknesses in biomedical applications. It also provides an overview of SHG and advanced SHG imaging in neuroscience and microtubule imaging and how these methods can aid in understanding microtubule formation, structuration, and involvement in neuronal function. Finally, we offer a perspective on the future of these methods and how technological advancements can help make SHG microscopy a more widely adopted imaging technique.
Collapse
Affiliation(s)
- Arash Aghigh
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| | | | - Maxime Rivard
- National Research Council Canada, Boucherville, QC Canada
| | - Maxime Pinsard
- Institut National de Recherche en Sciences Et Technologies Pour L’environnement Et L’agriculture, Paris, France
| | - Heide Ibrahim
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| | - François Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| |
Collapse
|
3
|
Kapsokalyvas D, Rosas R, Janssen RWA, Vanoevelen JM, Nabben M, Strauch M, Merhof D, van Zandvoort MAMJ. Multiview deconvolution approximation multiphoton microscopy of tissues and zebrafish larvae. Sci Rep 2021; 11:10160. [PMID: 33980963 PMCID: PMC8115086 DOI: 10.1038/s41598-021-89566-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Imaging in three dimensions is necessary for thick tissues and small organisms. This is possible with tomographic optical microscopy techniques such as confocal, multiphoton and light sheet microscopy. All these techniques suffer from anisotropic resolution and limited penetration depth. In the past, Multiview microscopy-imaging the sample from different angles followed by 3D image reconstruction-was developed to address this issue for light sheet microscopy based on fluorescence signal. In this study we applied this methodology to accomplish Multiview imaging with multiphoton microscopy based on fluorescence and additionally second harmonic signal from myosin and collagen. It was shown that isotropic resolution was achieved, the entirety of the sample was visualized, and interference artifacts were suppressed allowing clear visualization of collagen fibrils and myofibrils. This method can be applied to any scanning microscopy technique without microscope modifications. It can be used for imaging tissue and whole mount small organisms such as heart tissue, and zebrafish larva in 3D, label-free or stained, with at least threefold axial resolution improvement which can be significant for the accurate quantification of small 3D structures.
Collapse
Affiliation(s)
- Dimitrios Kapsokalyvas
- grid.5012.60000 0001 0481 6099Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands ,grid.412301.50000 0000 8653 1507Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen University, Aachen, Germany
| | - Rodrigo Rosas
- grid.5012.60000 0001 0481 6099Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Rob W. A. Janssen
- grid.5012.60000 0001 0481 6099Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Jo M. Vanoevelen
- grid.5012.60000 0001 0481 6099Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Miranda Nabben
- grid.5012.60000 0001 0481 6099Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Martin Strauch
- grid.1957.a0000 0001 0728 696XInstitute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Dorit Merhof
- grid.1957.a0000 0001 0728 696XInstitute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Marc A. M. J. van Zandvoort
- grid.5012.60000 0001 0481 6099Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands ,grid.412301.50000 0000 8653 1507Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Hu C, Field JJ, Kelkar V, Chiang B, Wernsing K, Toussaint KC, Bartels RA, Popescu G. Harmonic optical tomography of nonlinear structures. NATURE PHOTONICS 2020; 14:564-569. [PMID: 34367322 PMCID: PMC8341385 DOI: 10.1038/s41566-020-0638-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Second-harmonic generation microscopy is a valuable label-free modality for imaging non-centrosymmetric structures and has important biomedical applications from live-cell imaging to cancer diagnosis. Conventional second-harmonic generation microscopy measures intensity signals that originate from tightly focused laser beams, preventing researchers from solving the scattering inverse problem for second-order nonlinear materials. Here, we present harmonic optical tomography (HOT) as a novel modality for imaging microscopic, nonlinear and inhomogeneous objects. The HOT principle of operation relies on inter-ferometrically measuring the complex harmonic field and using a scattering inverse model to reconstruct the three-dimensional distribution of harmonophores. HOT enables strong axial sectioning via the momentum conservation of spatially and temporally broadband fields. We illustrate the HOT operation with experiments and reconstructions on a beta-barium borate crystal and various biological specimens. Although our results involve second-order nonlinear materials, we show that this approach applies to any coherent nonlinear process.
Collapse
Affiliation(s)
- Chenfei Hu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally: Chenfei Hu, Jeffrey J. Field
| | - Jeffrey J Field
- Microscope Imaging Network Core Facility, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
- These authors contributed equally: Chenfei Hu, Jeffrey J. Field
| | - Varun Kelkar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benny Chiang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith Wernsing
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Randy A Bartels
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Pinsard M, Belley LP, Piau JM, Coté CY, Ibrahim H, Légaré F. Single-scan interferometric second harmonic generation microscopy using a kHz phase-scanner. OPTICS EXPRESS 2019; 27:38435-38450. [PMID: 31878611 DOI: 10.1364/oe.27.038435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
In conventional laser-scanning microscopy, images are formed by acquiring the signal from pixel to pixel. Here, we report more than one order of magnitude reduction in acquisition time of Interferometric Second Harmonic Generation (I-SHG) by scanning the phase within each pixel, to characterize the relative polarity of various samples. Using an electro-optic phase-scanner, we show that the phase-shift patterns required for interferometry can be applied at each pixel during the scanning of the sample, allowing single-scan I-SHG (1S-ISHG) measurements. Requiring exposure times comparable to standard SHG intensity images, the additional phase information of the signal can thus be retrieved in parallel to its amplitude at the time-scale of seconds. Moreover, slower modulations can be used to enhance the precision of the phase measurement, without any spatial or temporal shift between interferograms, in contrast to conventional frame phase-shifting I-SHG (standard I-SHG). This continues to extend I-SHG to dynamical processes, and opens it to large-scale studies, as well as to imaging samples where the signal-to-noise ratio is an issue.
Collapse
|