1
|
Miura M, Makita S, Yasuno Y, Azuma S, Mino T, Hayashi T, Kameya S, Tsunoda K. Multimodal imaging analysis of autosomal recessive bestrophinopathy: Case series. Medicine (Baltimore) 2024; 103:e38853. [PMID: 39029076 PMCID: PMC11398800 DOI: 10.1097/md.0000000000038853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
RATIONALE Autosomal recessive bestrophinopathy (ARB) is a subtype of bestrophinopathy caused by biallelic mutations of the BEST1 gene, which affect the retinal pigment epithelium (RPE). Studying RPE abnormalities through imaging is essential for understanding ARB. This case series involved the use of multimodal imaging techniques, namely autofluorescence (AF) imaging at 488 nm [short-wavelength AF] and 785 nm [near-infrared AF (NIR-AF)] and polarization-sensitive optical coherence tomography (PS-OCT), to investigate RPE changes in 2 siblings with ARB. PATIENT CONCERNS Two Japanese siblings (Case 1: male, followed for 20-23 years; Case 2: female, followed for 13-17 years) carried compound heterozygous mutations of the BEST1 gene. DIAGNOSIS Both siblings were diagnosed with ARB. INTERVENTIONS AND OUTCOMES Multimodal imaging techniques were used to evaluate RPE changes. Both siblings had funduscopic changes similar to those seen in the vitelliruptive stage of Best vitelliform macular dystrophy during the follow-up period. NIR-AF imaging showed hypo-AF of the entire macular lesion in both cases, and this hypo-AF remained stable over time. PS-OCT confirmed reduced RPE melanin content in these hypo-AF areas. Additionally, hyper-NIR-AF dots were observed within hypo-NIR-AF areas. Concomitant identification of focally thickened RPE melanin on PS-OCT imaging and hyper-AF on short-wavelength AF imaging at the sites containing hyper-NIR-AF dots indicated that the hyper-NIR-AF dots had originated from either stacked RPE cells or RPE dysmorphia. LESSONS We confirmed RPE abnormalities in ARB, including diffuse RPE melanin damage in the macula alongside evidence of RPE activity-related changes. This case series demonstrates that multimodal imaging, particularly NIR-AF and PS-OCT, provides detailed insights into RPE alterations in ARB.
Collapse
Affiliation(s)
- Masahiro Miura
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| | - Shuichi Makita
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Inashiki, Ibaraki, Japan
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Inashiki, Ibaraki, Japan
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato, Tokyo, Japan
| | | | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro, Tokyo, Japan
| |
Collapse
|
2
|
Sakti DH, Cornish EE, Nash BM, Jamieson RV, Grigg JR. IMPDH1-associated autosomal dominant retinitis pigmentosa: natural history of novel variant Lys314Gln and a comprehensive literature search. Ophthalmic Genet 2023; 44:437-455. [PMID: 37259572 DOI: 10.1080/13816810.2023.2215310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) are causative for RP10 autosomal dominant retinitis pigmentosa (adRP). This study reports a novel variant in a family with IMPDH1-associated retinopathy. We also performed a comprehensive review of all reported IMPDH1 disease causing variants with their associated phenotype. MATERIALS AND METHODS Multimodal imaging and functional studies documented the phenotype including best-corrected visual acuity (BCVA), fundus photograph, fundus autofluorescence (FAF), full field electroretinogram (ffERG), optical coherence tomography (OCT) and visual field (VF) data were collected. A literature search was performed in the PubMed and LOVD repositories. RESULTS We report 3 cases from a 2-generation family with a novel heterozygous likely pathogenic variant p. (Lys314Gln) (exon 10). The ophthalmic phenotype showed diffuse outer retinal atrophy with mild pigmentary changes with sparse pigmentary changes. FAF showed early macular involvement with macular hyperautofluorescence (hyperAF) surrounded by hypoAF. Foveal ellipsoid zone island can be found in the youngest patient but not in the older ones. The literature review identified a further 56 heterozygous, 1 compound heterozygous, and 2 homozygous variant. The heterozygous group included 43 missense, 3 in-frame, 1 nonsense, 2 frameshift, 1 synonymous, and 6 intronic variants. Exon 10 was noted as a hotspot harboring 18 variants. CONCLUSIONS We report a novel IMPDH1 variant. IMPDH1-associated retinopathy presents most frequently in the first decade of life with early macular involvement.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - John R Grigg
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Motschi AR, Schwarzhans F, Desissaire S, Steiner S, Bogunović H, Roberts PK, Vass C, Hitzenberger CK, Pircher M. Quantitative assessment of depolarization by the retinal pigment epithelium in healthy and glaucoma subjects measured over a large field of view. PLoS One 2022; 17:e0278679. [PMID: 36512582 PMCID: PMC9746957 DOI: 10.1371/journal.pone.0278679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
We present measurements of depolarization introduced by the retinal pigment epithelium (RPE) over a 45° field of view using polarization sensitive optical coherence tomography. A detailed spatial distribution analysis of depolarization caused by the RPE is presented in a total of 153 subjects including both healthy and diseased eyes. Age and sex related differences in the depolarizing character of the RPE are investigated.
Collapse
Affiliation(s)
- Alice R. Motschi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Florian Schwarzhans
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Desissaire
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Stefan Steiner
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Hrvoje Bogunović
- Christian Doppler Laboratory for Artificial Intelligence in Retina, Medical University of Vienna, Vienna, Austria
| | - Philipp K. Roberts
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Clemens Vass
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Sakti DH, Cornish EE, Mustafic N, Zaheer A, Retsas S, Rajagopalan S, Chung CW, Ewans L, McCluskey P, Nash BM, Jamieson RV, Grigg JR. MERTK retinopathy: biomarkers assessing vision loss. Ophthalmic Genet 2021; 42:706-716. [PMID: 34289798 DOI: 10.1080/13816810.2021.1955278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Mer tyrosine kinase-retinitis pigmentosa (MERTK-RP) causes a primary defect in the retinal pigment epithelium, which subsequently affects rod and cone photoreceptors. The study aims to identify the most appropriate MERTK-RP biomarkers to measure disease progression for deciding the optimum therapeutic trial intervention time. MATERIALS AND METHODS Patients' data from baseline (BL) and last follow-up (LFU) were reviewed. Best corrected visual acuity (BCVA), spectral domain-optical coherence tomography (SD-OCT), ultra-widefield fundus autofluorescence (UWF-FAF) patterns, kinetic perimetry (KP), and electroretinography (ERG) parameters were analyzed. RESULTS Five patients were included with the mean age of 17.7 ± 14.4 years old (6.7-42.3) at BL and mean BCVA follow-up of 8.4 ± 5.1 years. Mean BCVA at BL and LFU were 0.84 ± 0.86 LogMAR and 1.14 ± 0.86 LogMAR, respectively. The BCVA decline rate was 0.05 ± 0.03 LogMAR units/year. Ellipzoid zones (EZ) were measurable in eight eyes with mean BL length of 1293.75 ± 421.07 µm and reduction of 140.95 ± 69.28 µm/year and mean BL CMT of 174.2 ± 37.52 µm with the rate of 11.2 ± 12.77 µm declining/year. Full-field ERG (ffERG) and pattern ERG (pERG) were barely recordable. UWF-FAF showed central macular hyper-autofluorescence (hyperAF). KP (III4e and V4e) was normal in two eyes, restricted nasally in four eyes, superior wedge defect in two eyes and undetectable in two eyes. The four restricted nasally KPs became worse, while the others stayed almost unchanged. CONCLUSIONS This cohort showed early visual loss, moderately rapid EZ reduction and macular hyperAF. EZ, CMT, and BCVA were consistently reduced. Relative rapid decline in these biomarkers reflecting visual function suggests an early and narrow timespan for intervention.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing; Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Eye Genetics Research Unit, Children's Medical Research Institute, the Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Nina Mustafic
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Afsah Zaheer
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Stephanie Retsas
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool BC, NSW, Australia
| | - Clara Wt Chung
- Department of Clinical Genetics, Liverpool Hospital, Liverpool BC, NSW, Australia.,School of Women's & Children's Health, University of NSW, Sydney, NSW, Australia
| | - Lisa Ewans
- Department of Clinical Genetics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health Central Clinical School, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Peter McCluskey
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, the Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,Disciplines of Genomic Medicine & Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Sydney Genome Diagnostics, Western Sydney Genetics Program, the Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Robyn V Jamieson
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Eye Genetics Research Unit, Children's Medical Research Institute, the Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,Disciplines of Genomic Medicine & Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Clinical Genetics, Western Sydney Genetics Program, the Children's Hospital at Westmead, Sydney, NSW, Australia
| | - John R Grigg
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Eye Genetics Research Unit, Children's Medical Research Institute, the Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Miura M, Makita S, Yasuno Y, Iwasaki T, Azuma S, Mino T, Yamaguchi T. Evaluation of retinal pigment epithelium changes in serous pigment epithelial detachment in age-related macular degeneration. Sci Rep 2021; 11:2764. [PMID: 33531591 PMCID: PMC7854605 DOI: 10.1038/s41598-021-82563-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/21/2021] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to quantitatively evaluate retinal pigment epithelium (RPE) changes in serous pigment epithelial detachment (PED) among patients with age-related macular degeneration by means of prototype multi-contrast optical coherence tomography (OCT), which is capable of simultaneous collection of OCT angiography, polarization-sensitive OCT, and standard OCT images. We evaluated 26 eyes of 21 patients with serous PED. RPE-melanin OCT images were calculated from the multi-contrast OCT dataset and compared with near-infrared autofluorescence images. An active RPE lesion was defined as an area of thickened RPE-melanin (≥ 70 μm; RPE70) on RPE-melanin OCT. Each PED area was divided into peak and slope regions. RPE70 area ratios were compared with the maximum PED height, PED area, PED volume, and slope area ratio (area of slope region/area of whole PED). RPE-melanin OCT images were consistent with near-infrared autofluorescence images. The RPE70 area ratio in the slope region was significantly negatively correlated with the slope area ratio. Development of active RPE lesions in the slope region was correlated with the PED configuration. Multi-contrast OCT is useful for objective evaluation of changes in the RPE in patients with age-related macular degeneration.
Collapse
Affiliation(s)
- Masahiro Miura
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki, 300395, Japan.
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| | - Takuya Iwasaki
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki, 300395, Japan
| | | | | | | |
Collapse
|
6
|
Chen TH, Wu YC, Tsai TY, Chueh CB, Huang BH, Huang YP, Tsai MT, Yasuno Y, Lee HC. Effect of A-scan rate and interscan interval on optical coherence angiography. BIOMEDICAL OPTICS EXPRESS 2021; 12:722-736. [PMID: 33680538 PMCID: PMC7901325 DOI: 10.1364/boe.409636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Optical coherence tomography angiography (OCTA) can provide rapid, volumetric, and noninvasive imaging of tissue microvasculature without the requirement of exogenous contrast agents. To investigate how A-scan rate and interscan time affected the contrast and dynamic range of OCTA, we developed a 1.06-µm swept-source OCT system enabling 100-kHz or 200-kHz OCT using two light sources. After system settings were carefully adjusted, almost the same detection sensitivity was achieved between the 100-kHz and 200-kHz modalities. OCTA of ear skin was performed on five mice. We used the variable interscan time analysis algorithm (VISTA) and the designated scanning protocol with OCTA images reconstructed through the correlation mapping method. With a relatively long interscan time (e.g., 12.5 ms vs. 6.25 ms for 200-kHz OCT), OCTA can identify more intricate microvascular networks. OCTA image sets with the same interscan time (e.g., 12.5 ms) were compared. OCTA images acquired with a 100-kHz A-scan rate showed finer microvasculature than did other imaging modalities. We performed quantitative analysis on the contrast from OCTA images reconstructed with different A-scan rates and interscan time intervals in terms of vessel area, total vessel length, and junction density.
Collapse
Affiliation(s)
- Ting-Hao Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Wu
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yen Tsai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chuan-Bor Chueh
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Huei Huang
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Peng Huang
- Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 10617, Taiwan
| | - Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33306, Taiwan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|