1
|
Pal R, K M, Matsui A, Kang H, Morita S, Taniguchi H, Kobayashi T, Morita A, Choi HS, Duda DG, Kumar ATN. In vivo quantification of programmed death-ligand-1 expression heterogeneity in tumors using fluorescence lifetime imaging. RESEARCH SQUARE 2023:rs.3.rs-3222037. [PMID: 37961361 PMCID: PMC10635296 DOI: 10.21203/rs.3.rs-3222037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cancer patient selection for immunotherapy is often based on programmed death-ligand-1 (PD-L1) expression as a biomarker. PD-L1 expression is currently quantified using immunohistochemistry, which can only provide snapshots of PD-L1 expression status in microscopic regions of ex vivo specimens. In vivo imaging using targeted agents can capture dynamic variations of PD-L1 expression in entire tumors within and across multiple subjects. Towards this goal, several PD-L1 targeted molecular imaging probes have been evaluated in murine models and humans. However, clinical translation of these probes has been limited due to a significant non-specific accumulation of the imaging probes and the inability of conventional imaging modalities to provide quantitative readouts that can be compared across multiple subjects. Here we report that in vivo time-domain (TD) fluorescence imaging can provide quantitative estimates of baseline tumor PD-L1 heterogeneity across untreated mice and variations in PD-L1 expression across mice undergoing clinically relevant anti-PD1 treatment. This approach relies on a significantly longer fluorescence lifetime (FLT) of PD-L1 specific anti-PD-L1 antibody tagged to IRDye 800CW (αPDL1-800) compared to nonspecific αPDL1-800. Leveraging this unique FLT contrast, we show that PD-L1 expression can be quantified across mice both in superficial breast tumors using planar FLT imaging, and in deep-seated liver tumors (>5 mm depth) using the asymptotic TD algorithm for fluorescence tomography. Our results suggest that FLT contrast can accelerate the preclinical investigation and clinical translation of novel molecular imaging probes by providing robust quantitative readouts of receptor expression that can be readily compared across subjects.
Collapse
Affiliation(s)
- Rahul Pal
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Murali K
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aya Matsui
- Department of Vascular Physiology, Graduate School of Medical Science, Kanazawa University, Japan
| | - Homan Kang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Satoru Morita
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hajime Taniguchi
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Tohoku Graduate School of Medicine, Sendai, Japan
| | - Tatsuya Kobayashi
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Atsuyo Morita
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan G Duda
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anand T N Kumar
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Konovalov AB, Vlasov VV, Samarin SI, Soloviev ID, Savitsky AP, Tuchin VV. Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:126001. [PMID: 36519075 PMCID: PMC9743783 DOI: 10.1117/1.jbo.27.12.126001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Fluorescence molecular lifetime tomography (FMLT) plays an increasingly important role in experimental oncology. The article presents and experimentally verifies an original method of mesoscopic time domain FMLT, based on an asymptotic approximation to the fluorescence source function, which is valid for early arriving photons. AIM The aim was to justify the efficiency of the method by experimental scanning and reconstruction of a phantom with a fluorophore. The experimental facility included the TCSPC system, the pulsed supercontinuum Fianium laser, and a three-channel fiber probe. Phantom scanning was done in mesoscopic regime for three-dimensional (3D) reflectance geometry. APPROACH The sensitivity functions were simulated with a Monte Carlo method. A compressed-sensing-like reconstruction algorithm was used to solve the inverse problem for the fluorescence parameter distribution function, which included the fluorophore absorption coefficient and fluorescence lifetime distributions. The distributions were separated directly in the time domain with the QR-factorization least square method. RESULTS 3D tomograms of fluorescence parameters were obtained and analyzed using two strategies for the formation of measurement data arrays and sensitivity matrices. An algorithm is developed for the flexible choice of optimal strategy in view of attaining better reconstruction quality. Variants on how to improve the method are proposed, specifically, through stepped extraction and further use of a posteriori information about the object. CONCLUSIONS Even if measurement data are limited, the proposed method is capable of giving adequate reconstructions but their quality depends on available a priori (or a posteriori) information. Further research aims to improve the method by implementing the variants proposed.
Collapse
Affiliation(s)
- Alexander B. Konovalov
- Federal State Unitary Enterprise “Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics,” Snezhinsk, Russia
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V. Vlasov
- Federal State Unitary Enterprise “Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics,” Snezhinsk, Russia
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Sergei I. Samarin
- Federal State Unitary Enterprise “Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics,” Snezhinsk, Russia
| | - Ilya D. Soloviev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P. Savitsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V. Tuchin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Saratov State University, Saratov, Russia
| |
Collapse
|
3
|
Gao S, Li M, Smith JT, Intes X. Design and characterization of a time-domain optical tomography platform for mesoscopic lifetime imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:4637-4651. [PMID: 36187247 PMCID: PMC9484415 DOI: 10.1364/boe.460216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
We report on the system design and instrumental characteristics of a novel time-domain mesoscopic fluorescence molecular tomography (TD-MFMT) system for multiplexed molecular imaging in turbid media. The system is equipped with a supercontinuum pulsed laser for broad spectral excitation, based on a high-density descanned raster scanning intensity-based acquisition for 2D and 3D imaging and augmented with a high-dynamical range linear time-resolved single-photon avalanche diode (SPAD) array for lifetime quantification. We report on the system's spatio-temporal and spectral characteristics and its sensitivity and specificity in controlled experimental settings. Also, a phantom study is undertaken to test the performance of the system to image deeply-seated fluorescence inclusions in tissue-like media. In addition, ex vivo tumor xenograft imaging is performed to validate the system's applicability to the biological sample. The characterization results manifest the capability to sense small fluorescence concentrations (on the order of nanomolar) while quantifying fluorescence lifetimes and lifetime-based parameters at high resolution. The phantom results demonstrate the system's potential to perform 3D multiplexed imaging thanks to spectral and lifetime contrast in the mesoscopic range (at millimeters depth). The ex vivo imaging exhibits the prospect of TD-MFMT to resolve intra-tumoral heterogeneity in a depth-dependent manner.
Collapse
Affiliation(s)
- Shan Gao
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mengzhou Li
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
4
|
Zhao Y, Raghuram A, Kim HK, Hielscher AH, Robinson JT, Veeraraghavan A. High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021; 43:2206-2219. [PMID: 33891548 PMCID: PMC8270678 DOI: 10.1109/tpami.2021.3075366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional ∼ 10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime ( mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.
Collapse
|
5
|
Konovalov AB, Vlasov VV, Uglov AS. Early-photon reflectance fluorescence molecular tomography for small animal imaging: Mathematical model and numerical experiment. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e03408. [PMID: 33094558 DOI: 10.1002/cnm.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/04/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
The paper presents an original approach to time-domain reflectance fluorescence molecular tomography (FMT) of small animals. It is based on the use of early arriving photons and state-of-the-art compressed-sensing-like reconstruction algorithms and aims to improve the spatial resolution of fluorescent images. We deduce the fundamental equation that models the imaging operator and derive analytical representations for the sensitivity functions which are responsible for the reconstruction of the fluorophore absorption coefficient. The idea of fluorescence lifetime tomography with our approach is also discussed. We conduct a numerical experiment on 3D reconstruction of box phantoms with spherical fluorescent inclusions of small diameters. For modeling measurement data and constructing the sensitivity matrix we assume a virtual fluorescence tomograph with a scanning fiber probe that illuminates and collects light in reflectance geometry. It provides for large source-receiver separations which correspond to the macroscopic regime. Two compressed-sensing-like reconstruction algorithms are used to solve the inverse problem. These are the algebraic reconstruction technique with total variation regularization and our modification of the fast iterative shrinkage-thresholding algorithm. Results of our numerical experiment show that our approach is capable of achieving as good spatial resolution as 0.2 mm and even better at depths to 9 mm inclusive.
Collapse
Affiliation(s)
- Alexander B Konovalov
- Computational Center, Federal State Unitary Enterprise "Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics,", Snezhinsk, Russia
- Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V Vlasov
- Computational Center, Federal State Unitary Enterprise "Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics,", Snezhinsk, Russia
- Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Uglov
- Computational Center, Federal State Unitary Enterprise "Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics,", Snezhinsk, Russia
| |
Collapse
|
6
|
Smith JT, Aguénounon E, Gioux S, Intes X. Macroscopic fluorescence lifetime topography enhanced via spatial frequency domain imaging. OPTICS LETTERS 2020; 45:4232-4235. [PMID: 32735266 PMCID: PMC7935427 DOI: 10.1364/ol.397605] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report on a macroscopic fluorescence lifetime imaging (MFLI) topography computational framework based around machine learning with the main goal of retrieving the depth of fluorescent inclusions deeply seated in bio-tissues. This approach leverages the depth-resolved information inherent to time-resolved fluorescence data sets coupled with the retrieval of in situ optical properties as obtained via spatial frequency domain imaging (SFDI). Specifically, a Siamese network architecture is proposed with optical properties (OPs) and time-resolved fluorescence decays as input followed by simultaneous retrieval of lifetime maps and depth profiles. We validate our approach using comprehensive in silico data sets as well as with a phantom experiment. Overall, our results demonstrate that our approach can retrieve the depth of fluorescence inclusions, especially when coupled with optical properties estimation, with high accuracy. We expect the presented computational approach to find great utility in applications such as optical-guided surgery.
Collapse
Affiliation(s)
- Jason T. Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Enagnon Aguénounon
- University of Strasbourg, ICube Laboratory, 300 Boulevard Sebastien Brant, 67412 Illkirch, France
| | - Sylvain Gioux
- University of Strasbourg, ICube Laboratory, 300 Boulevard Sebastien Brant, 67412 Illkirch, France
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Corresponding author:
| |
Collapse
|
7
|
Abstract
This article reviews the past and current statuses of time-domain near-infrared spectroscopy (TD-NIRS) and imaging. Although time-domain technology is not yet widely employed due to its drawbacks of being cumbersome, bulky, and very expensive compared to commercial continuous wave (CW) and frequency-domain (FD) fNIRS systems, TD-NIRS has great advantages over CW and FD systems because time-resolved data measured by TD systems contain the richest information about optical properties inside measured objects. This article focuses on reviewing the theoretical background, advanced theories and methods, instruments, and studies on clinical applications for TD-NIRS including some clinical studies which used TD-NIRS systems. Major events in the development of TD-NIRS and imaging are identified and summarized in chronological tables and figures. Finally, prospects for TD-NIRS in the near future are briefly described.
Collapse
|
8
|
Pian Q, Yao R, Intes X. Hyperspectral wide-field time domain single-pixel diffuse optical tomography platform. BIOMEDICAL OPTICS EXPRESS 2018; 9:6258-6272. [PMID: 31065427 PMCID: PMC6491017 DOI: 10.1364/boe.9.006258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/27/2018] [Accepted: 09/09/2018] [Indexed: 05/18/2023]
Abstract
We present the design and comprehensive instrumental characterization of a time domain diffuse optical tomography (TD-DOT) platform based on wide-field illumination and wide-field hyperspectral time-resolved single-pixel detection for functional and molecular imaging in turbid media. The proposed platform combines two digital micro-mirror devices (DMDs) to generate structured light and a spectrally resolved multi-anode photomultiplier tube (PMT) detector in time domain for hyperspectral data acquisition over 16 wavelength channels based on the time-correlated single-photon counting (TCSPC) technique. The design of the proposed platform is described in detail and its characteristics in spatial, temporal and spectral dimensions are calibrated and presented. The performance of the system is further validated through a phantom study where two absorbers in glass tubes with spectral contrast are mapped in a turbid medium of ~20 mm thickness. The method presented here offers the potential of accelerating the imaging process and improving reconstruction results in TD-DOT and thus facilitates its wide spread use in preclinical and clinical in vivo imaging scenarios.
Collapse
Affiliation(s)
- Qi Pian
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Currently with Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Ruoyang Yao
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
9
|
Yao R, Intes X, Fang Q. Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon "replay". BIOMEDICAL OPTICS EXPRESS 2018; 9:4588-4603. [PMID: 30319888 PMCID: PMC6179418 DOI: 10.1364/boe.9.004588] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/21/2023]
Abstract
Perturbation Monte Carlo (pMC) has been previously proposed to rapidly recompute optical measurements when small perturbations of optical properties are considered, but it was largely restricted to changes associated with prior tissue segments or regions-of-interest. In this work, we expand pMC to compute spatially and temporally resolved sensitivity profiles, i.e. the Jacobians, for diffuse optical tomography (DOT) applications. By recording the pseudo random number generator (PRNG) seeds of each detected photon, we are able to "replay" all detected photons to directly create the 3D sensitivity profiles for both absorption and scattering coefficients. We validate the replay-based Jacobians against the traditional adjoint Monte Carlo (aMC) method, and demonstrate the feasibility of using this approach for efficient 3D image reconstructions using in vitro hyperspectral wide-field DOT measurements. The strengths and limitations of the replay approach regarding its computational efficiency and accuracy are discussed, in comparison with aMC, for point-detector systems as well as wide-field pattern-based and hyperspectral imaging systems. The replay approach has been implemented in both of our open-source MC simulators - MCX and MMC (http://mcx.space).
Collapse
Affiliation(s)
- Ruoyang Yao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180,
USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180,
USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115,
USA
| |
Collapse
|
10
|
Angelo JP, Chen SJ, Ochoa M, Sunar U, Gioux S, Intes X. Review of structured light in diffuse optical imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-20. [PMID: 30218503 PMCID: PMC6676045 DOI: 10.1117/1.jbo.24.7.071602] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 05/11/2023]
Abstract
Diffuse optical imaging probes deep living tissue enabling structural, functional, metabolic, and molecular imaging. Recently, due to the availability of spatial light modulators, wide-field quantitative diffuse optical techniques have been implemented, which benefit greatly from structured light methodologies. Such implementations facilitate the quantification and characterization of depth-resolved optical and physiological properties of thick and deep tissue at fast acquisition speeds. We summarize the current state of work and applications in the three main techniques leveraging structured light: spatial frequency-domain imaging, optical tomography, and single-pixel imaging. The theory, measurement, and analysis of spatial frequency-domain imaging are described. Then, advanced theories, processing, and imaging systems are summarized. Preclinical and clinical applications on physiological measurements for guidance and diagnosis are summarized. General theory and method development of tomographic approaches as well as applications including fluorescence molecular tomography are introduced. Lastly, recent developments of single-pixel imaging methodologies and applications are reviewed.
Collapse
Affiliation(s)
- Joseph P. Angelo
- National Institute of Standards and Technology, Sensor Science Division, Gaithersburg, Maryland, United States
- Address all correspondence to: Joseph P. Angelo, E-mail: ; Sez-Jade Chen, E-mail:
| | - Sez-Jade Chen
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
- Address all correspondence to: Joseph P. Angelo, E-mail: ; Sez-Jade Chen, E-mail:
| | - Marien Ochoa
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Ulas Sunar
- Wright State University, Department of Biomedical Industrial and Human Factor Engineering, Dayton, Ohio, United States
| | - Sylvain Gioux
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| |
Collapse
|
11
|
Yang F, Yao R, Ozturk M, Faulkner D, Qu Q, Intes X. Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization. BIOMEDICAL OPTICS EXPRESS 2018; 9:2765-2778. [PMID: 30258689 PMCID: PMC6154183 DOI: 10.1364/boe.9.002765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Mesoscopic fluorescence molecular tomography (MFMT) is a novel imaging technique capable of obtaining 3-D distribution of molecular probes inside biological tissues at depths of a few millimeters with a resolution up to ~100 μm. However, the ill-conditioned nature of the MFMT inverse problem severely deteriorates its reconstruction performances. Furthermore, dense spatial sampling and fine discretization of the imaging volume required for high resolution reconstructions make the sensitivity matrix (Jacobian) highly correlated, which prevents even advanced algorithms from achieving optimal solutions. In this work, we propose two computational methods to respectively increase the incoherence of the sensitivity matrix and improve the convergence rate of the inverse solver. We first apply a compressed sensing (CS) based preconditioner on either the whole sensitivity matrix or sub sensitivity matrices to reduce the coherence between columns of the sensitivity matrix. Then we employed a regularization method based on the weight iterative improvement method (WIIM) to mitigate the ill-condition of the sensitivity matrix and to drive the iterative optimization process towards convergence at a faster rate. We performed numerical simulations and phantom experiments to validate the effectiveness of the proposed strategies. In both in silico and in vitro cases, we were able to improve the quality of MFMT reconstructions significantly.
Collapse
Affiliation(s)
- Fugang Yang
- School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264005, China
| | - Ruoyang Yao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Mehmet Ozturk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Denzel Faulkner
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Qinglan Qu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
12
|
Funane T, Hou SS, Zoltowska KM, van Veluw SJ, Berezovska O, Kumar ATN, Bacskai BJ. Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:053705. [PMID: 29864842 PMCID: PMC6910582 DOI: 10.1063/1.5018846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/24/2018] [Indexed: 05/02/2023]
Abstract
We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.
Collapse
Affiliation(s)
- Tsukasa Funane
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Steven S Hou
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Katarzyna Marta Zoltowska
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Susanne J van Veluw
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Oksana Berezovska
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Anand T N Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Brian J Bacskai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
13
|
Long F, Intes X. Dental optical tomography with upconversion nanoparticles-a feasibility study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66001. [PMID: 28586852 PMCID: PMC5456002 DOI: 10.1117/1.jbo.22.6.066001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/05/2017] [Indexed: 05/30/2023]
Abstract
Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications.
Collapse
Affiliation(s)
- Feixiao Long
- Rensselaer Polytechnic Institute, Biomedical Engineering, Troy, New York, United States
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Biomedical Engineering, Troy, New York, United States
| |
Collapse
|
14
|
Jha AK, Zhu Y, Wong DF, Rahmim A. A radiative transfer equation-based image-reconstruction method incorporating boundary conditions for diffuse optical imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10137. [PMID: 28736472 DOI: 10.1117/12.2255802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developing reconstruction methods for diffuse optical imaging requires accurate modeling of photon propagation, including boundary conditions arising due to refractive index mismatch as photons propagate from the tissue to air. For this purpose, we developed an analytical Neumann-series radiative transport equation (RTE)-based approach. Each Neumann series term models different scattering, absorption, and boundary-reflection events. The reflection is modeled using the Fresnel equation. We use this approach to design a gradient-descent-based analytical reconstruction algorithm for a three-dimensional (3D) setup of a diffuse optical imaging (DOI) system. The algorithm was implemented for a three-dimensional DOI system consisting of a laser source, cuboidal scattering medium (refractive index > 1), and a pixelated detector at one cuboid face. In simulation experiments, the refractive index of the scattering medium was varied to test the robustness of the reconstruction algorithm over a wide range of refractive index mismatches. The experiments were repeated over multiple noise realizations. Results showed that by using the proposed algorithm, the photon propagation was modeled more accurately. These results demonstrated the importance of modeling boundary conditions in the photon-propagation model.
Collapse
Affiliation(s)
- Abhinav K Jha
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Yansong Zhu
- Department of Electrical and Computer Engineering, Baltimore, MD, USA
| | - Dean F Wong
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Arman Rahmim
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.,Department of Electrical and Computer Engineering, Baltimore, MD, USA
| |
Collapse
|
15
|
Xie T, Zaidi H. Development of computational small animal models and their applications in preclinical imaging and therapy research. Med Phys 2016; 43:111. [PMID: 26745904 DOI: 10.1118/1.4937598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.
Collapse
Affiliation(s)
- Tianwu Xie
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland; Geneva Neuroscience Center, Geneva University, Geneva CH-1205, Switzerland; and Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
16
|
Mu Y, Pera V, Niedre M. Multiplexed fluorescence mediated tomography with temporal and spectral data. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:105001. [PMID: 27699390 PMCID: PMC5047956 DOI: 10.1117/1.jbo.21.10.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
We recently developed an algorithm for multiplexed fluorescence tomographic imaging of at least four fluorophores concurrently in the red and near-infrared wavelength region by jointly using spectral and temporal data. We report the design of a fluorescence tomography instrument that acquires spectral and temporal data, and validate its use in tissue-mimicking phantoms with four embedded fluorescent targets with highly overlapped spectral signatures. Critically, this requires measurement or computation of extended fluorophore signature libraries, which capture the variability in the measured signal due to the unknown position of the targets in the media. We demonstrate that we can demix and tomographically image all four fluorophores with zero image cross-talk, and 1 mm or better spatial resolution.
Collapse
Affiliation(s)
- Ying Mu
- Northeastern University, Department of Electrical and Computer Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Vivian Pera
- Northeastern University, Department of Electrical and Computer Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mark Niedre
- Northeastern University, Department of Electrical and Computer Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Wilson RH, Vishwanath K, Mycek MA. Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications. ADVANCES IN PHYSICS 2016; 1:523-543. [PMID: 28824194 PMCID: PMC5560608 DOI: 10.1080/23746149.2016.1221739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present an overview of quantitative and label-free optical methods used to characterize living biological tissues, with an emphasis on emerging applications in clinical tissue diagnostics. Specifically, this review focuses on diffuse optical spectroscopy, imaging, and tomography, optical coherence-based techniques, and non-linear optical methods for molecular imaging. The potential for non- or minimally-invasive assessment, quantitative diagnostics, and continuous monitoring enabled by these tissue-optics technologies provides significant promise for continued clinical translation.
Collapse
Affiliation(s)
- Robert H. Wilson
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, USA
| | | | - Mary-Ann Mycek
- Department of Biomedical Engineering, Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Yao R, Intes X, Fang Q. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation. BIOMEDICAL OPTICS EXPRESS 2016; 7:171-84. [PMID: 26819826 PMCID: PMC4722901 DOI: 10.1364/boe.7.000171] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/12/2015] [Accepted: 12/12/2015] [Indexed: 05/18/2023]
Abstract
Monte Carlo methods are commonly used as the gold standard in modeling photon transport through turbid media. With the rapid development of structured light applications, an accurate and efficient method capable of simulating arbitrary illumination patterns and complex detection schemes over large surface area is in great need. Here we report a generalized mesh-based Monte Carlo algorithm to support a variety of wide-field illumination methods, including spatial-frequency-domain imaging (SFDI) patterns and arbitrary 2-D patterns. The extended algorithm can also model wide-field detectors such as a free-space CCD camera. The significantly enhanced flexibility of source and detector modeling is achieved via a fast mesh retessellation process that combines the target domain and the source/detector space in a single tetrahedral mesh. Both simulations of complex domains and comparisons with phantom measurements are included to demonstrate the flexibility, efficiency and accuracy of the extended algorithm. Our updated open-source software is provided at http://mcx.space/mmc.
Collapse
Affiliation(s)
- Ruoyang Yao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
19
|
Pera V, Brooks DH, Niedre M. Multiplexed fluorescence tomography with spectral and temporal data: demixing with intrinsic regularization. BIOMEDICAL OPTICS EXPRESS 2016; 7:111-131. [PMID: 26819822 PMCID: PMC4722896 DOI: 10.1364/boe.7.000111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
We consider the joint use of spectral and temporal data for multiplexed fluorescence molecular tomography to enable high-throughput imaging of multiple fluorescent targets in bulk tissue. This is a challenging problem due to the narrow near-infrared diagnostic window and relatively broad emission spectra of common fluorophores, and the distortion ("redshift") that the fluorophore signals undergo as they propagate through tissue. We show through a Cramér-Rao lower bound analysis that demixing with spectral-temporal data could result in an order of magnitude improvement in performance over either modality alone. To cope with the resulting large data set, we propose a novel two-stage algorithm that decouples the demixing and tomographic reconstruction operations. In this work we concentrate on the demixing stage. We introduce an approach which incorporates ideas from sparse subspace clustering and compressed sensing and does not require a regularization parameter. We report on simulations in which we simultaneously demixed four fluorophores with closely overlapping spectral and temporal profiles in a 25 mm diameter cross-sectional area with a root-mean-square error of less than 3% per fluorophore, as well as on studies of sensitivity of the method to model mismatch.
Collapse
|
20
|
Omer T, Intes X, Hahn J. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging. PLoS One 2015; 10:e0144421. [PMID: 26658308 PMCID: PMC4686107 DOI: 10.1371/journal.pone.0144421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022] Open
Abstract
Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.
Collapse
Affiliation(s)
- Travis Omer
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ozturk MS, Chen CW, Ji R, Zhao L, Nguyen BNB, Fisher JP, Chen Y, Intes X. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues. Ann Biomed Eng 2015; 44:667-79. [PMID: 26645079 DOI: 10.1007/s10439-015-1511-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications.
Collapse
Affiliation(s)
- Mehmet S Ozturk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Chao-Wei Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Robin Ji
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Lingling Zhao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Bao-Ngoc B Nguyen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
22
|
Yao R, Pian Q, Intes X. Wide-field fluorescence molecular tomography with compressive sensing based preconditioning. BIOMEDICAL OPTICS EXPRESS 2015; 6:4887-98. [PMID: 26713202 PMCID: PMC4679262 DOI: 10.1364/boe.6.004887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Wide-field optical tomography based on structured light illumination and detection strategies enables efficient tomographic imaging of large tissues at very fast acquisition speeds. However, the optical inverse problem based on such instrumental approach is still ill-conditioned. Herein, we investigate the benefit of employing compressive sensing-based preconditioning to wide-field structured illumination and detection approaches. We assess the performances of Fluorescence Molecular Tomography (FMT) when using such preconditioning methods both in silico and with experimental data. Additionally, we demonstrate that such methodology could be used to select the subset of patterns that provides optimal reconstruction performances. Lastly, we compare preconditioning data collected using a normal base that offers good experimental SNR against that directly acquired with optimal designed base. An experimental phantom study is provided to validate the proposed technique.
Collapse
|
23
|
Mu Y, Niedre M. A fast SPAD-based small animal imager for early-photon diffuse optical tomography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:2833-6. [PMID: 25570581 DOI: 10.1109/embc.2014.6944213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Photon scatter is the dominant light transport process in biological tissue and is well understood to degrade imaging performance in near-infrared diffuse optical tomography. Measurement of photons arriving at early times following a short laser pulse is considered to be an effective method to improve this limitation, i.e. by systematically selecting photons that have experienced fewer scattering events. Previously, we tested the performance of single photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media and showed that it outperformed photo-multiplier tube (PMT) systems in similar configurations, principally due to its faster temporal response. In this paper, we extended this work and developed a fast SPAD-based time-resolved diffuse optical tomography system. As a first validation of the instrument, we scanned an optical phantom with multiple absorbing inclusions and measured full time-resolved data at 3240 scan points per axial slice. We performed image reconstruction with very early-arriving photon data and showed significant improvements compared to time-integrated data. Extension of this work to mice in vivo and measurement of time-resolved fluorescence data is the subject of ongoing research.
Collapse
|
24
|
Jiang X, Deng Y, Luo Z, Luo Q. Accelerating fDOT image reconstruction based on path-history fluorescence Monte Carlo model by using three-level parallel architecture. OPTICS EXPRESS 2015; 23:25996-26011. [PMID: 26480115 DOI: 10.1364/oe.23.025996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The excessive time required by fluorescence diffuse optical tomography (fDOT) image reconstruction based on path-history fluorescence Monte Carlo model is its primary limiting factor. Herein, we present a method that accelerates fDOT image reconstruction. We employ three-level parallel architecture including multiple nodes in cluster, multiple cores in central processing unit (CPU), and multiple streaming multiprocessors in graphics processing unit (GPU). Different GPU memories are selectively used, the data-writing time is effectively eliminated, and the data transport per iteration is minimized. Simulation experiments demonstrated that this method can utilize general-purpose computing platforms to efficiently implement and accelerate fDOT image reconstruction, thus providing a practical means of using path-history-based fluorescence Monte Carlo model for fDOT imaging.
Collapse
|
25
|
Chen SJ, Sinsuebphon N, Intes X. Assessment of Gate Width Size on Lifetime-Based Förster Resonance Energy Transfer Parameter Estimation. PHOTONICS 2015; 2:1027-1042. [PMID: 26557647 PMCID: PMC4636205 DOI: 10.3390/photonics2041027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Förster Resonance Energy Transfer (FRET) enables the observation of interactions at the nanoscale level through the use of fluorescence optical imaging techniques. In FRET, fluorescence lifetime imaging can be used to quantify the fluorescence lifetime changes of the donor molecule, which are associated with proximity between acceptor and donor molecules. Among the FRET parameters derived from fluorescence lifetime imaging, the percentage of donor that interacts with the acceptor (in proximity) can be estimated via model-based fitting. However, estimation of the lifetime parameters can be affected by the acquisition parameters such as the temporal characteristics of the imaging system. Herein, we investigate the effect of various gate widths on the accuracy of estimation of FRET parameters with focus on the near-infrared spectral window. Experiments were performed in silico, in vitro, and in vivo with gate width sizes ranging from 300 ps to 1000 ps in intervals of 100 ps. For all cases, the FRET parameters were retrieved accurately and the imaging acquisition time was decreased three-fold. These results indicate that increasing the gate width up to 1000 ps still allows for accurate quantification of FRET interactions even in the case of short lifetimes such as those encountered with near-infrared FRET pairs.
Collapse
Affiliation(s)
| | | | - Xavier Intes
- Author to whom correspondence should be addressed; ; Tel.: +1-518-276-6964
| |
Collapse
|
26
|
Mu Y, Niedre M. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner. BIOMEDICAL OPTICS EXPRESS 2015; 6:3596-3609. [PMID: 26417526 PMCID: PMC4574682 DOI: 10.1364/boe.6.003596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT.
Collapse
Affiliation(s)
- Ying Mu
- Department of Electrical and Computer Engineering, Dana Research Center, Northeastern University, Boston, MA, 02115, USA
| | - Mark Niedre
- Department of Electrical and Computer Engineering, Dana Research Center, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
27
|
Dow XY, Sullivan SZ, Muir RD, Simpson GJ. Video-rate two-photon excited fluorescence lifetime imaging system with interleaved digitization. OPTICS LETTERS 2015; 40:3296-9. [PMID: 26176453 PMCID: PMC4756458 DOI: 10.1364/ol.40.003296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A fast (up to video rate) two-photon excited fluorescence lifetime imaging system based on interleaved digitization is demonstrated. The system is compatible with existing beam-scanning microscopes with minor electronics and software modification. Proof-of-concept demonstrations were performed using laser dyes and biological tissue.
Collapse
Affiliation(s)
- Ximeng Y. Dow
- Chemistry Department, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47906, USA
| | - Shane Z. Sullivan
- Chemistry Department, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47906, USA
| | - Ryan D. Muir
- Chemistry Department, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47906, USA
| | - Garth J. Simpson
- Chemistry Department, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47906, USA
| |
Collapse
|
28
|
Abstract
Mesh-based Monte Carlo techniques for optical imaging allow for accurate modeling of light propagation in complex biological tissues. Recently, they have been developed within an efficient computational framework to be used as a forward model in optical tomography. However, commonly employed adaptive mesh discretization techniques have not yet been implemented for Monte Carlo based tomography. Herein, we propose a methodology to optimize the mesh discretization and analytically rescale the associated Jacobian based on the characteristics of the forward model. We demonstrate that this method maintains the accuracy of the forward model even in the case of temporal data sets while allowing for significant coarsening or refinement of the mesh.
Collapse
|
29
|
Pian Q, Yao R, Zhao L, Intes X. Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection. OPTICS LETTERS 2015; 40:431-4. [PMID: 25680065 PMCID: PMC4638422 DOI: 10.1364/ol.40.000431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a time-resolved fluorescence diffuse optical tomography platform that is based on wide-field structured illumination, single-pixel detection, and hyperspectral acquisition. Two spatial light modulators (digital micro-mirror devices) are employed to generate independently wide-field illumination and detection patterns, coupled with a 16-channel spectrophotometer detection module to capture hyperspectral time-resolved tomographic data sets. The main system characteristics are reported, and we demonstrate the feasibility of acquiring dense 4D tomographic data sets (space, time, spectra) for time domain 3D quantitative multiplexed fluorophore concentration mapping in turbid media.
Collapse
Affiliation(s)
- Qi Pian
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Ruoyang Yao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Lingling Zhao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
30
|
Jiang X, Deng Y, Luo Z, Wang K, Lian L, Yang X, Meglinski I, Luo Q. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media. OPTICS EXPRESS 2014; 22:31948-31965. [PMID: 25607163 DOI: 10.1364/oe.22.031948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The path-history-based fluorescence Monte Carlo method used for fluorescence tomography imaging reconstruction has attracted increasing attention. In this paper, we first validate the standard fluorescence Monte Carlo (sfMC) method by experimenting with a cylindrical phantom. Then, we describe a path-history-based decoupled fluorescence Monte Carlo (dfMC) method, analyze different perturbation fluorescence Monte Carlo (pfMC) methods, and compare the calculation accuracy and computational efficiency of the dfMC and pfMC methods using the sfMC method as a reference. The results show that the dfMC method is more accurate and efficient than the pfMC method in heterogeneous medium.
Collapse
|
31
|
Dental Imaging Using Mesoscopic Fluorescence Molecular Tomography: An ex Vivo Feasibility Study. PHOTONICS 2014. [DOI: 10.3390/photonics1040488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Yang F, Ozturk MS, Zhao L, Cong W, Wang G, Intes X. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing. IEEE Trans Biomed Eng 2014; 62:248-55. [PMID: 25137718 DOI: 10.1109/tbme.2014.2347284] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mesoscopic fluorescence molecular tomography (MFMT) is new imaging modality aiming at 3-D imaging of molecular probes in a few millimeter thick biological samples with high-spatial resolution. In this paper, we develop a compressive sensing-based reconstruction method with l1-norm regularization for MFMT with the goal of improving spatial resolution and stability of the optical inverse problem. Three-dimensional numerical simulations of anatomically accurate microvasculature and real data obtained from phantom experiments are employed to evaluate the merits of the proposed method. Experimental results show that the proposed method can achieve 80 μm spatial resolution for a biological sample of 3 mm thickness and more accurate quantifications of concentrations and locations for the fluorophore distribution than those of the conventional methods.
Collapse
|
33
|
Zhao L, Yang H, Cong W, Wang G, Intes X. L(p) regularization for early gate fluorescence molecular tomography. OPTICS LETTERS 2014; 39:4156-9. [PMID: 25121675 PMCID: PMC4159710 DOI: 10.1364/ol.39.004156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Time domain fluorescence molecular tomography (TD-FMT) provides a unique dataset for enhanced quantification and spatial resolution. The time-gate dataset can be divided into two temporal groups around the maximum counts gate, which are early gates and late gates. It is well established that early gates allow for improved spatial resolution and late gates are essential for fluorophore unmixing and concentration quantification. However, the inverse problem of FMT is ill-posed and typically underdetermined, which makes image reconstruction highly susceptible to data noise. More specifically, photon counts are inherently very low at early gates due to high absorption and scattering of tissue, resulting in a low signal-to-noise ratio and unstable reconstructions. In this work, an L(p) regularization-based reconstruction algorithm was developed and tested with our wide-field mesh-based Monte Carlo simulation strategy. We compared the early time-gate reconstructions obtained with the different p (p∈{1/16,1/8,1/4,1/3,1/2,1,2}) from a synthetic murine model simulating the fluorophore uptake in the kidneys and preclinical data. The results from a 3D mouse atlas and a mouse experiment show that our L(1/4) regularization methods give the best performance for early time gates reconstructions.
Collapse
Affiliation(s)
- Lingling Zhao
- Biomedical Imaging Center and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - He Yang
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Wenxiang Cong
- Biomedical Imaging Center and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Ge Wang
- Biomedical Imaging Center and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Xavier Intes
- Biomedical Imaging Center and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Corresponding author:
| |
Collapse
|
34
|
Abstract
Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast.
Collapse
|
35
|
Hou SS, Rice WL, Bacskai BJ, Kumar ATN. Tomographic lifetime imaging using combined early- and late-arriving photons. OPTICS LETTERS 2014; 39:1165-8. [PMID: 24690697 PMCID: PMC4087160 DOI: 10.1364/ol.39.001165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present a novel, hybrid approach for time domain fluorescence tomography that efficiently combines lifetime multiplexing using late-arriving or asymptotic photons, with the high spatial resolution capability of early photon tomography. We also show that a decay amplitude-based asymptotic approach is superior to direct inversion of late-arriving photons for tomographic lifetime imaging within turbid media. The hybrid reconstruction approach is experimentally shown to recover fluorescent inclusions separated as close as 1.4 mm, with improved resolution and reduced cross talk compared to just using early photons or the asymptotic approach alone.
Collapse
Affiliation(s)
- Steven S. Hou
- Alzheimer’s Disease Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - William L. Rice
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Brian J. Bacskai
- Alzheimer’s Disease Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Anand T. N. Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Corresponding author:
| |
Collapse
|
36
|
Cuplov V, Buvat I, Pain F, Jan S. Extension of the GATE Monte-Carlo simulation package to model bioluminescence and fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:026004. [PMID: 24522804 DOI: 10.1117/1.jbo.19.2.026004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
The Geant4 Application for Emission Tomography (GATE) is an advanced open-source software dedicated to Monte-Carlo (MC) simulations in medical imaging involving photon transportation (Positron emission tomography, single photon emission computed tomography, computed tomography) and in particle therapy. In this work, we extend the GATE to support simulations of optical imaging, such as bioluminescence or fluorescence imaging, and validate it against the MC for multilayered media standard simulation tool for biomedical optics in simple geometries. A full simulation set-up for molecular optical imaging (bioluminescence and fluorescence) is implemented in GATE, and images of the light distribution emitted from a phantom demonstrate the relevance of using GATE for optical imaging simulations.
Collapse
Affiliation(s)
- Vesna Cuplov
- Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, 91401 Orsay, France
| | - Iréne Buvat
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, UMR 8165 CNRS-Université Paris 7-Université Paris 11, France
| | - Frédéric Pain
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, UMR 8165 CNRS-Université Paris 7-Université Paris 11, France
| | - Sébastien Jan
- Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, 91401 Orsay, France
| |
Collapse
|
37
|
Abe K, Zhao L, Periasamy A, Intes X, Barroso M. Non-invasive in vivo imaging of near infrared-labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET. PLoS One 2013; 8:e80269. [PMID: 24278268 PMCID: PMC3836976 DOI: 10.1371/journal.pone.0080269] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/11/2013] [Indexed: 12/05/2022] Open
Abstract
The conjugation of anti-cancer drugs to endogenous ligands has proven to be an effective strategy to enhance their pharmacological selectivity and delivery towards neoplasic tissues. Since cell proliferation has a strong requirement for iron, cancer cells express high levels of transferrin receptors (TfnR), making its ligand, transferrin (Tfn), of great interest as a delivery agent for therapeutics. However, a critical gap exists in the ability to non-invasively determine whether drugs conjugated to Tfn are internalized into target cells in vivo. Due to the enhanced permeability and retention (EPR) effect, it remains unknown whether these Tfn-conjugated drugs are specifically internalized into cancer cells or are localized non-specifically as a result of a generalized accumulation of macromolecules near tumors. By exploiting the dimeric nature of the TfnR that binds two molecules of Tfn in close proximity, we utilized a Förster Resonance Energy Transfer (FRET) based technique that can discriminate bound and internalized Tfn from free, soluble Tfn. In order to non-invasively visualize intracellular amounts of Tfn in tumors through live animal tissues, we developed a novel near infrared (NIR) fluorescence lifetime FRET imaging technique that uses an active wide-field time gated illumination platform. In summary, we report that the NIR fluorescence lifetime FRET technique is capable of non-invasively detecting bound and internalized forms of Tfn in cancer cells and tumors within a live small animal model, and that our results are quantitatively consistent when compared to well-established intensity-based FRET microscopy methods used in in vitro experiments.
Collapse
Affiliation(s)
- Ken Abe
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Jonsson Engineering Center Troy, New York, United States of America
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Jonsson Engineering Center Troy, New York, United States of America
| | - Margarida Barroso
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pichette J, Domínguez JB, Bérubé-Lauzière Y. Time-domain geometrical localization of point-like fluorescence inclusions in turbid media with early photon arrival times. APPLIED OPTICS 2013; 52:5985-5999. [PMID: 24085003 DOI: 10.1364/ao.52.005985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
We introduce a novel approach for localizing a plurality of discrete point-like fluorescent inclusions embedded in a thick turbid medium using time-domain measurements. The approach uses early photon information contained in measured time-of-flight distributions originating from fluorescence emission. Fluorescence time point-spread functions (FTPSFs) are acquired with ultrafast time-correlated single photon counting after short pulse laser excitation. Early photon arrival times are extracted from the FTPSFs obtained from several source-detector positions. Each source-detector measurement allows defining a geometrical locus where an inclusion is to be found. These loci take the form of ovals in 2D or ovoids in 3D. From these loci a map can be built, with the maxima thereof corresponding to positions of inclusions. This geometrical approach is supported by Monte Carlo simulations performed for biological tissue-like media with embedded fluorescent inclusions. To validate the approach, several experiments are conducted with a homogeneous phantom mimicking tissue optical properties. In the experiments, inclusions filled with indocyanine green are embedded in the phantom and the fluorescence response to a short pulse of excitation laser is recorded. With our approach, several inclusions can be localized with low millimeter positional error. Our results support the approach as an accurate, efficient, and fast method for localizing fluorescent inclusions embedded in highly turbid media mimicking biological tissues. Further Monte Carlo simulations on a realistic mouse model show the feasibility of the technique for small animal imaging.
Collapse
|
39
|
Rice WL, Hou S, Kumar ATN. Resolution below the point spread function for diffuse optical imaging using fluorescence lifetime multiplexing. OPTICS LETTERS 2013; 38:2038-2040. [PMID: 23938969 PMCID: PMC3992832 DOI: 10.1364/ol.38.002038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We show that asymptotic lifetime-based fluorescence tomography can localize multiple-lifetime targets separated well below the diffuse point spread function of a turbid medium. This is made possible due to a complete diagonalization of the time domain forward problem in the asymptotic limit. We also show that continuous wave or direct time gate approaches to fluorescence tomography are unable to achieve this separation, indicating the unique advantage of a decay-amplitude-based approach for tomographic lifetime multiplexing with time domain data.
Collapse
|
40
|
Ren S, Chen X, Wang H, Qu X, Wang G, Liang J, Tian J. Molecular Optical Simulation Environment (MOSE): a platform for the simulation of light propagation in turbid media. PLoS One 2013; 8:e61304. [PMID: 23577215 PMCID: PMC3620115 DOI: 10.1371/journal.pone.0061304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/06/2013] [Indexed: 01/28/2023] Open
Abstract
The study of light propagation in turbid media has attracted extensive attention in the field of biomedical optical molecular imaging. In this paper, we present a software platform for the simulation of light propagation in turbid media named the “Molecular Optical Simulation Environment (MOSE)”. Based on the gold standard of the Monte Carlo method, MOSE simulates light propagation both in tissues with complicated structures and through free-space. In particular, MOSE synthesizes realistic data for bioluminescence tomography (BLT), fluorescence molecular tomography (FMT), and diffuse optical tomography (DOT). The user-friendly interface and powerful visualization tools facilitate data analysis and system evaluation. As a major measure for resource sharing and reproducible research, MOSE aims to provide freeware for research and educational institutions, which can be downloaded at http://www.mosetm.net.
Collapse
Affiliation(s)
- Shenghan Ren
- School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Xueli Chen
- School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Hailong Wang
- School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Xiaochao Qu
- School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- * E-mail: (GW); (JL); (JT)
| | - Jimin Liang
- School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- * E-mail: (GW); (JL); (JT)
| | - Jie Tian
- School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- * E-mail: (GW); (JL); (JT)
| |
Collapse
|
41
|
Venugopal V, Intes X. Adaptive wide-field optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:036006. [PMID: 23475290 PMCID: PMC3591745 DOI: 10.1117/1.jbo.18.3.036006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/02/2013] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (∼2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (∼1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.
Collapse
Affiliation(s)
- Vivek Venugopal
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180
- Address all correspondence to: Xavier Intes, Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180. Tel: (518) 276-6964; E-mail:
| |
Collapse
|
42
|
Venugopal V, Chen J, Barroso M, Intes X. Quantitative tomographic imaging of intermolecular FRET in small animals. BIOMEDICAL OPTICS EXPRESS 2012; 3:3161-75. [PMID: 23243567 PMCID: PMC3521293 DOI: 10.1364/boe.3.003161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 05/20/2023]
Abstract
Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule.
Collapse
Affiliation(s)
- Vivek Venugopal
- Department of Biomedical Engineering, Rensselaer Polytechnic
Institute, 110 8th Street, Troy, New York. 12180, USA
- Currently with the Center for Molecular Imaging, Beth Israel
Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215,
USA
| | - Jin Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic
Institute, 110 8th Street, Troy, New York. 12180, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 43
New Scotland Avenue, Albany, New York, 12208, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic
Institute, 110 8th Street, Troy, New York. 12180, USA
| |
Collapse
|
43
|
Lin Y, Ghijsen M, Nalcioglu O, Gulsen G. In vivo validation of quantitative frequency domain fluorescence tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:126021. [PMID: 23323291 PMCID: PMC3525318 DOI: 10.1117/1.jbo.17.12.126021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have developed a hybrid frequency domain fluorescence tomography and magnetic resonance imaging system (MRI) for small animal imaging. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration and lifetime images using a multi-modality approach. In vivo experiments are undertaken to evaluate the system. We compare the recovered fluorescence parameters with and without MRI structural a priori information. In addition, we compare two optical background heterogeneity correction methods: Born normalization and utilizing diffuse optical tomography (DOT) functional a priori information. The results show that the concentration and lifetime of a 4.2-mm diameter indocyanine green inclusion located 15 mm deep inside a rat can be recovered with less than a 5% error when functional a priori information from DOT and structural a priori information from MRI are utilized.
Collapse
Affiliation(s)
- Yuting Lin
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Michael Ghijsen
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Orhan Nalcioglu
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Gultekin Gulsen
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
- Address all correspondence to: Gultekin Gulsen, University of California, Tu and Yuen Center for Functional Onco-Imaging, 164 Irvine Hall, Irvine, California 92697. Tel: 949 824 6557; Fax: 949 824 3481; E-mail:
| |
Collapse
|
44
|
Kumar ATN. Direct Monte Carlo computation of time-resolved fluorescence in heterogeneous turbid media. OPTICS LETTERS 2012; 37:4783-4785. [PMID: 23164912 PMCID: PMC3544305 DOI: 10.1364/ol.37.004783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We show that a multiexponential model for time-resolved fluorescence allows the use of an absorption-perturbation Monte Carlo (MC) approach based on stored photon path histories. This enables the rapid fitting of fluorescence yield, lifetimes, and background tissue absorptions in complex heterogeneous media within a few seconds, without the need for temporal convolutions or MC recalculation of photon path lengths. We validate this method using simulations with both a slab and a heterogeneous model of the mouse head.
Collapse
Affiliation(s)
- Anand T N Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
45
|
Ex vivo fluorescence molecular tomography of the spine. Int J Biomed Imaging 2012; 2012:942326. [PMID: 23197973 PMCID: PMC3503328 DOI: 10.1155/2012/942326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/26/2012] [Indexed: 11/17/2022] Open
Abstract
We investigated the potential of fluorescence molecular tomography to image ex vivo samples collected from a large animal model, in this case, a dog spine. Wide-field time-gated fluorescence tomography was employed to assess the impact of multiview acquisition, data type, and intrinsic optical properties on the localization and quantification accuracy in imaging a fluorescent inclusion in the intervertebral disk. As expected, the TG data sets, when combining early and late gates, provide significantly better performances than the CW data sets in terms of localization and quantification. Moreover, the use of multiview imaging protocols led to more accurate localization. Additionally, the incorporation of the heterogeneous nature of the tissue in the model to compute the Jacobians led to improved imaging performances. This preliminary imaging study provides a proof of concept of the feasibility of quantitatively imaging complex ex vivo samples nondestructively and with short acquisition times. This work is the first step towards employing optical molecular imaging of the spine to detect and characterize disc degeneration based on targeted fluorescent probes.
Collapse
|
46
|
Chen J, Fang Q, Intes X. Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:106009. [PMID: 23224008 PMCID: PMC3569407 DOI: 10.1117/1.jbo.17.10.106009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We evaluated the potential of mesh-based Monte Carlo (MC) method for widefield time-gated fluorescence molecular tomography, aiming to improve accuracy in both shape discretization and photon transport modeling in preclinical settings. An optimized software platform was developed utilizing multithreading and distributed parallel computing to achieve efficient calculation. We validated the proposed algorithm and software by both simulations and in vivo studies. The results establish that the optimized mesh-based Monte Carlo (mMC) method is a computationally efficient solution for optical tomography studies in terms of both calculation time and memory utilization. The open source code, as part of a new release of mMC, is publicly available at http://mcx.sourceforge.net/mmc/.
Collapse
Affiliation(s)
- Jin Chen
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York 12180
| | - Qianqian Fang
- Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York 12180
- Address all correspondence to: Xavier Intes, Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York 12180. Tel: 518-276-6964; Fax: 518-276-3035; E-mail:
| |
Collapse
|
47
|
Quan G, Wang K, Yang X, Deng Y, Luo Q, Gong H. Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:086006. [PMID: 23224193 DOI: 10.1117/1.jbo.17.8.086006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The study of dual-modality technology which combines microcomputed tomography (micro-CT) and fluorescence molecular tomography (FMT) has become one of the main focuses in FMT. However, because of the diversity of the optical properties and irregular geometry for small animals, a reconstruction method that can effectively utilize the high-resolution structural information of micro-CT for tissue with arbitrary optical properties is still one of the most challenging problems in FMT. We develop a micro-CT-guided non-equal voxel Monte Carlo method for FMT reconstruction. With the guidance of micro-CT, precise voxel binning can be conducted on the irregular boundary or region of interest. A modified Laplacian regularization method is also proposed to accurately reconstruct the distribution of the fluorescent yield for non-equal space voxels. Simulations and phantom experiments show that this method not only effectively reduces the loss of high-resolution structural information of micro-CT in irregular boundaries and increases the accuracy of the FMT algorithm in both forward and inverse problems, but the method also has a small Jacobian matrix and a short reconstruction time. At last, we performed small animal imaging to validate our method.
Collapse
Affiliation(s)
- Guotao Quan
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, 1037 Luoyu Road, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
48
|
Jha AK, Kupinski MA, Masumura T, Clarkson E, Maslov AV, Barrett HH. Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012. [PMID: 23201893 PMCID: PMC3985394 DOI: 10.1364/josaa.29.001741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present the implementation, validation, and performance of a Neumann-series approach for simulating light propagation at optical wavelengths in uniform media using the radiative transport equation (RTE). The RTE is solved for an anisotropic-scattering medium in a spherical harmonic basis for a diffuse-optical-imaging setup. The main objectives of this paper are threefold: to present the theory behind the Neumann-series form for the RTE, to design and develop the mathematical methods and the software to implement the Neumann series for a diffuse-optical-imaging setup, and, finally, to perform an exhaustive study of the accuracy, practical limitations, and computational efficiency of the Neumann-series method. Through our results, we demonstrate that the Neumann-series approach can be used to model light propagation in uniform media with small geometries at optical wavelengths.
Collapse
Affiliation(s)
- Abhinav K Jha
- College of Optical Sciences, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Mo W, Rohrbach D, Sunar U. Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:071306. [PMID: 22894467 PMCID: PMC3381019 DOI: 10.1117/1.jbo.17.7.071306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/20/2012] [Accepted: 03/05/2012] [Indexed: 05/29/2023]
Abstract
We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.
Collapse
Affiliation(s)
- Weirong Mo
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Daniel Rohrbach
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Ulas Sunar
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| |
Collapse
|
50
|
Zhang X. Construction of the Jacobian matrix for fluorescence diffuse optical tomography using a perturbation Monte Carlo method. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2012; 8216:82160O. [PMID: 24027610 DOI: 10.1117/12.906439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Image formation in fluorescence diffuse optical tomography is critically dependent on construction of the Jacobian matrix. For clinical and preclinical applications, because of the highly heterogeneous characteristics of the medium, Monte Carlo methods are frequently adopted to construct the Jacobian. Conventional adjoint Monte Carlo method typically compute the Jacobian by multiplying the photon density fields radiated from the source at the excitation wavelength and from the detector at the emission wavelength. Nonetheless, this approach assumes that the source and the detector in Green's function are reciprocal, which is invalid in general. This assumption is particularly questionable in small animal imaging, where the mean free path length of photons is typically only one order of magnitude smaller than the representative dimension of the medium. We propose a new method that does not rely on the reciprocity of the source and the detector by tracing photon propagation entirely from the source to the detector. This method relies on the perturbation Monte Carlo theory to account for the differences in optical properties of the medium at the excitation and the emission wavelengths. Compared to the adjoint methods, the proposed method is more valid in reflecting the physical process of photon transport in diffusive media and is more efficient in constructing the Jacobian matrix for densely sampled configurations.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, 27710
| |
Collapse
|