1
|
Yuliansyah DR, Pan MC, Hsu YF. Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media. SENSORS (BASEL, SWITZERLAND) 2022; 22:9096. [PMID: 36501794 PMCID: PMC9741421 DOI: 10.3390/s22239096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Imaging tasks today are being increasingly shifted toward deep learning-based solutions. Biomedical imaging problems are no exception toward this tendency. It is appealing to consider deep learning as an alternative to such a complex imaging task. Although research of deep learning-based solutions continues to thrive, challenges still remain that limits the availability of these solutions in clinical practice. Diffuse optical tomography is a particularly challenging field since the problem is both ill-posed and ill-conditioned. To get a reconstructed image, various regularization-based models and procedures have been developed in the last three decades. In this study, a sensor-to-image based neural network for diffuse optical imaging has been developed as an alternative to the existing Tikhonov regularization (TR) method. It also provides a different structure compared to previous neural network approaches. We focus on realizing a complete image reconstruction function approximation (from sensor to image) by combining multiple deep learning architectures known in imaging fields that gives more capability to learn than the fully connected neural networks (FCNN) and/or convolutional neural networks (CNN) architectures. We use the idea of transformation from sensor- to image-domain similarly with AUTOMAP, and use the concept of an encoder, which is to learn a compressed representation of the inputs. Further, a U-net with skip connections to extract features and obtain the contrast image, is proposed and implemented. We designed a branching-like structure of the network that fully supports the ring-scanning measurement system, which means it can deal with various types of experimental data. The output images are obtained by multiplying the contrast images with the background coefficients. Our network is capable of producing attainable performance in both simulation and experiment cases, and is proven to be reliable to reconstruct non-synthesized data. Its apparent superior performance was compared with the results of the TR method and FCNN models. The proposed and implemented model is feasible to localize the inclusions with various conditions. The strategy created in this paper can be a promising alternative solution for clinical breast tumor imaging applications.
Collapse
Affiliation(s)
| | - Min-Chun Pan
- Department of Mechanical Engineering, National Central University, Taoyuan City 320, Taiwan
| | - Ya-Fen Hsu
- Department of Surgery, Landseed International Hospital, Taoyuan City 324, Taiwan
| |
Collapse
|
2
|
Dantuma M, Kruitwagen SC, Weggemans MJ, Op’t Root TJPM, Manohar S. Suite of 3D test objects for performance assessment of hybrid photoacoustic-ultrasound breast imaging systems. JOURNAL OF BIOMEDICAL OPTICS 2021; 27:JBO-210239SSR. [PMID: 34889084 PMCID: PMC8655513 DOI: 10.1117/1.jbo.27.7.074709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE During the development and early testing phases of new photoacoustic (PA) breast imaging systems, several choices need to be made in aspects of system design and measurement sequences. Decision-making can be complex for state-of-the-art systems such as 3D hybrid photoacoustic-ultrasound (PA-US) breast imagers intended for multispectral quantitative imaging. These systems have a large set of design choices and system settings that affect imaging performance in different ways and often require trade-offs. Decisions have to be made carefully as they can strongly influence the imaging performance. AIM A systematic approach to assess the influence of various choices on the imaging performance in carefully controlled laboratory situations is crucial before starting with human studies. Test objects and phantoms are used for first imaging studies, but most reported structures have a 2D geometry and are not suitable to assess all the image quality characteristics (IQCs) of 3D hybrid PA-US systems. APPROACH Our work introduces a suite of five test objects designed for hybrid PA-US systems with a 3D detection aperture. We present the test object designs and production protocols and explain how they can be used to study various performance measures. To demonstrate the utility of the developed objects, measurements are made with an existing tomographic PA system. RESULTS Two test objects were developed for measurements of the US detectors' impulse responses and light distribution on the breast surface. Three others were developed to assess image quality and quantitative accuracy of the PA and US modes. Three of the five objects were imaged to demonstrate their use. CONCLUSIONS The developed test objects allow one to study influences of various choices in design and system settings. With this, IQCs can be assessed as a function of measurement sequence settings for the PA and US modes in a controlled way. Systematic studies and measurements using these objects will help to optimize various system settings and measurement protocols in laboratory situations before embarking on human studies.
Collapse
Affiliation(s)
- Maura Dantuma
- University of Twente, Multi-Modality Medical Imaging, Technical Medical Centre, Enschede, The Netherlands
| | - Saskia C. Kruitwagen
- University of Twente, Multi-Modality Medical Imaging, Technical Medical Centre, Enschede, The Netherlands
- Medisch Spectrum Twente Hospital, Enschede, The Netherlands
| | - Marlies J. Weggemans
- University of Twente, Multi-Modality Medical Imaging, Technical Medical Centre, Enschede, The Netherlands
| | | | - Srirang Manohar
- University of Twente, Multi-Modality Medical Imaging, Technical Medical Centre, Enschede, The Netherlands
| |
Collapse
|
3
|
Dantuma M, Kruitwagen S, Ortega-Julia J, Pompe van Meerdervoort RP, Manohar S. Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200370RR. [PMID: 33728828 PMCID: PMC7961914 DOI: 10.1117/1.jbo.26.3.036003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Recovering accurate oxygenation estimations in the breast with quantitative photoacoustic tomography (QPAT) is not straightforward. Accurate light fluence models are required, but the unknown ground truth of the breast makes it difficult to validate them. Phantoms are often used for the validation, but most reported phantoms have a simple architecture. Fluence models developed in these simplistic objects are not accurate for application on the complex tissues of the breast. AIM We present a sophisticated breast phantom platform for photoacoustic (PA) and ultrasound (US) imaging in general, and specifically for QPAT. The breast phantom is semi-anthropomorphic in distribution of optical and acoustic properties and contains wall-less channels with blood. APPROACH 3D printing approaches are used to develop the solid 3D breast phantom from custom polyvinyl chloride plastisol formulations and additives for replicating the tissue optical and acoustic properties. A flow circuit was developed to flush the channels with bovine blood with a controlled oxygen saturation level. To showcase the phantom's functionality, PA measurements were performed on the phantom with two oxygenation levels. Image reconstructions with and without fluence compensation from Monte Carlo simulations were analyzed for the accuracy of oxygen saturation estimations. RESULTS We present design aspects of the phantom, demonstrate how it is developed, and present its breast-like appearance in PA and US imaging. The oxygen saturations were estimated in two regions of interest with and without using the fluence models. The fluence compensation positively influenced the SO2 estimations in all cases and confirmed that highly accurate fluence models are required to minimize estimation errors. CONCLUSIONS This phantom allows studies to be performed in PA in carefully controlled laboratory settings to validate approaches to recover both qualitative and quantitative features sought after in in-vivo studies. We believe that testing with phantoms of this complexity can streamline the transition of new PA technologies from the laboratory to studies in the clinic.
Collapse
Affiliation(s)
- Maura Dantuma
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
- Address all correspondence to Maura Dantuma,
| | - Saskia Kruitwagen
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
- Medisch Spectrum Twente, Enschede, The Netherlands
| | - Javier Ortega-Julia
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
| | | | - Srirang Manohar
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
| |
Collapse
|
4
|
Buchmann J, Kaplan B, Powell S, Prohaska S, Laufer J. Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom. PHOTOACOUSTICS 2020; 17:100157. [PMID: 31956487 PMCID: PMC6961715 DOI: 10.1016/j.pacs.2019.100157] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 05/18/2023]
Abstract
Quantitative photoacoustic tomography aims to recover the spatial distribution of absolute chromophore concentrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral images of a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated absorber allowed scaling of the measured data during the inversion, while an acoustic correction method was employed to compensate the effects of limited view detection. Chromophore- and fluence-dependent step sizes and Adam optimization were implemented to achieve rapid convergence. High resolution 3-D maps of absolute concentrations and their ratios were recovered with high accuracy. Potential applications of this method include quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical and clinical studies.
Collapse
Affiliation(s)
- Jens Buchmann
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 3, 06120 Halle (Saale), Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin, Germany
| | - Bernhard Kaplan
- Visual Data Analysis, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
| | - Samuel Powell
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Steffen Prohaska
- Visual Data Analysis, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
| | - Jan Laufer
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 3, 06120 Halle (Saale), Germany
- Corresponding author.
| |
Collapse
|
5
|
Manohar S, Dantuma M. Current and future trends in photoacoustic breast imaging. PHOTOACOUSTICS 2019; 16:100134. [PMID: 31871887 PMCID: PMC6909206 DOI: 10.1016/j.pacs.2019.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 05/14/2023]
Abstract
Non-invasive detection of breast cancer has been regarded as the holy grail of applications for photoacoustic (optoacoustic) imaging right from the early days of re-discovery of the method. Two-and-a-half decades later we report on the state-of-the-art in photoacoustic breast imaging technology and clinical studies. Even within the single application of breast imaging, we find imagers with various measurement geometries, ultrasound detection characteristics, illumination schemes, and image reconstruction strategies. We first analyze the implications on performance of a few of these design choices in a generic imaging system, before going into detailed descriptions of the imagers. Per imaging system we present highlights of patient studies, which barring a couple are mostly in the nature of technology demonstrations and proof-of-principle studies. We close this work with a discussion on several aspects that may turn out to be crucial for the future clinical translation of the method.
Collapse
|
6
|
Liu C, Liao J, Chen L, Chen J, Ding R, Gong X, Cui C, Pang Z, Zheng W, Song L. The integrated high-resolution reflection-mode photoacoustic and fluorescence confocal microscopy. PHOTOACOUSTICS 2019; 14:12-18. [PMID: 30923675 PMCID: PMC6423349 DOI: 10.1016/j.pacs.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 05/05/2023]
Abstract
A dual modality microscopy with the highest imaging resolution reported so far based on reflection-mode photoacoustic and confocal fluorescence is presented in this study. The unique design of the imaging head of the microscope makes it highly convenient for scalable high-resolution imaging by simply switching the optical objectives. The submicron resolution performance of the system is demonstrated via in vivo imaging of zebrafish, normal mouse ear, and a xenograft tumor model inoculated in the mouse ear. The imaging results confirm that the presented dual-modality microscopy imaging system could play a vital role in observing model organism, studying tumor angiogenesis and assessment of antineoplastic drugs.
Collapse
Affiliation(s)
- Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiuling Liao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Longchao Chen
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Jianhua Chen
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Rubo Ding
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Caimei Cui
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Zhiqiang Pang
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding authors.
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding authors.
| |
Collapse
|
7
|
Ulrich L, Ahnen L, Akarçay HG, Majos SS, Jaeger M, Held KG, Wolf M, Frenz M. Spectral correction for handheld optoacoustic imaging by means of near-infrared optical tomography in reflection mode. JOURNAL OF BIOPHOTONICS 2019; 12:e201800112. [PMID: 30098119 PMCID: PMC7065640 DOI: 10.1002/jbio.201800112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 08/09/2018] [Indexed: 05/04/2023]
Abstract
In vivo imaging of tissue/vasculature oxygen saturation levels is of prime interest in many clinical applications. To this end, the feasibility of combining two distinct and complementary imaging modalities is investigated: optoacoustics (OA) and near-infrared optical tomography (NIROT), both operating noninvasively in reflection mode. Experiments were conducted on two optically heterogeneous phantoms mimicking tissue before and after the occurrence of a perturbation. OA imaging was used to resolve submillimetric vessel-like optical absorbers at depths up to 25 mm, but with a spectral distortion in the OA signals. NIROT measurements were utilized to image perturbations in the background and to estimate the light fluence inside the phantoms at the wavelength pair (760 nm, 830 nm). This enabled the spectral correction of the vessel-like absorbers' OA signals: the error in the ratio of the absorption coefficient at 830 nm to that at 760 nm was reduced from 60%-150% to 10%-20%. The results suggest that oxygen saturation (SO 2 ) levels in arteries can be determined with <10% error and furthermore, that relative changes in vessels' SO 2 can be monitored with even better accuracy. The outcome relies on a proper identification of the OA signals emanating from the studied vessels.
Collapse
Affiliation(s)
- Leonie Ulrich
- Institute of Applied PhysicsUniversity of BernBernSwitzerland
| | - Linda Ahnen
- Biomedical Optics Research Laboratory, Department of NeonatologyUniversity Hospital ZurichZurichSwitzerland
| | | | - Salvador Sánchez Majos
- Biomedical Optics Research Laboratory, Department of NeonatologyUniversity Hospital ZurichZurichSwitzerland
| | - Michael Jaeger
- Institute of Applied PhysicsUniversity of BernBernSwitzerland
| | - Kai Gerrit Held
- Institute of Applied PhysicsUniversity of BernBernSwitzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of NeonatologyUniversity Hospital ZurichZurichSwitzerland
| | - Martin Frenz
- Institute of Applied PhysicsUniversity of BernBernSwitzerland
| |
Collapse
|
8
|
Wang B, Xiong W, Su T, Xiao J, Peng K. Finite-element reconstruction of 2D circular scanning photoacoustic tomography with detectors in far-field condition. APPLIED OPTICS 2018; 57:9123-9128. [PMID: 30461901 DOI: 10.1364/ao.57.009123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
The finite-element method (FEM) has been a powerful numerical tool for the reconstruction of 2D circular scanning-based photoacoustic tomography (PAT) for its unrivaled ability to accommodate complex boundary conditions, quantitatively reconstruct different physical parameters, and enable low sampling frequency and fewer detector numbers. To reduce the computation cost, a smaller image domain is commonly used instead of the region surrounded by the transducer scanning trace. Then, the pressure data used for the reconstruction that is defined on the boundary of the image domain is usually obtained by directly time delaying the actual measured data. In this case, distortions will be aroused for targets that are away from the rotation center. In this work, we put forward a new data preprocessing method to overcome this problem with a virtual detector concept, in which the measured data for the virtual point detectors on the boundary of the reconstruction domain are generated by a summation of the signals from nearby true detectors. The complete removal of the distortions using our proposed algorithm was proven with experimental reconstruction results.
Collapse
|
9
|
Huang N, He M, Shi H, Zhao Y, Lu M, Zou X, Yao L, Jiang H, Xi L. Curved-Array-Based Multispectral Photoacoustic Imaging of Human Finger Joints. IEEE Trans Biomed Eng 2018; 65:1452-1459. [DOI: 10.1109/tbme.2017.2758905] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Nykänen O, Pulkkinen A, Tarvainen T. Quantitative photoacoustic tomography augmented with surface light measurements. BIOMEDICAL OPTICS EXPRESS 2017; 8:4380-4395. [PMID: 29082072 PMCID: PMC5654787 DOI: 10.1364/boe.8.004380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/18/2017] [Accepted: 08/26/2017] [Indexed: 05/11/2023]
Abstract
Quantitative photoacoustic tomography is an imaging modality in which distributions of optical parameters inside tissue are estimated from photoacoustic images. This optical parameter estimation is an ill-posed problem and it needs to be approached in the framework of inverse problems. In this work, utilising surface light measurements in quantitative photoacoustic tomography is studied. Estimation of absorption and scattering is formulated as a minimisation problem utilising both internal quantitative photoacoustic data and surface light data. The image reconstruction problem is studied with two-dimensional numerical simulations in various imaging situations using the diffusion approximation as the model for light propagation. The results show that quantitative photoacoustic tomography augmented with surface light data can improve both absorption and scattering estimates when compared to the conventional quantitative photoacoustic tomography.
Collapse
Affiliation(s)
- Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio,
Finland
| | - Aki Pulkkinen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio,
Finland
| | - Tanja Tarvainen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio,
Finland
- Department of Computer Science, University College London, Gower Street, London WC1E 6BT,
UK
| |
Collapse
|
11
|
Wang Y, Li J, Lu T, Zhang L, Zhou Z, Zhao H, Gao F. Combined diffuse optical tomography and photoacoustic tomography for enhanced functional imaging of small animals: a methodological study on phantoms. APPLIED OPTICS 2017; 56:303-311. [PMID: 28085867 DOI: 10.1364/ao.56.000303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hybrid imaging methods combining diffuse optical tomography (DOT) and other anatomical or nonoptical functional modalities have been widely investigated to improve imaging performance degraded by the strong optical scattering of biological tissues, through constraining the reconstruction process by prior structures. However, these modalities with different contrast mechanisms may be ineffective in revealing early-staged lesions with high optical contrast but no morphological changes. Photoacoustic tomography (PAT) is particularly useful for visualizing light-absorbing structures embedded in soft tissues with high spatial resolution. Although it is still challenging for PAT to quantitatively disclose the absorption distribution, the modality does provide reliable and specific a priori information differentiating light-absorbing structures of soft tissues and might be more appropriate to guide DOT in lesion diagnosis, as compared with other anatomical or nonoptical functional modalities. In this study, a PAT-guided DOT approach is introduced with both soft- and hard-prior regularizations. The methodology is experimentally validated on small-animal-sized phantoms using a computed-tomography-analogous (CT-analogous) PAT/DOT dual-modality system, focusing on future whole-body applications. The results show that the proposed scheme is capable of effectively improving the quantitative accuracy and spatial resolution of DOT reconstruction.
Collapse
|
12
|
Li X, Heldermon CD, Yao L, Xi L, Jiang H. High resolution functional photoacoustic tomography of breast cancer. Med Phys 2016; 42:5321-8. [PMID: 26328981 DOI: 10.1118/1.4928598] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate the feasibility of functional photoacoustic tomography (fPAT) for high resolution detection and characterization of breast cancer and to demonstrate for the first time quantitative hemoglobin concentration and oxygen saturation images of breasts that were formed with model-based reconstruction of tomographic photoacoustic data. METHODS The study was HIPAA compliant and was approved by the university institutional review board. Written informed consents were obtained from all the participants. Ten cases, including six cancer and four healthy (mean age = 50 yr; age range = 41-66 yr), were examined. Functional images of breast tissue including absolute total hemoglobin concentration (HbT) and oxygen saturation (StO2%) were obtained by fPAT and cross validated with magnetic resonance imaging (MRI) readings and/or histopathology. RESULTS HbT and StO2% maps from all six pathology-confirmed cancer cases (60%) show clear detection of tumor, while MR images indicate clear detection of tumor for five of six cancer cases; one small tumor was read as near-complete-resolution by MRI. The average HbT and StO2% value of suspicious lesion area for the cancer cases was 61.6 ± 18.9 μM/l and 67.5% ± 5.2% compared to 25.6 ± 7.4 μM/l and 65.2% ± 3.8% for background normal tissue. CONCLUSIONS fPAT has the potential to be a significant add-on in breast cancer detection and characterization as it provides submillimeter resolution functional images of breast lesions.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Coy D Heldermon
- Department of Medicine, University of Florida, Gainesville, Florida 32611
| | - Lei Yao
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Lei Xi
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Huabei Jiang
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
13
|
Xia J, Kim C, Lovell JF. Opportunities for Photoacoustic-Guided Drug Delivery. Curr Drug Targets 2016; 16:571-81. [PMID: 26148989 DOI: 10.2174/1389450116666150707100328] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 01/23/2023]
Abstract
Photoacoustic imaging (PAI) is rapidly becoming established as a viable imaging modality for small animal research, with promise of near-future human clinical translation. In this review, we discuss emerging prospects for photoacoustic-guided drug delivery. PAI presents opportunities for applications related to drug delivery, mainly with respect to either monitoring drug effects or monitoring drugs themselves. PAI is well-suited for imaging disease pathology and treatment response. Alternatively, PAI can be used to directly monitor the accumulation of various light-absorbing contrast agents or carriers with theranostic properties.
Collapse
Affiliation(s)
| | | | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, USA.
| |
Collapse
|
14
|
Abstract
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Jun Xia
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| |
Collapse
|
15
|
Photoacoustic breast tomography prototypes with reported human applications. Eur Radiol 2015; 25:2205-13. [PMID: 25721319 DOI: 10.1007/s00330-015-3647-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/25/2015] [Accepted: 01/30/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Photoacoustic breast tomography could provide optical molecular imaging with near-infrared light at sonographic image resolution by utilizing the photoacoustic effect. This review summarizes reports about current prototypes that were applied in vivo in humans. METHODS Four databases were searched for reports about prototypes of photoacoustic breast tomography that were tested in vivo in humans. Data extracted from the reports comprised details about system design, phantom studies, and clinical studies. RESULTS Five prototypes were included. System designs comprised planar, hemicylindrical and hemispherical geometries. In total, 52 of 61 breast cancers (85 %) were detected by three of the prototypes, showing image details such as ring-pattern of the haemoglobin-rich tumour vasculature. A refined prototype provided submillimetre resolution at a good contrast-to-noise ratio up to a depth of about 5 cm in a cup-shaped breast configuration. Another novel prototype demonstrated that in the mammographic imaging geometry, the total imaging depth approximately duplicates with bilateral laser illumination. Most prototypes focused on detecting elevated haemoglobin content related to tumours, but proof-of-principle was also given for multispectral optoacoustic tomography by additional imaging of tissue oxygenation. CONCLUSIONS Photoacoustic breast tomography can detect breast cancer. This radiation-free molecular imaging technology should be further refined and studied for clinical applications. KEY POINTS • Photoacoustics combines optical imaging with sonographic signal detection. • Photoacoustic tomography could provide molecular imaging at high image resolution. • Prototypes have been designed for human breast cancer imaging. • Preliminary evaluation studies show that photoacoustic tomography detects breast cancer. • This radiation-free method should be further improved and studied for clinical applications.
Collapse
|
16
|
Park SJ, Eom J, Kim YH, Lee CS, Lee BH. Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer. OPTICS LETTERS 2014; 39:4903-6. [PMID: 25121904 DOI: 10.1364/ol.39.004903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We report on a noncontact photoacoustic imaging system utilizing an all-fiber-optic heterodyne interferometer as an acoustic wave detector. The acoustic wave generated by a short laser pulse via the photoacoustic effect and arriving at the sample surface could be detected with the fiber-optic heterodyne interferometer without physical contact or using an impedance matching medium. A phantom experiment was conducted to evaluate the proposed system, and the initial acoustic pressure distribution was calculated using a Fourier-based reconstruction algorithm. It is expected that the all-fiber-optic configuration of the proposed system can be applied as a minimally invasive diagnostic tool.
Collapse
|
17
|
James J, Murukeshan VM, Woh LS. Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom. BIOMEDICAL OPTICS EXPRESS 2014; 5:2135-44. [PMID: 25071954 PMCID: PMC4102354 DOI: 10.1364/boe.5.002135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 05/03/2023]
Abstract
The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).
Collapse
Affiliation(s)
- Joseph James
- The Centre for Optical and Lasers in Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Vadakke Matham Murukeshan
- The Centre for Optical and Lasers in Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Lye Sun Woh
- The Centre for Optical and Lasers in Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
18
|
Abstract
With the wide use of small animals for biomedical studies, in vivo small-animal whole-body imaging plays an increasingly important role. Photoacoustic tomography (PAT) is an emerging whole-body imaging modality that shows great potential for preclinical research. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous tissue chromophores, such as oxyhemoglobin and deoxyhemoglobin, or exogenous contrast agents. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Using near-infrared light, which has relatively low blood absorption, PAT can image through the whole body of small animals with acoustically defined spatial resolution. Anatomical and vascular structures are imaged with endogenous hemoglobin contrast, while functional and molecular images are enabled by the wide choice of exogenous optical contrasts. This paper reviews the rapidly growing field of small-animal whole-body PAT and highlights studies done in the past decade.
Collapse
Affiliation(s)
- Jun Xia
- J. Xia and L.V. Wang are with the Optical Imaging Lab, Department of Biomedical Engineering, Washington University in St. Louis ( and )
| | - Lihong V. Wang
- J. Xia and L.V. Wang are with the Optical Imaging Lab, Department of Biomedical Engineering, Washington University in St. Louis ( and )
| |
Collapse
|
19
|
Xu C, Kumavor PD, Alqasemi U, Li H, Xu Y, Zanganeh S, Zhu Q. Indocyanine green enhanced co-registered diffuse optical tomography and photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:126006. [PMID: 24343437 PMCID: PMC3865897 DOI: 10.1117/1.jbo.18.12.126006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/14/2013] [Indexed: 05/06/2023]
Abstract
To overcome the intensive light scattering in biological tissue, diffuse optical tomography (DOT) in the near-infrared range for breast lesion detection is usually combined with other imaging modalities, such as ultrasound, x-ray, and magnetic resonance imaging, to provide guidance. However, these guiding imaging modalities may depend on different contrast mechanisms compared to the optical contrast in the DOT. As a result, they cannot provide reliable guidance for DOT because some lesions may not be detectable by a nonoptical modality but may have a high optical contrast. An imaging modality that relies on optical contrast to provide guidance is desirable for DOT. We present a system that combines a frequency-domain DOT and real-time photoacoustic tomography (PAT) systems to detect and characterize deeply seated targets embedded in a turbid medium. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG), is used. Our experimental results show that the combined system can detect a tumor-mimicking phantom, which is immersed in intralipid solution with the concentrations ranging from 100 to 10 μM and with the dimensions of 0.8 cm × 0.8 cm × 0.6 cm, up to 2.5 cm in depth. Mice experiments also confirmed that the combined system can detect tumors and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect small breast lesions as well as lesions that are sensitive to background tissue changes, such as the lesions located just above the chest wall.
Collapse
Affiliation(s)
- Chen Xu
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157
- Address all correspondence to: Chen Xu, University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157. Tel: 860-486-2248; Fax: 860-486-2447; E-mail:
| | - Patrick D. Kumavor
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157
| | - Umar Alqasemi
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157
| | - Hai Li
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157
| | - Yan Xu
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157
| | - Saeid Zanganeh
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157
| | - Quing Zhu
- University of Connecticut, Electrical and Computer Engineering Department, 371 Fairfield Road, Unit 4157, Storrs, Connecticut 06269-4157
| |
Collapse
|
20
|
Lutzweiler C, Razansky D. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. SENSORS (BASEL, SWITZERLAND) 2013; 13:7345-84. [PMID: 23736854 PMCID: PMC3715274 DOI: 10.3390/s130607345] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/24/2022]
Abstract
This paper comprehensively reviews the emerging topic of optoacoustic imaging from the image reconstruction and quantification perspective. Optoacoustic imaging combines highly attractive features, including rich contrast and high versatility in sensing diverse biological targets, excellent spatial resolution not compromised by light scattering, and relatively low cost of implementation. Yet, living objects present a complex target for optoacoustic imaging due to the presence of a highly heterogeneous tissue background in the form of strong spatial variations of scattering and absorption. Extracting quantified information on the actual distribution of tissue chromophores and other biomarkers constitutes therefore a challenging problem. Image quantification is further compromised by some frequently-used approximated inversion formulae. In this review, the currently available optoacoustic image reconstruction and quantification approaches are assessed, including back-projection and model-based inversion algorithms, sparse signal representation, wavelet-based approaches, methods for reduction of acoustic artifacts as well as multi-spectral methods for visualization of tissue bio-markers. Applicability of the different methodologies is further analyzed in the context of real-life performance in small animal and clinical in-vivo imaging scenarios.
Collapse
Affiliation(s)
- Christian Lutzweiler
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Ingolstadter Landstraße 1, Neuherberg 85764, Germany; E-Mail:
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Ingolstadter Landstraße 1, Neuherberg 85764, Germany; E-Mail:
| |
Collapse
|
21
|
Yang H, Xi L, Samuelson S, Xie H, Yang L, Jiang H. Handheld miniature probe integrating diffuse optical tomography with photoacoustic imaging through a MEMS scanning mirror. BIOMEDICAL OPTICS EXPRESS 2013; 4:427-32. [PMID: 23504287 PMCID: PMC3595086 DOI: 10.1364/boe.4.000427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/19/2013] [Accepted: 02/13/2013] [Indexed: 05/19/2023]
Abstract
We describe a novel dual-modality imaging approach that integrates diffuse optical tomography (DOT) and photoacoustic imaging (PAI) through a miniaturized handheld probe based on microelectromechanical systems (MEMS) scanning mirror. We validate this dual-modal DOT/PAI approach using extensive phantom experiments, and demonstrate its application for tumor imaging using tumor-bearing mice systematically injected with targeted contrast agents.
Collapse
Affiliation(s)
- Hao Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Lei Xi
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sean Samuelson
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Huikai Xie
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Lily Yang
- Department of Surgery, Emory University, Atlanta, GA 30322, USA
| | - Huabei Jiang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Li X, Jiang H. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data. Phys Med Biol 2013; 58:999-1011. [PMID: 23339968 DOI: 10.1088/0031-9155/58/4/999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
23
|
Kim DH, Shin DH, Ryu SH, Song CG. Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography. Biomed Eng Online 2012; 11:37. [PMID: 22794510 PMCID: PMC3443050 DOI: 10.1186/1475-925x-11-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/13/2012] [Indexed: 11/23/2022] Open
Abstract
Background Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography. Methods A patterned thin metal film deposited on silica glass provides high contrast in optical imaging due to high reflectivity from the metal film and high transmission from the glass. It provides high contrast when it is used for photoacoustic tomography because thin metal film can absorb pulsed laser energy. An US Air Force 1951 resolution target was used to generate patterned photoacoustic signal to measure the lateral resolution. Transducer with 2.25 MHz bandwidth and a sample submerged in water and gelatinous block were tested for lateral resolution measurement. Results Photoacoustic signal generated from a thin metal film deposited on a glass can propagate along the surface or through the surrounding medium. First, a series of experiments with tilted sample confirmed that the measured photoacoustic signal is what is propagating through the medium. Lateral resolution of the photoacoustic tomography system was successfully measured for water and gelatinous block as media: 0.33 mm and 0.35 mm in water and gelatinous material, respectively, when 2.25 MHz transducer was used. Chicken embryo was tested for biomedical applications. Conclusions A patterned thin metal film sample was tested for its feasibility of measuring lateral resolution of a photoacoustic tomography system. Lateral resolutions in water and gelatinous material were successfully measured using the proposed method. Measured resolutions agreed well with theoretical values.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Center for Devices and Radiological Health, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.
| | | | | | | |
Collapse
|
24
|
Daoudi K, Hussain A, Hondebrink E, Steenbergen W. Correcting photoacoustic signals for fluence variations using acousto-optic modulation. OPTICS EXPRESS 2012; 20:14117-29. [PMID: 22714476 DOI: 10.1364/oe.20.014117] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a theoretical concept which may lead to quantitative photoacoustic mapping of chromophore concentrations. The approach supposes a technique capable of tagging light in a well-defined tagging volume at a specific location deep in the medium. We derive a formula that expresses the local absorption coefficient inside a medium in terms of noninvasively measured quantities and experimental parameters and we validate the theory using Monte Carlo simulations. Furthermore, we performed an experiment to basically validate the concept as a strategy to correct for fluence variations in photoacoustics. In the experiment we exploit the possibility of acousto-optic modulation, using focused ultrasound, to tag photons. Results show that the variation in photoacoustic signals of absorbing insertions embedded at different depths in a phantom, caused by fluence variations of more than one order of magnitude, can be corrected for to an accuracy of 5%.
Collapse
Affiliation(s)
- K Daoudi
- Biomedical Photonic Imaging group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
25
|
Xi L, Li X, Yao L, Grobmyer S, Jiang H. Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection. Med Phys 2012; 39:2584-94. [DOI: 10.1118/1.3703598] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|