1
|
Chen G, Wang W, Li Y. Reducing noise in polarization-sensitive optical coherence tomography for high-quality local phase retardation imaging. APPLIED OPTICS 2024; 63:2822-2830. [PMID: 38856377 DOI: 10.1364/ao.515942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/17/2024] [Indexed: 06/11/2024]
Abstract
Local phase retardation (LPR) is increasingly recognized as a crucial biomarker for assessing disease progression. However, the presence of speckle noise significantly challenges its accuracy and polarization contrast. To address this challenge, we propose a signal-processing strategy aimed at reducing the impact of noise on LPR measurements. In this approach, the LPR is reconstructed by polar decomposition after averaging multiple Mueller matrices from different overlapping sub-spectra. To optimize measurement accuracy, we systematically combined and traversed different sub-spectral numbers and bandwidths. By examining the quarter-wave plate and glass slide, high-accuracy phase retardation measurements were successfully verified, and the maximum polarization contrast was improved by 23%. Moreover, experimental results from multi-tissue imaging vividly illustrate that the equivalent number of looks (ENL) and polarization contrast were improved by 18% and 19%, respectively. This outcome indicates that our proposed strategy can effectively reduce the noise spikes, enhancing tissue discrimination capabilities.
Collapse
|
2
|
Shih HJ, Cheng SC, Shih PJ. Experimental evaluation of corneal stress-optic coefficients using a pair of force test. J Mech Behav Biomed Mater 2024; 152:106454. [PMID: 38354567 DOI: 10.1016/j.jmbbm.2024.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Topography and tomography are valuable techniques for measuring the corneal shape, but they cannot directly assess its internal mechanical stresses. And nonuniform corneal stress plays a crucial biomechanical role in the progression of diseases and postoperative changes. Given the cornea's inherent transparency, analyzing corneal stresses using the photoelasticity method is highly advantageous. However, quantification of photoelasticity faces challenges in obtaining the stress-optic coefficient due to wrinkles caused by the non-spherical geometry during tensional experiments. OBJECTIVE In this study, we propose an innovative experimental setup aimed at generating a gradient field of simple shear stress and achieving surface flatness during corneal stretching experiments, enabling the acquisition of the stress-optic coefficient through comparison with numerical results. METHODS Our designed setup applies fluid pressure and force couples on the cornea. The internal fluid pressure maintains the corneal shape, preventing wrinkles, while the force couples create a stress field leading to isochromatic fringes. RESULTS We successfully measured the stress-optic coefficients of the porcine anisotropic cornea in ex-vivo as 1.87 × 10-9 (horizontal) and 1.97 × 10-9 (vertical) (m2/N). Each isochromatic fringe order represents a shear stress range of 6.05 × 104 Pa under a low tension. CONCLUSIONS This study establishes a significant connection between corneal photoelastic patterns and the quantification of corneal stress by enabling direct measurement through advanced photoelastic visualization technology for clinical applications.
Collapse
Affiliation(s)
- Hua-Ju Shih
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Shan-Chien Cheng
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Sobczak M, Jóźwik A, Kurzynowski P. An integrated model of the human cornea as a linear biaxial birefringent medium. Sci Rep 2024; 14:5077. [PMID: 38429419 PMCID: PMC10907592 DOI: 10.1038/s41598-024-55800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
A novel model of human corneal birefringence is presented. The cornea is treated as a homogeneous biaxial linear birefringent medium in which the values of the binormal axes angle and organization of the main refractive indices vary continuously from the apex to the limbus. In its central part, the angle between binormal axes is 35°, and para centrally, it smoothly increases to 83.7°. The values of the main refractive indices (nx, ny, nz) change, as well as their order, from nx < nz < ny to nz < nx < ny. The transition between these two states was described with a normal distribution (μ = 0.45, σ = 0.1). The presented model corresponds with the experimental results presented in the literature. To our knowledge, it is the first model that presents the anisotropic properties' distributions of the entire cornea. The presented model facilitates a better understanding of the corneal birefringence phenomenon directly related to its lamellar structure.
Collapse
Affiliation(s)
- Marcelina Sobczak
- Department of Optics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
- School of Optometry, Indiana University, 800 Atwater Ave, Bloomington, IN, 47405, USA.
| | - Agnieszka Jóźwik
- Department of Optics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Piotr Kurzynowski
- Department of Optics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
4
|
Zhu L, Makita S, Tamaoki J, Zhu Y, Mukherjee P, Lim Y, Kobayashi M, Yasuno Y. Polarization-artifact reduction and accuracy improvement of Jones-matrix polarization-sensitive optical coherence tomography by multi-focus-averaging based multiple scattering reduction. BIOMEDICAL OPTICS EXPRESS 2024; 15:256-276. [PMID: 38223182 PMCID: PMC10783893 DOI: 10.1364/boe.509763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is a promising biomedical imaging tool for the differentiation of various tissue properties. However, the presence of multiple-scattering (MS) signals can degrade the quantitative polarization measurement accuracy. We demonstrate a method to reduce MS signals and increase the measurement accuracy of Jones matrix PS-OCT. This method suppresses MS signals by averaging multiple Jones matrix volumes measured using different focal positions. The MS signals are decorrelated among the volumes by focus position modulation and are thus reduced by averaging. However, the single scattering signals are kept consistent among the focus-modulated volumes by computational refocusing. We validated the proposed method using a scattering phantom and a postmortem medaka fish. The results showed reduced artifacts in birefringence and degree-of-polarization uniformity measurements, particularly in deeper regions in the samples. This method offers a practical solution to mitigate MS-induced artifacts in PS-OCT imaging and improves quantitative polarization measurement accuracy.
Collapse
Affiliation(s)
- Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental
Biology, Institute of Medicine, University of
Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiqiang Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental
Biology, Institute of Medicine, University of
Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Jones GL, Xiong Q, Liu X, Bouma BE, Villiger M. Single-input polarization-sensitive optical coherence tomography through a catheter. BIOMEDICAL OPTICS EXPRESS 2023; 14:4609-4626. [PMID: 37791262 PMCID: PMC10545192 DOI: 10.1364/boe.497123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/05/2023]
Abstract
Intravascular polarimetry with catheter-based polarization-sensitive optical coherence tomography (PS-OCT) complements the high-resolution structural tomograms of OCT with morphological contrast available through polarimetry. Its clinical translation has been complicated by the need for modification of conventional OCT hardware to enable polarimetric measurements. Here, we present a signal processing method to reconstruct the polarization properties of tissue from measurements with a single input polarization state, bypassing the need for modulation or multiplexing of input states. Our method relies on a polarization symmetry intrinsic to round-trip measurements and uses the residual spectral variation of the polarization states incident on the tissue to avoid measurement ambiguities. We demonstrate depth-resolved birefringence and optic axis orientation maps reconstructed from in-vivo data of human coronary arteries. We validate our method through comparison with conventional dual-input state measurements and find a mean cumulative retardance error of 13.2deg without observable bias. The 95% limit of agreement between depth-resolved birefringence is 2.80 · 10-4, which is less than the agreement between two repeat pullbacks of conventional PS-OCT (3.14 · 10-4), indicating that the two methods can be used interchangeably. The hardware simplification arising from using a single input state may be decisive in realizing the potential of polarimetric measurements for assessing coronary atherosclerosis in clinical practice.
Collapse
Affiliation(s)
- Georgia L. Jones
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Qiaozhou Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xinyu Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, 169856, Singapore
- Academic Clinical Program, Duke-NUS Medical School, 169857, Singapore
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Phase retardation and corneal sublayer thickness repeatability using ultrahigh-resolution polarization-sensitive OCT. J Cataract Refract Surg 2023; 49:76-83. [PMID: 36026712 DOI: 10.1097/j.jcrs.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE To assess phase retardation and corneal sublayer thickness repeatability using ultrahigh-resolution polarization-sensitive optical coherence tomography (PS-OCT). SETTING Narayana Nethralaya Eye Hospital, Bangalore. DESIGN Observational. METHODS In this study, all eyes were imaged using a custom-built ultrahigh-resolution PS-OCT and high-resolution hybrid OCT (MS-39). The repeatability of phase retardation en face maps and corneal sublayer thickness profiles was evaluated. The reflectivity and phase retardation were calculated from the 2 orthogonal polarization channels to generate en face maps of phase retardation and corneal sublayer thicknesses. 3 consecutive measurements of all participants were acquired for each eye. For each measurement, the participant was asked to sit back and was realigned again. The repeatability was assessed using the intraclass correlation coefficient (ICC). RESULTS The study included 20 healthy eyes of 20 participants. The phase retardation en face maps showed preferential arrangement of collagen fibrils with least retardation in the apex and maximum retardation in the periphery. The phase retardation showed excellent repeatability (ICC >0.95) in all zones. The Bowman layer and stromal layer thicknesses were measured with excellent repeatability (ICC >0.93 and >0.99, respectively). Significant differences ( P < .05) in stromal layer thickness were observed between MS-39 and PS-OCT. The repeatability of epithelial thickness measurements was better with PS-OCT than MS-39. CONCLUSIONS The combinational assessment of corneal birefringence and sublayer thicknesses shows the advanced potential of ultrahigh-resolution PS-OCT in routine clinical practice over current OCT devices.
Collapse
|
7
|
Beckmann L, Cai Z, Margolis M, Fang R, Djalilian A, Zhang HF. Recent advances in optical coherence tomography for anterior segment imaging in small animals and their clinical implications. Ocul Surf 2022; 26:222-233. [PMID: 36195237 PMCID: PMC10040227 DOI: 10.1016/j.jtos.2022.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022]
Abstract
Anterior segment optical coherence tomography (AS-OCT) is a rapidly evolving area of OCT imaging, providing high-resolution and non-invasive volumetric imaging of the anterior segment. This review focuses on recent advances in AS-OCT imaging in small animals, which we categorize into ultrahigh-resolution, spectroscopic, magnetomotive, polarization-sensitive, and angiographic AS-OCTs. We summarize their technical foundations, review their applications to small animal imaging, and briefly discuss their current and future clinical applications.
Collapse
Affiliation(s)
- Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston IL, USA
| | - Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston IL, USA; Currently with Department of Ophthalmology, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, Hubei, China
| | - Mathew Margolis
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago IL, USA
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Evanston IL, USA
| | - Ali Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago IL, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL, USA.
| |
Collapse
|
8
|
Li Q, Yu Y, Ding Z, Zhu F, Li Y, Tao K, Hua P, Lai T, Kuang H, Liu T. Analysis and reduction of noise-induced depolarization in catheter based polarization sensitive optical coherence tomography. OPTICS EXPRESS 2022; 30:11130-11149. [PMID: 35473063 DOI: 10.1364/oe.453116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In catheter based polarization sensitive optical coherence tomography (PS-OCT), a optical fiber with a rapid rotation in the catheter can cause low signal-to-noise ratio (SNR), polarization state instability, phase change of PS-OCT signals and then heavy noise-induced depolarization, which has a strong impact on the phase retardation measurement of the sample. In this paper, we analyze the noise-induced depolarization and find that the effect of depolarization can be reduced by polar decomposition after incoherent averaging in the Mueller matrix averaging (MMA) method. Namely, MMA can reduce impact of noise on phase retardation mapping. We present a Monte Carlo method based on PS-OCT to numerically describe noise-induced depolarization effect and contrast phase retardation imaging results by MMA and Jones matrix averaging (JMA) methods. The peak signal to noise ratio (PSNR) of simulated images processed by MMA is higher than about 8.9 dB than that processed by JMA. We also implement experiments of multiple biological tissues using the catheter based PS-OCT system. From the simulation and experimental results, we find the polarization contrasts processed by the MMA are better than those by JMA, especially at areas with high depolarization, because the MMA can reduce effect of noise-induced depolarization on the phase retardation measurement.
Collapse
|
9
|
Baumann B, Merkle CW, Leitgeb RA, Augustin M, Wartak A, Pircher M, Hitzenberger CK. Signal averaging improves signal-to-noise in OCT images: But which approach works best, and when? BIOMEDICAL OPTICS EXPRESS 2019; 10:5755-5775. [PMID: 31799045 PMCID: PMC6865101 DOI: 10.1364/boe.10.005755] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/26/2019] [Indexed: 05/22/2023]
Abstract
The high acquisition speed of state-of-the-art optical coherence tomography (OCT) enables massive signal-to-noise ratio (SNR) improvements by signal averaging. Here, we investigate the performance of two commonly used approaches for OCT signal averaging. We present the theoretical SNR performance of (a) computing the average of OCT magnitude data and (b) averaging the complex phasors, and substantiate our findings with simulations and experimentally acquired OCT data. We show that the achieved SNR performance strongly depends on both the SNR of the input signals and the number of averaged signals when the signal bias caused by the noise floor is not accounted for. Therefore we also explore the SNR for the two averaging approaches after correcting for the noise bias and, provided that the phases of the phasors are accurately aligned prior to averaging, then find that complex phasor averaging always leads to higher SNR than magnitude averaging.
Collapse
|
10
|
Tao K, Sun K, Ding Z, Ma Y, Kuang H, Zhao H, Lai T, Zhou Y, Liu T. Catheter-Based Polarization Sensitive Optical Coherence Tomography Using Similar Mueller Matrix Method. IEEE Trans Biomed Eng 2019; 67:60-68. [PMID: 30932827 DOI: 10.1109/tbme.2019.2908031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Research of catheter-based polarization sensitive optical coherence tomography (PS-OCT) is a challenging field. In this paper, we present a new polarization determination method, similar Mueller matrix (SMM) method, for a catheter-based PS-OCT system using a standard clinical catheter probe with an outer diameter of 0.9 mm. METHODS The SMM method can remove the diattenuation and depolarization compositions by polar decomposition. By constructing the similarity between the measured Mueller matrices and sample matrices, the phase retardance of the sample can be determined from the trace of the measured matrices. RESULTS In the experiments, we find that images processed by the SMM method without any averaging or phase correction have a better polarization contrast of multiple biological tissues than those by the Jones matrix based method. We also preliminarily achieve phase retardance imaging of the ex vivo porcine cardiac blood vessel. CONCLUSION Compared with the Jones matrix based method, the presented SMM method can provide a more robust birefringence imaging of biological tissues under low signal-to-noise ratio, depolarization, diattenuation, and phase instability. SIGNIFICANCE The SMM method has a potential to become a widely accepted polarization determination method for catheter-based PS-OCT.
Collapse
|
11
|
Walther J, Li Q, Villiger M, Farah CS, Koch E, Karnowski K, Sampson DD. Depth-resolved birefringence imaging of collagen fiber organization in the human oral mucosa in vivo. BIOMEDICAL OPTICS EXPRESS 2019; 10:1942-1956. [PMID: 31086712 PMCID: PMC6484997 DOI: 10.1364/boe.10.001942] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/02/2018] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Stromal collagen organization has been identified as a potential prognostic indicator in a variety of cancers and other diseases accompanied by fibrosis. Changes in the connective tissue are increasingly considered for grading dysplasia and progress of oral squamous cell carcinoma, investigated mainly ex vivo by histopathology. In this study, polarization-sensitive optical coherence tomography (PS-OCT) with local phase retardation imaging is used for the first time to visualize depth-resolved (i.e., local) birefringence of healthy human oral mucosa in vivo. Depth-resolved birefringence is shown to reveal the expected local collagen organization. To demonstrate proof-of-principle, 3D image stacks were acquired at labial and lingual locations of the oral mucosa, chosen as those most commonly affected by cancerous alterations. To enable an intuitive evaluation of the birefringence images suitable for clinical application, color depth-encoded en-face projections were generated. Compared to en-face views of intensity or conventional cumulative phase retardation, we show that this novel approach offers improved visualization of the mucosal connective tissue layer in general, and reveals the collagen fiber architecture in particular. This study provides the basis for future prospective pathological and comparative in vivo studies non-invasively assessing stromal changes in conspicuous and cancerous oral lesions at different stages.
Collapse
Affiliation(s)
- Julia Walther
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Department of Medical Physics and Biomedical Engineering, 01307 Dresden, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, 01307 Dresden, Germany
| | - Qingyun Li
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Martin Villiger
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, USA
| | - Camile S. Farah
- UWA Dental School, The University of Western Australia, Perth, WA 6009, Australia
- Australian Centre for Oral Oncology Research and Education, Perth, WA 6009, Australia
| | - Edmund Koch
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, 01307 Dresden, Germany
| | - Karol Karnowski
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia
- University of Surrey, Guilford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
12
|
Xiong Q, Wang N, Liu X, Chen S, Liang H, Chen S, Liu L. Single input state polarization-sensitive optical coherence tomography with high resolution and polarization distortion correction. OPTICS EXPRESS 2019; 27:6910-6924. [PMID: 30876266 DOI: 10.1364/oe.27.006910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
In single input state polarization-sensitive optical coherence tomography (PS-OCT) with high resolution, the imperfections of quarter-wave plate (QWP) and the sensitivity roll-off mismatch between the two detection channels cause unpredictable polarization distortion. We present a correction method based on the Jones matrix modeling of the system. In a single input PS-OCT system working at 840 nm with an axial resolution of ~2.3 μm, the method yielded better estimation of retardation and optic axis orientation with significantly reduced noise level, especially in weakly birefringent samples. Numerical simulations and quantitative imaging of a sample of known birefringence were performed to validate the performance. We further demonstrate the advantages of our approach with birefringence imaging of swine retina, rat aortic wall, and rat esophageal mucosa for potential clinical applications.
Collapse
|
13
|
Chue-Sang J, Gonzalez M, Pierre A, Laughrey M, Saytashev I, Novikova T, Ramella-Roman JC. Optical phantoms for biomedical polarimetry: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 30851015 PMCID: PMC6975228 DOI: 10.1117/1.jbo.24.3.030901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/29/2019] [Indexed: 05/04/2023]
Abstract
Calibration, quantification, and standardization of the polarimetric instrumentation, as well as interpretation and understanding of the obtained data, require the development and use of well-calibrated phantoms and standards. We reviewed the status of tissue phantoms for a variety of applications in polarimetry; more than 500 papers are considered. We divided the phantoms into five groups according to their origin (biological/nonbiological) and fundamental polarimetric properties of retardation, depolarization, and diattenuation. We found that, while biological media are generally depolarizing, retarding, and diattenuating, only one of all the phantoms reviewed incorporated all these properties, and few considered at least combined retardation and depolarization. Samples derived from biological tissue, such as tendon and muscle, remain extremely popular to quickly ascertain a polarimetric system, but do not provide quantifiable results aside from relative direction of their principal optical axis. Microspheres suspensions are the most utilized phantoms for depolarization, and combined with theoretical models can offer true quantification of depolarization or degree of polarization. There is a real paucity of birefringent phantoms despite the retardance being one of the most interesting parameters measurable with polarization techniques. Therefore, future work should be directed at generating truly reliable and repeatable phantoms for this metric determination. Diattenuating phantoms are rare and application-specific. Given that diattenuation is considered to be low in most biological tissues, the lack of such phantoms is seen as less problematic. The heterogeneity of the phantoms reviewed points to a critical need for standardization in this field. Ultimately, all research groups involved in polarimetric studies and instruments development would benefit from sharing a limited set of standardized polarimetric phantoms, as is done earlier in the round robin investigations in ellipsometry.
Collapse
Affiliation(s)
- Joseph Chue-Sang
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Mariacarla Gonzalez
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Angie Pierre
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Megan Laughrey
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Ilyas Saytashev
- Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States
| | - Tatiana Novikova
- LPICM Laboratoire de Physique des Interfaces et Couches Minces, CNRS, Ecole Polytechnique, Palaiseau, France
| | - Jessica C. Ramella-Roman
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
- Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States
| |
Collapse
|
14
|
Ang M, Baskaran M, Werkmeister RM, Chua J, Schmidl D, Aranha dos Santos V, Garhöfer G, Mehta JS, Schmetterer L. Anterior segment optical coherence tomography. Prog Retin Eye Res 2018; 66:132-156. [DOI: 10.1016/j.preteyeres.2018.04.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/20/2018] [Accepted: 04/04/2018] [Indexed: 02/03/2023]
|
15
|
Baumann B, Augustin M, Lichtenegger A, Harper D, Muck M, Eugui P, Wartak A, Pircher M, Hitzenberger C. Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-12. [PMID: 30168301 DOI: 10.1117/1.jbo.23.8.086005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2018] [Indexed: 05/20/2023]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) enables noninvasive, high-resolution imaging of tissue polarization properties. In the anterior segments of human eyes, PS-OCT allows the visualization of birefringent and depolarizing structures. We present the use of PS-OCT for imaging the murine anterior eye. Using a spectral domain PS-OCT setup operating in the 840-nm regime, we performed in vivo volumetric imaging in anesthetized C57BL/6 mice. The polarization properties of murine anterior eye structures largely replicated those known from human PS-OCT imagery, suggesting that the mouse eye may also serve as a model system under polarization contrast. However, dissimilarities were found in the depolarizing structure of the iris which, as we confirmed in postmortem histological sections, were caused by anatomical differences between both species. In addition to the imaging of tissues in the anterior chamber and the iridocorneal angle, we demonstrate longitudinal PS-OCT imaging of the murine anterior segment during mydriasis as well as birefringence imaging of corneal pathology in an aged mouse.
Collapse
Affiliation(s)
| | | | | | | | - Martina Muck
- Medizinische Univ. Wien, Austria
- Allgemeines Krankenhaus der Stadt Wien, Austria
| | | | | | | | | |
Collapse
|
16
|
Comparison of intensity, phase retardation, and local birefringence images for filtering blebs using polarization-sensitive optical coherence tomography. Sci Rep 2018; 8:7519. [PMID: 29760407 PMCID: PMC5951885 DOI: 10.1038/s41598-018-25884-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/01/2018] [Indexed: 11/17/2022] Open
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) allows the recording of depth-resolved polarimetric measurements. It has been reported that phase retardation and local birefringence images can noninvasively detect fibrotic area in blebs after glaucoma surgery. Evaluation of scar fibrosis in blebs is important not only for predicting bleb function, but also for planning revision trabeculectomy. Herein, we characterize the intensity, phase retardation, and local birefringence images of blebs using PS-OCT. A total of 85 blebs from 85 patients who had undergone trabeculectomy were examined. Both phase retardation and local birefringence images detected fibrotic changes in blebs after glaucoma surgery. Phase retardation images detected slight fibrotic change during the early stage after surgery, whereas local birefringence images showed localized fibrotic tissue. There are two main patterns of local birefringence image changes in blebs: plate-like birefringence changes and diffuse changes. The area of plate-like birefringence change was significantly larger in poorly functioning blebs and is thus correlated with bleb function. These data suggest that the plate-like fibrotic change evaluation by PS-OCT may be useful not only for noninvasive evaluation of fibrotic scar tissue in blebs, but also for developing strategies for revision trabeculectomy.
Collapse
|
17
|
Miyazawa A, Hong YJ, Makita S, Kasaragod D, Yasuno Y. Generation and optimization of superpixels as image processing kernels for Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:4396-4418. [PMID: 29082073 PMCID: PMC5654788 DOI: 10.1364/boe.8.004396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 05/05/2023]
Abstract
Jones matrix-based polarization sensitive optical coherence tomography (JM-OCT) simultaneously measures optical intensity, birefringence, degree of polarization uniformity, and OCT angiography. The statistics of the optical features in a local region, such as the local mean of the OCT intensity, are frequently used for image processing and the quantitative analysis of JM-OCT. Conventionally, local statistics have been computed with fixed-size rectangular kernels. However, this results in a trade-off between image sharpness and statistical accuracy. We introduce a superpixel method to JM-OCT for generating the flexible kernels of local statistics. A superpixel is a cluster of image pixels that is formed by the pixels' spatial and signal value proximities. An algorithm for superpixel generation specialized for JM-OCT and its optimization methods are presented in this paper. The spatial proximity is in two-dimensional cross-sectional space and the signal values are the four optical features. Hence, the superpixel method is a six-dimensional clustering technique for JM-OCT pixels. The performance of the JM-OCT superpixels and its optimization methods are evaluated in detail using JM-OCT datasets of posterior eyes. The superpixels were found to well preserve tissue structures, such as layer structures, sclera, vessels, and retinal pigment epithelium. And hence, they are more suitable for local statistics kernels than conventional uniform rectangular kernels.
Collapse
|
18
|
Beer F, Wartak A, Haindl R, Gröschl M, Baumann B, Pircher M, Hitzenberger CK. Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT. BIOMEDICAL OPTICS EXPRESS 2017; 8:2906-2923. [PMID: 28663915 PMCID: PMC5480438 DOI: 10.1364/boe.8.002906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 05/13/2023]
Abstract
Conventional imaging of the human cornea with optical coherence tomography (OCT) relies on telecentric scanning optics with sampling beams that are parallel to the optical axis of the eye. Because of the shape of the cornea, the beams have in some areas considerable inclination to the corneal surface which is accompanied by low signal intensities in these areas and thus an inhomogeneous appearance of corneal structures. In addition, alterations in the polarization state of the probing light depend on the angle between the imaging beam and the birefringent axis of the sample. Therefore, changes in the polarization state observed with polarization-sensitive (PS-) OCT originate mainly from the shape of the cornea. In order to minimize the effects of the corneal shape on intensity and polarization-sensitive based data, we developed a conical scanning optics design. This design provides imaging beams that are essentially orthogonal to the corneal surface. Thus, high signal intensity throughout the entire imaged volume is obtained and the influence of the corneal shape on polarization-sensitive data is greatly reduced. We demonstrate the benefit of the concept by comparing PS-OCT imaging results of the human cornea in healthy volunteers using both scanning schemes.
Collapse
Affiliation(s)
- Florian Beer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, A-1090 Vienna,
Austria
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10/134, A-1040 Vienna,
Austria
| | - Andreas Wartak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, A-1090 Vienna,
Austria
| | - Richard Haindl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, A-1090 Vienna,
Austria
| | - Martin Gröschl
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10/134, A-1040 Vienna,
Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, A-1090 Vienna,
Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, A-1090 Vienna,
Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, A-1090 Vienna,
Austria
| |
Collapse
|
19
|
Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050474] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Li E, Makita S, Hong YJ, Kasaragod D, Yasuno Y. Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:1290-1305. [PMID: 28663829 PMCID: PMC5480544 DOI: 10.1364/boe.8.001290] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
A custom made dermatological Jones matrix optical coherence tomography (JM-OCT) is presented. It uses a passive-polarization-delay component based swept-source JM-OCT configuration, but is specially designed for in vivo human skin measurement. The center wavelength of its probe beam is 1310 nm and the A-line rate is 49.6 kHz. The JM-OCT is capable of simultaneously providing birefringence (local retardation) tomography, degree-of-polarization-uniformity tomography, complex-correlation-based optical coherence angiography, and conventional scattering OCT. To evaluate the performance of this JM-OCT, we measured in vivo human skin at several locations. Using the four kinds of OCT contrasts, the morphological characteristics and optical properties of different skin types were visualized.
Collapse
Affiliation(s)
- En Li
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Young-Joo Hong
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Deepa Kasaragod
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| |
Collapse
|
21
|
de Boer JF, Hitzenberger CK, Yasuno Y. Polarization sensitive optical coherence tomography - a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1838-1873. [PMID: 28663869 PMCID: PMC5480584 DOI: 10.1364/boe.8.001838] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is now a well-established modality for high-resolution cross-sectional and three-dimensional imaging of transparent and translucent samples and tissues. Conventional, intensity based OCT, however, does not provide a tissue-specific contrast, causing an ambiguity with image interpretation in several cases. Polarization sensitive (PS) OCT draws advantage from the fact that several materials and tissues can change the light's polarization state, adding an additional contrast channel and providing quantitative information. In this paper, we review basic and advanced methods of PS-OCT and demonstrate its use in selected biomedical applications.
Collapse
Affiliation(s)
- Johannes F. de Boer
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University, Amsterdam, The Netherlands
- Authors were listed in alphabetical order and contributed equally to the manuscript
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Authors were listed in alphabetical order and contributed equally to the manuscript
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
- Authors were listed in alphabetical order and contributed equally to the manuscript
| |
Collapse
|
22
|
Kasaragod D, Makita S, Hong YJ, Yasuno Y. Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:653-669. [PMID: 28270974 PMCID: PMC5330548 DOI: 10.1364/boe.8.000653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 05/05/2023]
Abstract
This paper presents a noise-stochastic corrected maximum a posteriori estimator for birefringence imaging using Jones matrix optical coherence tomography. The estimator described in this paper is based on the relationship between probability distribution functions of the measured birefringence and the effective signal to noise ratio (ESNR) as well as the true birefringence and the true ESNR. The Monte Carlo method is used to numerically describe this relationship and adaptive 2D kernel density estimation provides the likelihood for a posteriori estimation of the true birefringence. Improved estimation is shown for the new estimator with stochastic model of ESNR in comparison to the old estimator, both based on the Jones matrix noise model. A comparison with the mean estimator is also done. Numerical simulation validates the superiority of the new estimator. The superior performance of the new estimator was also shown by in vivo measurement of optic nerve head.
Collapse
|
23
|
Gubarkova EV, Dudenkova VV, Feldchtein FI, Timofeeva LB, Kiseleva EB, Kuznetsov SS, Shakhov BE, Moiseev AA, Gelikonov VM, Gelikonov GV, Vitkin A, Gladkova ND. Multi-modal optical imaging characterization of atherosclerotic plaques. JOURNAL OF BIOPHOTONICS 2016; 9:1009-1020. [PMID: 26604168 DOI: 10.1002/jbio.201500223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 05/08/2023]
Abstract
We combined cross-polarization optical coherence tomography (CP OCT) and non-linear microscopy based on second harmonic generation (SHG) and two-photon-excited fluorescence (2PEF) to assess collagen and elastin fibers and other vascular structures in the development of atherosclerosis, including identification of vulnerable plaques, which remains an important clinical problem and imaging application. CP OCT's ability to visualize tissue birefringence and cross-scattering adds new information about the microstructure and composition of the plaque. However its interpretation can be ambiguous, because backscattering contrast may have a similar appearance to the birefringence related fringes. Our results represent a step towards minimally invasive characterization and monitoring of different stages of atherosclerosis, including vulnerable plaques. CP OCT image of intimal thickening in the human coronary artery. The dark stripe in the cross-polarization channel (arrow) is a polarization fringe related to the phase retardation between two eigen polarization states. It is histologically located in the area of the lipid pool, however this stripe is a polarization artifact, rather than direct visualization of the lipid pool.
Collapse
Affiliation(s)
- Ekaterina V Gubarkova
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia.
| | - Varvara V Dudenkova
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
- N.I. Lobachevsky State University of Nizhny Novgorod, 603950, 23 Gagarin St., Nizhny Novgorod, Russia
| | - Felix I Feldchtein
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Lidia B Timofeeva
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Elena B Kiseleva
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Sergei S Kuznetsov
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Boris E Shakhov
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Alexander A Moiseev
- Institute of Applied Physics RAS, 603950 Ulyanov St., 46, Nizhny Novgorod, Russia
| | - Valentin M Gelikonov
- Institute of Applied Physics RAS, 603950 Ulyanov St., 46, Nizhny Novgorod, Russia
| | - Gregory V Gelikonov
- Institute of Applied Physics RAS, 603950 Ulyanov St., 46, Nizhny Novgorod, Russia
| | - Alex Vitkin
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Ontario, M5G 2M9, Canada
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Natalia D Gladkova
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| |
Collapse
|
24
|
Villiger M, Lorenser D, McLaughlin RA, Quirk BC, Kirk RW, Bouma BE, Sampson DD. Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour. Sci Rep 2016; 6:28771. [PMID: 27364229 PMCID: PMC4929466 DOI: 10.1038/srep28771] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023] Open
Abstract
Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins.
Collapse
Affiliation(s)
- Martin Villiger
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA USA
| | - Dirk Lorenser
- Optical+Biomedical Engineering Laboratory, The University of Western Australia, Perth, WA 6009, Australia
| | - Robert A. McLaughlin
- Optical+Biomedical Engineering Laboratory, The University of Western Australia, Perth, WA 6009, Australia
| | - Bryden C. Quirk
- Optical+Biomedical Engineering Laboratory, The University of Western Australia, Perth, WA 6009, Australia
| | - Rodney W. Kirk
- Optical+Biomedical Engineering Laboratory, The University of Western Australia, Perth, WA 6009, Australia
| | - Brett E. Bouma
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA USA
- Harvard-Massachusetts Institute of Technology, Program in Health Sciences and Technology, Cambridge, MA 02142, USA
| | - David D. Sampson
- Optical+Biomedical Engineering Laboratory, The University of Western Australia, Perth, WA 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
25
|
Sugiyama S, Hong YJ, Kasaragod D, Makita S, Uematsu S, Ikuno Y, Miura M, Yasuno Y. Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:4951-74. [PMID: 26713208 PMCID: PMC4679268 DOI: 10.1364/boe.6.004951] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
A clinical grade prototype of posterior multifunctional Jones matrix optical coherence tomography (JM-OCT) is presented. This JM-OCT visualized depth-localized birefringence in addition to conventional cumulative phase retardation imaging through local Jones matrix analysis. In addition, it simultaneously provides a sensitivity enhanced scattering OCT, a quantitative polarization uniformity contrast, and OCT-based angiography. The probe beam is at 1-μm wavelength band. The measurement speed and the depth-resolution were 100,000 A-lines/s, and 6.6 μm in tissue, respectively. Normal and pathologic eyes are examined and several clinical features are revealed, which includes high birefringence in the choroid and lamina cribrosa, and birefringent layered structure of the sclera. The theoretical details of the depth-localized birefringence imaging and conventional phase retardation imaging are formulated. This formulation indicates that the birefringence imaging correctly measures a depth-localized single-trip phase retardation of a tissue, while the conventional phase retardation can provide correct single-trip phase retardation only for some specific types of samples.
Collapse
Affiliation(s)
- Satoshi Sugiyama
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki,
Japan
- Tomey Corporation, Nagoya, Aichi,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Young-Joo Hong
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Deepa Kasaragod
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Sato Uematsu
- Department of Ophthalmology, Osaka University Hospital, Suita, Osaka,
Japan
| | - Yasushi Ikuno
- Department of Ophthalmology, Osaka University Hospital, Suita, Osaka,
Japan
| | - Masahiro Miura
- Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki,
Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| |
Collapse
|
26
|
Li J, Feroldi F, de Lange J, Daniels JMA, Grünberg K, de Boer JF. Polarization sensitive optical frequency domain imaging system for endobronchial imaging. OPTICS EXPRESS 2015; 23:3390-402. [PMID: 25836196 DOI: 10.1364/oe.23.003390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to detect interference signal in two orthogonal polarization channels. Per depth location four electro-magnetic field components are measured that can be represented in a complex 2x2 field matrix. A Jones matrix of the sample is derived and the sample birefringence is extracted by eigenvalue decomposition. The condition of balanced detection and the polarization mode dispersion are quantified. A complex field averaging method based on the alignment of randomly pointing field phasors is developed to reduce speckle noise. The variation of the polarization states incident on the tissue due to the circular scanning and catheter sheath birefringence is investigated. With this system we demonstrated imaging of ex vivo chicken muscle, in vivo pig lung and ex vivo human lung specimens.
Collapse
|
27
|
Yamanari M, Tsuda S, Kokubun T, Shiga Y, Omodaka K, Yokoyama Y, Himori N, Ryu M, Kunimatsu-Sanuki S, Takahashi H, Maruyama K, Kunikata H, Nakazawa T. Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment. BIOMEDICAL OPTICS EXPRESS 2015; 6:369-89. [PMID: 25780730 PMCID: PMC4354580 DOI: 10.1364/boe.6.000369] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 05/21/2023]
Abstract
We demonstrate a prototype system of polarization-sensitive optical coherence tomography (PS-OCT) designed for clinical studies of the anterior eye segment imaging. The system can measure Jones matrices of the sample with depth-multiplexing of two orthogonal incident polarizations and polarization-sensitive detection. An optical clock is generated using a quadrature modulator and a logical circuit to double the clock frequency. Systematic artifacts in measured Jones matrices are theoretically analyzed and numerically compensated using signals at the surface of the sample. Local retardation images of filtering blebs after trabeculectomy show improved visualization of subconjunctival tissue, sclera, and scar tissue of the bleb wall in the anterior eye segment.
Collapse
Affiliation(s)
- Masahiro Yamanari
- Engineering Department, Tomey Corporation, 2-11-33 Noritakeshinmachi, Nishi-ku, Nagoya, Aichi, 451-0051,
Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
- Department of Ophthalmology, Iwaki Kyoritsu Hospital, 16 Kusehara, Uchigo Mimaya-machi, Iwaki, Fukushima 973-8555,
Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Morin Ryu
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Shiho Kunimatsu-Sanuki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Hidetoshi Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574,
Japan
| |
Collapse
|
28
|
Makita S, Hong YJ, Miura M, Yasuno Y. Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography. OPTICS LETTERS 2014; 39:6783-6. [PMID: 25502996 DOI: 10.1364/ol.39.006783] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A new metric representing polarization uniformity is presented. Noise corrected degree of polarization uniformity (DOPU) is computed from polarization-sensitive optical coherence tomography (OCT), and selectively visualizes tissue with the multiple scattering, such as highly pigmented tissues. The new metric is designed to be minimally sensitive to systematic additive noise. The performance of this new metric is analyzed by numerical simulation and in vivo human retinal imaging, using Jones matrix OCT. The new metric exhibited only a small dependency on the signal-to-noise ratio. Selective in vivo visualization of pigmented tissues in the human retina is demonstrated, with cross sectional and en-face images.
Collapse
|
29
|
Yang CH, Tsai MT, Shen SC, Ng CY, Jung SM. Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:3949-59. [PMID: 25426321 PMCID: PMC4242029 DOI: 10.1364/boe.5.003949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 05/20/2023]
Abstract
Fractional resurfacing creates hundreds of microscopic wounds in the skin without injuring surrounding tissue. This technique allows rapid wound healing owing to small injury regions, and has been proven as an effective method for repairing photodamaged skin. Recently, ablative fractional laser (AFL) treatment has been demonstrated to facilitate topical drug delivery into skin. However, induced fractional photothermolysis depends on several parameters, such as incident angle, exposure energy, and spot size of the fractional laser. In this study, we used fractional CO2 laser to induce microscopic ablation array on the nail for facilitating drug delivery through the nail. To ensure proper energy delivery without damaging tissue structures beneath the nail plate, optical coherence tomography (OCT) was implemented for quantitative evaluation of induced microscopic ablation zone (MAZ). Moreover, to further study the feasibility of drug delivery, normal saline was dripped on the exposure area of fingernail and the speckle variance in OCT signal was used to observe water diffusion through the ablative channels into the nail plate. In conclusion, this study establishes OCT as an effective tool for the investigation of fractional photothermolysis and water/drug delivery through microscopic ablation channels after nail fractional laser treatment.
Collapse
Affiliation(s)
- Chih-Hsun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, 5 Fusing St., Kwei-Shan, Tao- Yuan, 33302,
Taiwan
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
| | - Meng-Tsan Tsai
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
- Graduate Institute of Electro-Optical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
| | - Su-Chin Shen
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5 Fusing St. Kwei-Shan, Tao- Yuan, 33302
Taiwan
| | - Chau Yee Ng
- Department of Dermatology, Chang Gung Memorial Hospital, 5 Fusing St., Kwei-Shan, Tao- Yuan, 33302,
Taiwan
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
| | - Shih-Ming Jung
- College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302
Taiwan
- Department of Pathology, Chang Gung Memorial Hospital, 5 Fusing St., Kwei-Shan, Tao- Yuan, 33302
Taiwan
| |
Collapse
|
30
|
Li J, de Boer JF. Coherent signal composition and global phase determination in signal multiplexed polarization sensitive optical coherence tomography. OPTICS EXPRESS 2014; 22:21382-92. [PMID: 25321516 DOI: 10.1364/oe.22.021382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present an analysis of the structural image information acquired with polarization sensitive optical coherence tomography (PS-OCT). In PS-OCT a total of four channels of data are acquired: two orthogonal polarization state components for each of two incident polarization states by which the sample is interrogated. Up to recently, the structural information of the sample was obtained by incoherent summation of these four channels. The four channels can be represented as a Jones matrix for each data point acquired from a sample. We show that the Signal to Noise ratio of the structural information can be improved by 2.3 dB by taking advantage of the structure of this Jones matrix, imposed by the propagation and scattering properties of the sample. We demonstrate that the Jones Matrices are all in the shape of an SU(2) matrix, which is key to understanding the coherent composition of the structural image in PS-OCT and the 2.3 dB SNR improvement. We also discuss a global phase of the Jones matrix in signal multiplexed PS-OCT.
Collapse
|
31
|
Wang Z, Lee HC, Ahsen OO, Lee B, Choi W, Potsaid B, Liu J, Jayaraman V, Cable A, Kraus MF, Liang K, Hornegger J, Fujimoto JG. Depth-encoded all-fiber swept source polarization sensitive OCT. BIOMEDICAL OPTICS EXPRESS 2014; 5:2931-49. [PMID: 25401008 PMCID: PMC4230879 DOI: 10.1364/boe.5.002931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 05/18/2023]
Abstract
Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Osman Oguz Ahsen
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - ByungKun Lee
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - WooJhon Choi
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Potsaid
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Advanced Imaging Group, Thorlabs, Inc., Newton, NJ, USA
| | - Jonathan Liu
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alex Cable
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Advanced Imaging Group, Thorlabs, Inc., Newton, NJ, USA
| | - Martin F. Kraus
- Pattern Recognition Lab and School of Advanced Optical Technologies, University Erlangen-Nürnberg, Erlangen, Germany
| | - Kaicheng Liang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joachim Hornegger
- Pattern Recognition Lab and School of Advanced Optical Technologies, University Erlangen-Nürnberg, Erlangen, Germany
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
32
|
Braaf B, Vermeer KA, de Groot M, Vienola KV, de Boer JF. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions. BIOMEDICAL OPTICS EXPRESS 2014; 5:2736-58. [PMID: 25136498 PMCID: PMC4133002 DOI: 10.1364/boe.5.002736] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 05/18/2023]
Abstract
In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passive-component depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. High-resolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss.
Collapse
Affiliation(s)
- Boy Braaf
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
- LaserLaB, Department of Physics and Astronomy, VU University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Koenraad A. Vermeer
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
| | - Mattijs de Groot
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
- LaserLaB, Department of Physics and Astronomy, VU University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Kari V. Vienola
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
- LaserLaB, Department of Physics and Astronomy, VU University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Johannes F. de Boer
- Rotterdam Ophthalmic Institute, Schiedamse Vest 160, 3011 BH Rotterdam, The Netherlands
- LaserLaB, Department of Physics and Astronomy, VU University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
33
|
Kasaragod D, Makita S, Fukuda S, Beheregaray S, Oshika T, Yasuno Y. Bayesian maximum likelihood estimator of phase retardation for quantitative polarization-sensitive optical coherence tomography. OPTICS EXPRESS 2014; 22:16472-92. [PMID: 24977897 DOI: 10.1364/oe.22.016472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper presents the theory and numerical implementation of a maximum likelihood estimator for local phase retardation (i.e., birefringence) measured using Jones-matrix-based polarization sensitive optical coherence tomography. Previous studies have shown conventional mean estimations of phase retardation and birefringence are significantly biased in the presence of system noise. Our estimator design is based on a Bayes' rule that relates the distributions of the measured birefringence under a particular true birefringence and the true birefringence under a particular measured birefringence. We used a Monte-Carlo method to calculate the likelihood function that describes the relationship between the distributions and numerically implement the estimator. Our numerical and experimental results show that the proposed estimator was asymptotically unbiased even with low signal-to-noise ratio and/or for the true phase retardations close to the edge of the measurement range. The estimator revealed detailed clinical features when applied to the in vivo anterior human eye.
Collapse
|
34
|
Yamanari M, Nagase S, Fukuda S, Ishii K, Tanaka R, Yasui T, Oshika T, Miura M, Yasuno Y. Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo. BIOMEDICAL OPTICS EXPRESS 2014; 5:1391-402. [PMID: 24877003 PMCID: PMC4026890 DOI: 10.1364/boe.5.001391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 05/03/2023]
Abstract
The relationship between scleral birefringence and biometric parameters of human eyes in vivo is investigated. Scleral birefringence near the limbus of 21 healthy human eyes was measured using polarization-sensitive optical coherence tomography. Spherical equivalent refractive error, axial eye length, and intraocular pressure (IOP) were measured in all subjects. IOP and scleral birefringence of human eyes in vivo was found to have statistically significant correlations (r = -0.63, P = 0.002). The slope of linear regression was -2.4 × 10(-2) deg/μm/mmHg. Neither spherical equivalent refractive error nor axial eye length had significant correlations with scleral birefringence. To evaluate the direct influence of IOP to scleral birefringence, scleral birefringence of 16 ex vivo porcine eyes was measured under controlled IOP of 5-60 mmHg. In these ex vivo porcine eyes, the mean linear regression slope between controlled IOP and scleral birefringence was -9.9 × 10(-4) deg/μm/mmHg. In addition, porcine scleral collagen fibers were observed with second-harmonic-generation (SHG) microscopy. SHG images of porcine sclera, measured on the external surface at the superior side to the cornea, showed highly aligned collagen fibers parallel to the limbus. In conclusion, scleral birefringence of healthy human eyes was correlated with IOP, indicating that the ultrastructure of scleral collagen was correlated with IOP. It remains to show whether scleral collagen ultrastructure of human eyes is affected by IOP as a long-term effect.
Collapse
Affiliation(s)
- Masahiro Yamanari
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
- Tomey Corporation, Nagoya, Aichi, Japan
| | - Satoko Nagase
- Department of Ophthalmology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Kotaro Ishii
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Ryosuke Tanaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takeshi Yasui
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- Institute of Technology and Science, The University of Tokushima, Tokushima, Tokushima, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Masahiro Miura
- Department of Ophthalmology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
Lu Z, Kasaragod D, Matcher SJ. Conical scan polarization-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:752-62. [PMID: 24688811 PMCID: PMC3959841 DOI: 10.1364/boe.5.000752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Accepted: 12/20/2013] [Indexed: 05/18/2023]
Abstract
We report on a new articular cartilage imaging technique with potential for clinical arthroscopic use, by supplementing the variable-incidence-angle polarization-sensitive optical coherence tomography method previously developed by us with a conical beam scan protocol. The technique is validated on bovine tendon by comparing experimental data with simulated data generated using the extended Jones matrix calculus. A unique capability of this new optical technique is that it can locate the "brushing direction" of collagen fibers in articular cartilage, which is structural information that extends beyond established methods such as split-line photography or birefringent fast-axis measurement in that it is uniquely defined over the full azimuthal-angle range of (-π, + π). The mapping of this direction over the cartilage surface may offer insights into the optimal design of tissue-engineering scaffolds for cartilage repair.
Collapse
Affiliation(s)
- Zenghai Lu
- Department of Materials Science and Engineering, the Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ, UK
- Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Deepa Kasaragod
- Department of Materials Science and Engineering, the Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ, UK
- Currently with the Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| | - Stephen J Matcher
- Department of Materials Science and Engineering, the Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ, UK
| |
Collapse
|
36
|
Ju MJ, Shin JG, Hoshi S, Yasuno Y, Lee BH, Tang S, Eom TJ. Three-dimensional volumetric human meibomian gland investigation using polarization-sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:30503. [PMID: 24604532 DOI: 10.1117/1.jbo.19.3.030503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
In this study, polarization-sensitive optical coherence tomography (PS-OCT) capable of providing polarization contrasts such as phase retardation and degree of polarization uniformity (DOPU) was used for visualizing human meibomian glands (MGs) and investigating morphological characteristics of them. Especially, with the help of the DOPU contrast, MGs were exclusively extracted from the volumetric OCT image. In vivo PS-OCT measurements were performed on the upper eyelids of different age groups. From these measurements, different age-dependent aspects of the MG structure were also observed. Based on these observations, it can be inferred that the PS-OCT system has the potential for clinical diagnosis and investigation of MG-related dry eye diseases like MG dysfunction (MGD) and acinar atrophy.
Collapse
Affiliation(s)
- Myeong Jin Ju
- University of British Columbia, Department of Electrical and Computer Engineering, 2332 Main Mall, Vancouver, BC, V6T 1Z4, CanadabUniversity of Tsukuba, Institute of Applied Physics, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Jun Geun Shin
- Gwangju Institute of Science and Technology, School of Information and Communication, 123 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Sujin Hoshi
- University of Tsukuba, Institute of Applied Physics, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, JapandUniversity of Tsukuba, Faculty of Medicine, Department of Ophthalmology, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshiaki Yasuno
- University of Tsukuba, Institute of Applied Physics, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Byeong Ha Lee
- Gwangju Institute of Science and Technology, School of Information and Communication, 123 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Shuo Tang
- University of British Columbia, Department of Electrical and Computer Engineering, 2332 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tae Joong Eom
- Gwangju Institute of Science and Technology, Advanced Photonic Research Institute, 123 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| |
Collapse
|
37
|
Sharma R, Sharma A, Arora T, Sharma S, Sobti A, Jha B, Chaturvedi N, Dada T. Application of anterior segment optical coherence tomography in glaucoma. Surv Ophthalmol 2013; 59:311-27. [PMID: 24138894 DOI: 10.1016/j.survophthal.2013.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 02/02/2023]
Abstract
Optical coherence tomography (OCT) is a cross-sectional, three-dimensional, high-resolution imaging modality that uses low coherence interferometry to achieve axial resolution in the range of 3-20 μm. Two OCT platforms have been developed: time domain (TD-OCT) and spectral (or Fourier) domain (SD/FD-OCT). Visante anterior segment OCT (Carl Zeiss Meditec) is a TD-OCT widely used for anterior segment imaging. The SD-OCT systems with both posterior and anterior segment imaging capabilities include the RTVue, iVue (Optovue), the Cirrus (Carl Zeiss Meditec), and the Spectralis (Heidelberg Engineering, Inc.). Each of the SD-OCTs has a wavelength in the range of 820-879 nm. Anterior segment OCT is a non-contact method providing high resolution tomographic cross-sectional imaging of anterior segment structures. Anterior segment OCT provides qualitative and quantitative assessment of the anterior segment structures important to the pathogenesis and the anatomical variations of glaucoma, and the approach to and success of treatment. We summarize the clinical applications of anterior segment OCT in glaucoma.
Collapse
Affiliation(s)
- Reetika Sharma
- Glaucoma Facility, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Sharma
- Glaucoma Facility, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Arora
- Glaucoma Facility, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sourabh Sharma
- Glaucoma Facility, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Sobti
- Glaucoma Facility, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Bhaskar Jha
- Glaucoma Facility, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Chaturvedi
- Glaucoma Facility, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Glaucoma Facility, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
38
|
De Lorenci VA, Klippert R, Li SY, Pereira JP. Multirefringence phenomena in nonlinear electrodynamics. Int J Clin Exp Med 2013. [DOI: 10.1103/physrevd.88.065015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Ju MJ, Hong YJ, Makita S, Lim Y, Kurokawa K, Duan L, Miura M, Tang S, Yasuno Y. Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging. OPTICS EXPRESS 2013; 21:19412-36. [PMID: 23938857 DOI: 10.1364/oe.21.019412] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An advanced version of Jones matrix optical coherence tomography (JMT) is demonstrated for Doppler and polarization sensitive imaging of the posterior eye. JMT is capable of providing localized flow tomography by Doppler detection and investigating the birefringence property of tissue through a three-dimensional (3-D) Jones matrix measurement. Owing to an incident polarization multiplexing scheme based on passive optical components, this system is stable, safe in a clinical environment, and cost effective. Since the properties of this version of JMT provide intrinsic compensation for system imperfection, the system is easy to calibrate. Compared with the previous version of JMT, this advanced JMT achieves a sufficiently long depth measurement range for clinical cases of posterior eye disease. Furthermore, a fine spectral shift compensation method based on the cross-correlation of calibration signals was devised for stabilizing the phase of OCT, which enables a high sensitivity Doppler OCT measurement. In addition, a new theory of JMT which integrates the Jones matrix measurement, Doppler measurement, and scattering measurement is presented. This theory enables a sensitivity-enhanced scattering OCT and high-sensitivity Doppler OCT. These new features enable the application of this system to clinical cases. A healthy subject and a geographic atrophy patient were measured in vivo, and simultaneous imaging of choroidal vasculature and birefringence structures are demonstrated.
Collapse
Affiliation(s)
- Myeong Jin Ju
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nagase S, Yamanari M, Tanaka R, Yasui T, Miura M, Iwasaki T, Goto H, Yasuno Y. Anisotropic alteration of scleral birefringence to uniaxial mechanical strain. PLoS One 2013; 8:e58716. [PMID: 23536816 PMCID: PMC3594145 DOI: 10.1371/journal.pone.0058716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the relationship between scleral mechanical properties, its birefringence, and the anisotropy of birefringence alteration in respect of the direction of the strain by using PS-OCT. METHODS The scleral birefringence of thirty-nine porcine eyes was measured with a prototype PS-OCT. A rectangle strip of sclera with a width of 4 mm was dissected at the temporal region 5 mm apart from the optic nerve head. The strain and force were measured with a uniaxial tension tester as the sample was stretched with a speed of 1.8 mm/min after preconditioning. The birefringence of the sample was measured by PS-OCT at the center of the sample before applying, denoted as inherent birefringence, and after applying stretching of 6.5% strain. The birefringence alteration was obtained by these two measurements and correlations between birefringence and elastic parameters, tangent modulus, and structural stiffness were examined. Twenty and 19 porcine eyes were stretched in meridional or equatorial directions, respectively. RESULTS A moderate positive correlation was found between the inherent birefringence and the structural stiffness. A moderate positive correlation was also found between the inherent birefringence and the tangent modulus. The birefringence increased by strains. Marginal significance was found in the birefringence alteration between meridional and equatorial strains, where the mean birefringence elevation by meridional strain was higher than that by equatorial strain. CONCLUSIONS The birefringence was found to be altered by applying strain and also be related with inherent birefringence. This implies the birefringence of the sclera of the in vivo eye also could be affected by its mechanical property.
Collapse
Affiliation(s)
- Satoko Nagase
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Ami, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Masahiro Yamanari
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tomey Corporation, Nagoya, Aichi, Japan
| | - Ryosuke Tanaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takeshi Yasui
- Institute of Technology and Science, University of Tokushima, Tokushima, Tokushima, Japan
| | - Masahiro Miura
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Ami, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Takuya Iwasaki
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Ami, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Yoshiaki Yasuno
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
41
|
Abstract
The review provides a concise explanation of principles of operation of different optical coherence tomography methods. A comparative analysis of their advantages and disadvantages is presented in relation to specific applications. The review will assist the reader in making an educated choice on the most suitable optical coherence tomography method to be used in a particular application.
Collapse
Affiliation(s)
- A Gh Podoleanu
- School of Physical Sciences, University of Kent, Canterbury, UK.
| |
Collapse
|
42
|
Lim Y, Hong YJ, Duan L, Yamanari M, Yasuno Y. Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging. OPTICS LETTERS 2012; 37:1958-60. [PMID: 22660086 DOI: 10.1364/ol.37.001958] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a fiber based multifunctional Jones matrix swept source optical coherence tomography (SS-OCT) system for Doppler and polarization imaging. Jones matrix measurement without using active components such as electro-optic modulators is realized by incident polarization multiplexing based on independent delay of two orthogonal polarization states and polarization diversity detection. In addition to polarization sensitivity, this system measures Doppler flow without extra hardware for phase stabilized SS-OCT detection. An eighth-wave plate was measured to demonstrate the polarization detection accuracy. The optic nerve head of a retina was measured in vivo. Detailed vasculature and birefringent structures were investigated simultaneously.
Collapse
Affiliation(s)
- Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
43
|
Duan L, Yamanari M, Yasuno Y. Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography. OPTICS EXPRESS 2012; 20:3353-66. [PMID: 22330573 DOI: 10.1364/oe.20.003353] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An automated chorio-scleral interface (CSI) detection algorithm based on polarization sensitive optical coherence tomography (PS-OCT) is presented. This algorithm employs a two-step scheme based on the phase retardation variation detected by PS-OCT. In the first step, a rough CSI segmentation is implemented to distinguish the choroid and sclera by using depth-oriented second derivative of the phase retardation. Second, the CSI is further finely defined as the intersection of lines fitted to the phase retardation in the choroid and sclera. This algorithm challenges the current back-scattering intensity based CSI segmentation approaches that are not fully based on anatomical and morphological evidence, and provides a rational segmentation method for the morphological investigation of the choroid. Applications of this algorithm are demonstrated on in vivo posterior images acquired by a PS-OCT system with 1-μm probe.
Collapse
Affiliation(s)
- Lian Duan
- Computational Optics Group, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|