1
|
Karunakaran V, Dadgar S, Paidi SK, Mordi AF, Lowe WA, Mim UM, Ivers JD, Rodriguez Troncoso JI, McPeake JA, Fernandes A, Tripathi SD, Barman I, Rajaram N. Investigating In Vivo Tumor Biomolecular Changes Following Radiation Therapy Using Raman Spectroscopy. ACS OMEGA 2024; 9:43025-43033. [PMID: 39464461 PMCID: PMC11500151 DOI: 10.1021/acsomega.4c06096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Treatment resistance is a major bottleneck in the success of cancer therapy. Early identification of the treatment response or lack thereof in patients can enable an earlier switch to alternative treatment strategies that can enhance response rates. Here, Raman spectroscopy was applied to monitor early tumor biomolecular changes in sensitive (UM-SCC-22B) and resistant (UM-SCC-47) head and neck tumor xenografts for the first time in in vivo murine tumor models in response to radiation therapy. We used a validated multivariate curve resolution-alternating least-squares (MCR-ALS) model to resolve complex multicomponent Raman spectra into individual pure spectra and their respective contributions. We observed a significant radiation-induced increase in the contributions of lipid-like species (p = 0.0291) in the radiation-sensitive UM-SCC-22B tumors at 48 h following radiation compared to the nonradiated baseline (prior to commencing treatment). We also observed an increase in the contribution of collagen-like species in the radiation-resistant UM-SCC-47 tumors at 24 h following radiation compared to the nonradiated baseline (p = 0.0125). In addition to the in vivo analysis, we performed ex vivo confocal Raman microscopic imaging of frozen sections derived from the same tumors. A comparison of all control and treated tumors revealed similar trends in the contributions of lipid-like and collagen-like species in both in vivo and ex vivo measurements; however, when evaluated as a function of time, longitudinal trends in the scores of collagen-like and lipid-like components were not consistent between the two data sets, likely due to sample numbers and differences in sampling depth at which information is obtained. Nevertheless, this study demonstrates the potential of fiber-based Raman spectroscopy for identifying early tumor microenvironmental changes in response to clinical doses of radiation therapy.
Collapse
Affiliation(s)
- Varsha Karunakaran
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Sina Dadgar
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Santosh K. Paidi
- Department
of Mechanical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - April F. Mordi
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Whitney A. Lowe
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Umme Marium Mim
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jesse D. Ivers
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Joel I. Rodriguez Troncoso
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jared A. McPeake
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alric Fernandes
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Sanidhya D. Tripathi
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ishan Barman
- Department
of Mechanical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Narasimhan Rajaram
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Saha PS, Yan J, Zhu C. Diffuse reflectance spectroscopy for optical characterizations of orthotopic head and neck cancer models in vivo. BIOMEDICAL OPTICS EXPRESS 2024; 15:4176-4189. [PMID: 39022549 PMCID: PMC11249676 DOI: 10.1364/boe.528608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
We demonstrated an easy-to-build, portable diffuse reflectance spectroscopy device along with a Monte Carlo inverse model to quantify tissue absorption and scattering-based parameters of orthotopic head and neck cancer models in vivo. Both tissue-mimicking phantom studies and animal studies were conducted to verify the optical spectroscopy system and Monte Carlo inverse model for the accurate extraction of tissue optical properties. For the first time, we reported the tissue absorption and scattering coefficients of mouse normal tongue tissues and tongue tumor tissues. Our in vivo animal studies showed reduced total hemoglobin concentration, lower tissue vascular oxygen saturation, and increased tissue scattering in the orthotopic tongue tumors compared to the normal tongue tissues. Our data also showed that mice tongue tumors with different sizes may have significantly different tissue absorption and scattering-based parameters. Small tongue tumors (volume was ∼60 mm3) had increased absorption coefficients, decreased reduced-scattering coefficients, and increased total hemoglobin concentrations compared to tiny tongue tumors (volume was ∼18 mm3). These results demonstrated the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology using orthotopic tongue cancer models for future head and neck cancer research.
Collapse
Affiliation(s)
- Pranto Soumik Saha
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| | - Jing Yan
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Troncoso JR, Diaz PM, Lee DE, Quick CM, Rajaram N. Longitudinal monitoring of tumor response to immune checkpoint inhibitors using noninvasive diffuse reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:3982-3991. [PMID: 34457393 PMCID: PMC8367250 DOI: 10.1364/boe.426879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Immune checkpoint inhibitors have revolutionized cancer treatment. However, there are currently no methods for noninvasively and nondestructively evaluating tumor response to immune checkpoint inhibitors. We used diffuse reflectance spectroscopy to monitor in vivo tumor microenvironmental changes in response to immune checkpoint inhibitors in a CT26 murine colorectal cancer model. Mice growing CT26 tumor xenografts were treated with either anti-PD-L1, anti-CTLA-4, a combination of both inhibitors, or isotype control on 3 separate days. Monotherapy with either anti-PD-L1 or anti-CTLA-4 led to a large increase in tumor vascular oxygenation within the first 6 days. Reoxygenation in anti-CTLA-4-treated tumors was due to a combination of increased oxygenated hemoglobin and decreased deoxygenated hemoglobin, pointing to a possible change in tumor oxygen consumption following treatment. Within the anti-PD-L1-treated tumors, reoxygenation was primarily due to an increase in oxygenated hemoglobin with the minimal change in deoxygenated hemoglobin, indicative of a likely increase in tumor perfusion. The tumors in the combined treatment group did not show any significant changes in tumor oxygenation following therapy. These studies demonstrate the sensitivity of diffuse reflectance spectroscopy to tumor microenvironmental changes following immunotherapy and the potential of such non-invasive techniques to determine early tumor response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Paola Monterroso Diaz
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72703, USA
| | - David E. Lee
- Department of Exercise Science, University of Arkansas, Fayetteville, AR 72703, USA
- Currently with the Duke Molecular Physiological Institute, Duke University, Durham, NC 27701, USA
| | - Charles M. Quick
- Division of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72703, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Blood Flow Measurements Enable Optimization of Light Delivery for Personalized Photodynamic Therapy. Cancers (Basel) 2020; 12:cancers12061584. [PMID: 32549354 PMCID: PMC7353010 DOI: 10.3390/cancers12061584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Fluence rate is an effector of photodynamic therapy (PDT) outcome. Lower light fluence rates can conserve tumor perfusion during some illumination protocols for PDT, but then treatment times are proportionally longer to deliver equivalent fluence. Likewise, higher fluence rates can shorten treatment time but may compromise treatment efficacy by inducing blood flow stasis during illumination. We developed blood-flow-informed PDT (BFI-PDT) to balance these effects. BFI-PDT uses real-time noninvasive monitoring of tumor blood flow to inform selection of irradiance, i.e., incident fluence rate, on the treated surface. BFI-PDT thus aims to conserve tumor perfusion during PDT while minimizing treatment time. Pre-clinical studies in murine tumors of radiation-induced fibrosarcoma (RIF) and a mesothelioma cell line (AB12) show that BFI-PDT preserves tumor blood flow during illumination better than standard PDT with continuous light delivery at high irradiance. Compared to standard high irradiance PDT, BFI-PDT maintains better tumor oxygenation during illumination and increases direct tumor cell kill in a manner consistent with known oxygen dependencies in PDT-mediated cytotoxicity. BFI-PDT promotes vascular shutdown after PDT, thereby depriving remaining tumor cells of oxygen and nutrients. Collectively, these benefits of BFI-PDT produce a significantly better therapeutic outcome than standard high irradiance PDT. Moreover, BFI-PDT requires ~40% less time on average to achieve outcomes that are modestly better than those with standard low irradiance treatment. This contribution introduces BFI-PDT as a platform for personalized light delivery in PDT, documents the design of a clinically-relevant instrument, and establishes the benefits of BFI-PDT with respect to treatment outcome and duration.
Collapse
|
6
|
Orlova AG, Maslennikova AV, Golubiatnikov GY, Suryakova AS, Kirillin MY, Kurakina DA, Kalganova TI, Volovetsky AB, Turchin IV. Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation. Biomed Phys Eng Express 2019; 5. [PMID: 34247150 DOI: 10.1088/2057-1976/ab0b19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/27/2019] [Indexed: 01/09/2023]
Abstract
Modern radiation therapy of malignant tumors requires careful selection of conditions that can improve the effectiveness of the treatment. The study of the dynamics and mechanisms of tumor reoxygenation after radiation therapy makes it possible to select the regimens for optimizing the ongoing treatment. Diffuse optical spectroscopy (DOS) is among the methods used for non-invasive assessment of tissue oxygenation. In this work DOS was used forin vivoregistration of changes in oxygenation level of an experimental rat tumor after single-dose irradiation at a dose of 10 Gy and investigation of their possible mechanisms. It was demonstrated that in 24 h after treatment, tumor oxygenation increases, which is mainly due to an increase in the oxygen supply to the tissues. DOS is demonstrated to be efficient for study of changes in blood flow parameters when monitoring tumor response to therapy.
Collapse
Affiliation(s)
- A G Orlova
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A V Maslennikova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - G Yu Golubiatnikov
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A S Suryakova
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - M Yu Kirillin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - D A Kurakina
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - T I Kalganova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Clinical Laboratory, N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - A B Volovetsky
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - I V Turchin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Portable Near-Infrared Technologies and Devices for Noninvasive Assessment of Tissue Hemodynamics. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:3750495. [PMID: 30891170 PMCID: PMC6390246 DOI: 10.1155/2019/3750495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. In this article, we briefly describe the basic principle and algorithms for static NIRS and dynamic NIRS (i.e., DCS). Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed.
Collapse
|
8
|
Yazdi HS, O’Sullivan TD, Leproux A, Hill B, Durkin A, Telep S, Lam J, Yazdi SS, Police AM, Carroll RM, Combs FJ, Strömberg T, Yodh AG, Tromberg BJ. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:45003. [PMID: 28384703 PMCID: PMC5381696 DOI: 10.1117/1.jbo.22.4.045003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 05/18/2023]
Abstract
Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin ( HbO 2 , HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 ?? mm ? 1 (37%) in ? s ? and 0.003 ?? mm ? 1 (33%) in ? a lead to ? 53 % and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and
Collapse
MESH Headings
- Adult
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/drug therapy
- Diffusion
- Female
- Hemoglobins/analysis
- Humans
- Lipids/blood
- Models, Theoretical
- Neoadjuvant Therapy
- Oxyhemoglobins/analysis
- Phantoms, Imaging
- Spectrophotometry/methods
- Spectroscopy, Near-Infrared/methods
- Tomography, Optical/methods
Collapse
Affiliation(s)
- Hossein S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Anais Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Brian Hill
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Amanda Durkin
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Seraphim Telep
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Jesse Lam
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Siavash S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Alice M. Police
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Robert M. Carroll
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Freddie J. Combs
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Tomas Strömberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
9
|
Shang Y, Li T, Yu G. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging. Physiol Meas 2017; 38:R1-R26. [PMID: 28199219 PMCID: PMC5726862 DOI: 10.1088/1361-6579/aa60b7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. APPROACH Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). MAIN RESULTS This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. SIGNIFICANCE Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring.
Collapse
Affiliation(s)
- Yu Shang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, No.3 Xueyuan Road, Taiyuan, Shanxi 030051, China
| | - Ting Li
- State Key Lab Elect Thin Film & Integrated Device, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, China
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, 514C RMB, 143 Graham Avenue, Lexington, KY 40506-0108, USA
| |
Collapse
|
10
|
Dong L, Kudrimoti M, Irwin D, Chen L, Kumar S, Shang Y, Huang C, Johnson EL, Stevens SD, Shelton BJ, Yu G. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:85004. [PMID: 27564315 PMCID: PMC4999482 DOI: 10.1117/1.jbo.21.8.085004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/08/2016] [Indexed: 05/03/2023]
Abstract
This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs′) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96.
Collapse
Affiliation(s)
- Lixin Dong
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Mahesh Kudrimoti
- University of Kentucky College of Medicine, Department of Radiation Medicine, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Daniel Irwin
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Li Chen
- University of Kentucky, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, Lexington, 800 Rose Street, Kentucky 40536, United States
- University of Kentucky College of Public Health, Department of Biostatistics, Lexington, 111 Washington Avenue, Kentucky 40536, United States
| | - Sameera Kumar
- University of Kentucky College of Medicine, Department of Radiation Medicine, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Yu Shang
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Chong Huang
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Ellis L. Johnson
- University of Kentucky College of Medicine, Department of Radiation Medicine, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Scott D. Stevens
- University of Kentucky College of Medicine, Department of Radiology, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Brent J. Shelton
- University of Kentucky, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, Lexington, 800 Rose Street, Kentucky 40536, United States
- University of Kentucky College of Public Health, Department of Biostatistics, Lexington, 111 Washington Avenue, Kentucky 40536, United States
| | - Guoqiang Yu
- University of Kentucky College of Engineering, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
- Address all correspondence to: Guoqiang Yu, E-mail:
| |
Collapse
|
11
|
Chung H, Lu G, Tian Z, Wang D, Chen ZG, Fei B. Superpixel-based spectral classification for the detection of head and neck cancer with hyperspectral imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9788:978813. [PMID: 27656035 PMCID: PMC5028206 DOI: 10.1117/12.2216559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications. HSI acquires two dimensional images at various wavelengths. The combination of both spectral and spatial information provides quantitative information for cancer detection and diagnosis. This paper proposes using superpixels, principal component analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from healthy tissue. The classification method uses 2 principal components decomposed from hyperspectral images and obtains an average sensitivity of 93% and an average specificity of 85% for 11 mice. The hyperspectral imaging technology and classification method can have various applications in cancer research and management.
Collapse
Affiliation(s)
- Hyunkoo Chung
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Guolan Lu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Zhiqiang Tian
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Baowei Fei
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA; Department of Mathematics Computer Science, Emory University, Atlanta, GA; Winship Cancer Institute of Emory University, Atlanta, GA
| |
Collapse
|
12
|
Seong M, Phillips Z, Mai PM, Yeo C, Song C, Lee K, Kim JG. Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:27001. [PMID: 26886805 DOI: 10.1117/1.jbo.21.2.027001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/21/2016] [Indexed: 05/03/2023]
Abstract
A combined diffuse speckle contrast analysis (DSCA)-near-infrared spectroscopy (NIRS) system is proposed to simultaneously measure qualitative blood flow and blood oxygenation changes in human tissue. The system employs an optical switch to alternate two laser sources at two different wavelengths and a CCD camera to capture the speckle image. Therefore, an optical density can be measured from two wavelengths for NIRS measurements and a speckle contrast can be calculated for DSCA measurements. In order to validate the system, a flow phantom test and an arm occlusion protocol for arterial and venous occlusion were performed. Shorter exposure times (<1 ms ) show a higher drop (between 50% and 66%) and recovery of 1/K²S values after occlusion (approximately 150%), but longer exposure time (3 ms) shows more consistent hemodynamic changes. For four subjects, the 1/K²S values dropped to an average of 82.1±4.0% during the occlusion period and the average recovery of 1/K²S values after occlusion was 109.1±0.8% . There was also an approximately equivalent amplitude change in oxyhemoglobin (OHb) and deoxyhemoglobin (RHb) during arterial occlusion (max RHb=0.0085±0.0024 mM/DPF, min OHb=-0.0057±0.0044 mM/DPF). The sensitivity of the system makes it a suitable modality to observe qualitative hemodynamic trends during induced physiological changes.
Collapse
Affiliation(s)
- Myeongsu Seong
- Gwangju Institute of Science and Technology, Department of Medical System Engineering, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Zephaniah Phillips
- Gwangju Institute of Science and Technology, School of Information and Communications, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Phuong Minh Mai
- Gwangju Institute of Science and Technology, School of Information and Communications, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chaebeom Yeo
- Daegu Gyeongbuk Institute of Science and Technology, Department of Robotic Engineering, 333 Techno Jungang-Daero, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Cheol Song
- Daegu Gyeongbuk Institute of Science and Technology, Department of Robotic Engineering, 333 Techno Jungang-Daero, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Kijoon Lee
- Daegu Gyeongbuk Institute of Science and Technology, School of Basic Sciences, 333 Techno Jungang-Daero, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jae Gwan Kim
- Gwangju Institute of Science and Technology, Department of Medical System Engineering, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of KoreabGwangju Institute of Science and Technology, School of Information and Communications, 123 Cheomdangwagi-
| |
Collapse
|
13
|
Huang C, Radabaugh JP, Aouad RK, Lin Y, Gal TJ, Patel AB, Valentino J, Shang Y, Yu G. Noncontact diffuse optical assessment of blood flow changes in head and neck free tissue transfer flaps. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:075008. [PMID: 26187444 PMCID: PMC4696658 DOI: 10.1117/1.jbo.20.7.075008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/23/2015] [Indexed: 05/18/2023]
Abstract
Knowledge of tissue blood flow (BF) changes after free tissue transfer may enable surgeons to predict the failure of flap thrombosis at an early stage. This study used our recently developed noncontact diffuse correlation spectroscopy to monitor dynamic BF changes in free flaps without getting in contact with the targeted tissue. Eight free flaps were elevated in patients with head and neck cancer; one of the flaps failed. Multiple BF measurements probing the transferred tissue were performed during and post the surgical operation. Postoperative BF values were normalized to the intraoperative baselines (assigning "1") for the calculation of relative BF change (rBF). The rBF changes over the seven successful flaps were 1.89 ± 0.15, 2.26 ± 0.13, and 2.43 ± 0.13 (mean ± standard error), respectively, on postoperative days 2, 4, and 7. These postoperative values were significantly higher than the intraoperative baseline values (p<0.001), indicating a gradual recovery of flap vascularity after the tissue transfer. By contrast, rBF changes observed from the unsuccessful flaps were 1.14 and 1.34, respectively, on postoperative days 2 and 4, indicating less flow recovery. Measurement of BF recovery after flap anastomosis holds the potential to act early to salvage ischemic flaps.
Collapse
Affiliation(s)
- Chong Huang
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Jeffrey P. Radabaugh
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Rony K. Aouad
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Yu Lin
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Thomas J. Gal
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Amit B. Patel
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Joseph Valentino
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Yu Shang
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
- Address all correspondence to: Guoqiang Yu,
| |
Collapse
|
14
|
Hou Y, Shang Y, Cheng R, Zhao Y, Qin Y, Kryscio R, Rayapati A, Hayes D, Yu G. Obstructive sleep apnea-hypopnea results in significant variations in cerebral hemodynamics detected by diffuse optical spectroscopies. Physiol Meas 2014; 35:2135-48. [PMID: 25243760 DOI: 10.1088/0967-3334/35/10/2135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The objective of this study was to adapt a novel near-infrared diffuse correlation spectroscopy (DCS) flow-oximeter for simultaneous and continuous monitoring of relative changes in cerebral blood flow (rCBF) and cerebral oxygenation (i.e. oxygenated/deoxygenated/total hemoglobin concentration: Δ[HbO2]/Δ[Hb]/ΔTHC) during overnight nocturnal polysomnography (NPSG) diagnostic test for obstructive sleep apnea-hypopnea (OSAH). A fiber-optic probe was fixed on subject's frontal head and connected to the DCS flow-oximeter through a custom-designed fiber-optic connector, which allowed us to easily connect/detach the optical probe from the device when the subject went to bathroom. To minimize the disturbance to the subject, the DCS flow-oximeter was remotely operated by a desktop located in the control room. The results showed that apneic events caused significant variations in rCBF and ΔTHC. Moreover, the degrees of variations in all measured cerebral variables were significantly correlated with the severity of OSAH as determined by the apnea-hypopnea index (AHI), demonstrating the OSAH influence on both CBF and cerebral oxygenation. Large variations in arterial blood oxygen saturation (SaO2) were also found during OSAH. Since frequent variations/disturbances in cerebral hemodynamics may adversely impact brain function, future study will investigate the correlations between these cerebral variations and functional impairments for better understanding of OSAH pathophysiology.
Collapse
Affiliation(s)
- Yajun Hou
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA. College of Science, Shenyang Ligong University, Shenyang, Liaoning 110159, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shang Y, Lin Y, Henry BA, Cheng R, Huang C, Chen L, Shelton BJ, Swartz KR, Salles SS, Yu G. Noninvasive evaluation of electrical stimulation impacts on muscle hemodynamics via integrating diffuse optical spectroscopies with muscle stimulator. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:105002. [PMID: 24096298 PMCID: PMC3790391 DOI: 10.1117/1.jbo.18.10.105002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/04/2013] [Indexed: 05/03/2023]
Abstract
Technologies currently available for the monitoring of electrical stimulation (ES) in promoting blood circulation and tissue oxygenation are limited. This study integrated a muscle stimulator with a diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively quantify muscle blood flow and oxygenation responses during ES. Ten healthy subjects were tested using the integrated system. The muscle stimulator delivered biphasic electrical current to right leg quadriceps muscle, and a custom-made DCS flow-oximeter was used for simultaneous measurements of muscle blood flow and oxygenation in both legs. To minimize motion artifact of muscle fibers during ES, a novel gating algorithm was developed for data acquisition at the time when the muscle was relaxed. ES at 2, 10, and 50 Hz were applied for 20 min on each subject in three days sequentially. Results demonstrate that the 20-min ES at all frequencies promoted muscle blood flow significantly. However, only the ES at 10 Hz resulted in significant and persistent increases in oxy-hemoglobin concentration during and post ES. This pilot study supports the application of the integrated system to quantify tissue hemodynamic improvements for the optimization of ES treatment in patients suffering from diseases caused by poor blood circulation and low tissue oxygenation (e.g., pressure ulcer).
Collapse
Affiliation(s)
- Yu Shang
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Yu Lin
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Brad A. Henry
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Ran Cheng
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Chong Huang
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Li Chen
- University of Kentucky, Department of Biostatistics, Lexington, Kentucky 40536
| | - Brent J. Shelton
- University of Kentucky, Department of Biostatistics, Lexington, Kentucky 40536
| | - Karin R. Swartz
- University of Kentucky, Department of Neurosurgery, Lexington, Kentucky 40536
| | - Sara S. Salles
- University of Kentucky, Department of Physical Medicine and Rehabilitation, Lexington, Kentucky 40536
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
- Address all correspondence to: Guoqiang Yu, University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506. Tel: 859-257-9110; Fax: 859-257-1856; E-mail:
| |
Collapse
|
16
|
Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter. Sci Rep 2013; 3:1358. [PMID: 23446991 PMCID: PMC3584314 DOI: 10.1038/srep01358] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/14/2013] [Indexed: 01/10/2023] Open
Abstract
We report a novel noncontact diffuse correlation spectroscopy flow-oximeter for simultaneous quantification of relative changes in tissue blood flow (rBF) and oxygenation (Δ[oxygenation]). The noncontact probe was compared against a contact probe in tissue-like phantoms and forearm muscles (n = 10), and the dynamic trends in both rBF and Δ[oxygenation] were found to be highly correlated. However, the magnitudes of Δ[oxygenation] measured by the two probes were significantly different. Monte Carlo simulations and phantom experiments revealed that the arm curvature resulted in a significant underestimation (~−20%) for the noncontact measurements in Δ[oxygenation], but not in rBF. Other factors that may cause the residual discrepancies between the contact and noncontact measurements were discussed, and further comparisons with other established technologies are needed to identify/quantify these factors. Our research paves the way for noncontact and simultaneous monitoring of blood flow and oxygenation in soft and vulnerable tissues without distorting tissue hemodynamics.
Collapse
|
17
|
He L, Lin Y, Shang Y, Shelton BJ, Yu G. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:037001. [PMID: 23455963 PMCID: PMC4023649 DOI: 10.1117/1.jbo.18.3.037001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements.
Collapse
Affiliation(s)
- Lian He
- University of Kentucky, Center for Biomedical Engineering, Lexington, Kentucky 40506
| | - Yu Lin
- University of Kentucky, Center for Biomedical Engineering, Lexington, Kentucky 40506
| | - Yu Shang
- University of Kentucky, Center for Biomedical Engineering, Lexington, Kentucky 40506
| | - Brent J. Shelton
- University of Kentucky, Markey Cancer Center, Lexington, Kentucky 40536
| | - Guoqiang Yu
- University of Kentucky, Center for Biomedical Engineering, Lexington, Kentucky 40506
- Address all correspondence to: Guoqiang Yu, University of Kentucky, Center for Biomedical Engineering, Lexington, Kentucky 40506. Tel: 859-257-9110; Fax: 859-257-1856; E-mail:
| |
Collapse
|
18
|
Shang Y, Gurley K, Yu G. Diffuse Correlation Spectroscopy (DCS) for Assessment of Tissue Blood Flow in Skeletal Muscle: Recent Progress. ACTA ACUST UNITED AC 2013; 3:128. [PMID: 24724043 PMCID: PMC3979478 DOI: 10.4172/2161-0940.1000128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Near-infrared diffuse correlation spectroscopy (DCS) is an emerging technology for monitoring blood flow in various tissues. This article reviews the recent progress of DCS for the assessment of skeletal muscle blood flow, including the developments in technology allowing use during dynamic exercise and muscular electrical stimulation, the utilization for diagnosis of muscle vascular diseases, and the applications for evaluating treatment effects. The limitations of current DCS studies and future perspective are finally discussed.
Collapse
Affiliation(s)
- Yu Shang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Katelyn Gurley
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA ; Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
19
|
Dong L, He L, Lin Y, Shang Y, Yu G. Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy. IEEE Trans Biomed Eng 2012. [PMID: 23193446 DOI: 10.1109/tbme.2012.2226885] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Near-infrared diffuse correlation spectroscopy (DCS) has recently been employed for noninvasive acquisition of blood flow information in deep tissues. Based on the established correlation diffusion equation, the light intensity autocorrelation function detected by DCS is determined by a blood flow index αD(B), tissue absorption coefficient μ(a), reduced scattering coefficient μ'(s), and a coherence factor β. This study is designed to investigate the possibility of extracting multiple parameters such as μ(a), μ'(s), β, and αD(B) through fitting one single autocorrelation function curve and evaluate the performance of different fitting methods. For this purpose, computer simulations, tissue-like phantom experiments, and in vivo tissue measurements were utilized. The results suggest that it is impractical to simultaneously fit αD(B) and μ(a) or αD(B) and μ'(s) from one single autocorrelation function curve due to the large crosstalk between these paired parameters. However, simultaneously fitting β and αD(B) is feasible and generates more accurate estimation with smaller standard deviation compared to the conventional two-step fitting method (i.e., first calculating β and then fitting αD(B)). The outcomes from this study provide a crucial guidance for DCS data analysis.
Collapse
Affiliation(s)
- Lixin Dong
- Center for Biomedical Engineering, University of Kentucky College of Engineering, Lexington, KY 40506, USA.
| | | | | | | | | |
Collapse
|