1
|
Singh MD, Lilge L, Vitkin A. Spatial analysis of polarimetric images to enhance near-surface sampling sensitivity: feasibility in demineralized teeth and other tissue-like media. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:102906. [PMID: 37692083 PMCID: PMC10492592 DOI: 10.1117/1.jbo.28.10.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Significance Early tooth demineralization may be detectable through spatial analysis of polarized light images as demonstrated in this study. This may also prove useful in the early detection of epithelial tumors that comprise the majority of the cancer burden worldwide. Aim The spatial properties of polarized light images have not been greatly exploited in biomedicine to improve sensitivity to superficial tissue regions; therefore, we investigate the optical sampling depth effects as a function of location in the backscattered polarimetric images. Approach Backscattered linear polarization intensity distributions exhibit four-lobed patterns arising through single-scattering, multiple-scattering, and geometrical effects. These photon pathway dynamics are investigated through experimental imaging of microsphere suspensions along with corroborative computational polarization-sensitive Monte Carlo modeling. The studied sampling depth effects of linear and circular polarization images (explored in a previous study) are then evaluated on normal and demineralized human teeth, which are known to differ in their surface and sub-surface structures. Results Backscattered linear polarization images exhibit enhanced sensitivity to near-surface properties of media (for example, surface roughness and turbidity) at specific locations within the four-lobed patterns. This yields improved differentiation of two tooth types when spatially selecting image regions in the direction perpendicular to the incident linear polarization vector. Circular polarimetric imaging also yields improved differentiation through spatial selection of regions close to the site of illumination. Improved sensitivity to superficial tissues is achieved through a combination of these linear and circular polarimetric imaging approaches. Conclusions Heightened sampling sensitivity to tissue microstructure in the surface/near-surface region of turbid tissue-like media and dental tissue is achieved through a judicious spatial selection of specific regions in the resultant co-linear and cross-circular backscattered polarimetric images.
Collapse
Affiliation(s)
- Michael D. Singh
- University of Toronto, Department of Medical Biophysics, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Lothar Lilge
- University of Toronto, Department of Medical Biophysics, Temerty Faculty of Medicine, Toronto, Ontario, Canada
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Alex Vitkin
- University of Toronto, Department of Medical Biophysics, Temerty Faculty of Medicine, Toronto, Ontario, Canada
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- University of Toronto, Temerty Faculty of Medicine, Department of Radiation Oncology, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Spatial helicity response metric to quantify particle size and turbidity of heterogeneous media through circular polarization imaging. Sci Rep 2023; 13:2231. [PMID: 36755076 PMCID: PMC9908950 DOI: 10.1038/s41598-023-29444-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Backscattered circularly polarized light from turbid media consists of helicity-flipped and helicity-preserved photon sub-populations (i.e., photons of perpendicular and parallel circular handedness). Their intensities and spatial distributions are found to be acutely sensitive to average scatterer size and modestly sensitive to the scattering coefficient (medium turbidity) through an interplay of single and multiple scattering effects. Using a highly sensitive intensified-CCD camera, helicity-based images of backscattered light are captured, which, with the aid of corroborating Monte Carlo simulation images and statistics, enable (1) investigation of subsurface photonic pathways and (2) development of the novel 'spatial helicity response' metric to quantify average scatterer size and turbidity of tissue-like samples. An exciting potential application of this work is noninvasive early cancer detection since malignant tissues exhibit alterations in scatterer size (larger nuclei) and turbidity (increased cell density).
Collapse
|
3
|
Ducanchez A, Ryckewaert M, Heran D, Bendoula R. Discriminating between Absorption and Scattering Effects in Complex Turbid Media by Coupling Polarized Light Spectroscopy with the Mueller Matrix Concept. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239355. [PMID: 36502053 PMCID: PMC9737932 DOI: 10.3390/s22239355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/12/2023]
Abstract
The separation of the combined effects of absorption and scattering in complex media is a major issue for better characterization and prediction of media properties. In this study, an approach coupling polarized light spectroscopy and the Mueller matrix concept were evaluated to address this issue. A set of 50 turbid liquid optical phantoms with different levels of scattering and absorption properties were made and measured at various orientations of polarizers and analyzers to obtain the 16 elements of the complete Mueller matrix in the VIS-NIR region. Partial least square (PLS) was performed to build calibration models from diffuse reflectance spectra in order to evaluate the potential of polarization spectroscopy through the elements of the Mueller matrix to predict physical and chemical parameters and hence, to discriminate scattering and absorption effects, respectively. In particular, it was demonstrated that absorption and scattering effects can be distinguished in the Rayleigh regime with linear and circular polarization from the M22 and M44 elements of the Mueller matrix, correspondingly.
Collapse
Affiliation(s)
- Arnaud Ducanchez
- ITAP, University of Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | | - Daphne Heran
- ITAP, University of Montpellier, INRAE, 34196 Montpellier, France
| | - Ryad Bendoula
- ITAP, University of Montpellier, INRAE, 34196 Montpellier, France
| |
Collapse
|
4
|
Racicot I, Muslimov E, Chemla S, Blaize K, Ferrari M, Chavane F. High resolution, wide field optical imaging of macaque visual cortex with a curved detector. J Neural Eng 2022; 19. [PMID: 36347038 DOI: 10.1088/1741-2552/aca123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Objective. Cortical activity can be recorded using a variety of tools, ranging in scale from the single neuron (microscopic) to the whole brain (macroscopic). There is usually a trade-off between scale and resolution; optical imaging techniques, with their high spatio-temporal resolution and wide field of view, are best suited to study brain activity at the mesoscale. Optical imaging of cortical areas is however in practice limited by the curvature of the brain, which causes the image quality to deteriorate significantly away from the center of the image.Approach. To address this issue and harness the full potential of optical cortical imaging techniques, we developed a new wide-field optical imaging system adapted to the macaque brain. Our system is composed of a curved detector, an aspherical lens and a ring composed of light emitting diodes providing uniform illumination at wavelengths relevant for the different optical imaging methods, including intrinsic and fluorescence imaging.Main results. The system was characterized and compared with the standard macroscope used for cortical imaging, and a three-fold increase of the area in focus was measured as well as a four-fold increase in the evenness of the optical qualityin vivo.Significance. This new instrument, which is to the best of our knowledge the first use of a curved detector for cortical imaging, should facilitate the observation of wide mesoscale phenomena such as dynamic propagating waves within and between cortical maps, which are otherwise difficult to observe due to technical limitations of the currently available recording tools.
Collapse
Affiliation(s)
- Isabelle Racicot
- Laboratoire d'Astrophysique de Marseille: Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France.,Institut de Neurosciences de la Timone: Aix-Marseille Univ, CNRS, INT, Marseille, France
| | - Eduard Muslimov
- Laboratoire d'Astrophysique de Marseille: Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France.,Kazan National Research Technical University named after A.N. Tupolev KAI, 10 K. Marx, Kazan 420111, Russia.,NOVA Optical IR Instrumentation Group at ASTRON Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
| | - Sandrine Chemla
- Institut de Neurosciences de la Timone: Aix-Marseille Univ, CNRS, INT, Marseille, France
| | - Kévin Blaize
- Institut de Neurosciences de la Timone: Aix-Marseille Univ, CNRS, INT, Marseille, France
| | - Marc Ferrari
- Laboratoire d'Astrophysique de Marseille: Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone: Aix-Marseille Univ, CNRS, INT, Marseille, France
| |
Collapse
|
5
|
Interactions of Linearly Polarized and Unpolarized Light on Kiwifruit Using Aquaphotomics. Molecules 2022; 27:molecules27020494. [PMID: 35056810 PMCID: PMC8780032 DOI: 10.3390/molecules27020494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Near infrared (NIR) spectroscopy is an important tool for predicting the internal qualities of fruits. Using aquaphotomics, spectral changes between linearly polarized and unpolarized light were assessed on 200 commercially grown yellow-fleshed kiwifruit (Actinidia chinensis var. chinensis ‘Zesy002’). Measurements were performed on different configurations of unpeeled (intact) and peeled (cut) kiwifruit using a commercial handheld NIR instrument. Absorbance after applying standard normal variate (SNV) and second derivative Savitzky–Golay filters produced different spectral features for all configurations. An aquagram depicting all configurations suggests that linearly polarized light activated more free water states and unpolarized light activated more bound water states. At depth (≥1 mm), after several scattering events, all radiation is expected to be fully depolarized and interactions for incident polarized or unpolarized light will be similar, so any observed differences are attributable to the surface layers of the fruit. Aquagrams generated in terms of the fruit soluble solids content (SSC) were similar for all configurations, suggesting the SSC in fruit is not a contributing factor here.
Collapse
|
6
|
Hao J, Lu H, Mao L, Chen X, Beard MC, Blackburn JL. Direct Detection of Circularly Polarized Light Using Chiral Copper Chloride-Carbon Nanotube Heterostructures. ACS NANO 2021; 15:7608-7617. [PMID: 33821628 PMCID: PMC10156083 DOI: 10.1021/acsnano.1c01134] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The emergent properties of chiral organic-inorganic hybrid materials offer opportunities in spin-dependent optoelectronic devices. One of the most promising applications where spin, charge, and light are strongly coupled is circularly polarized light (CPL) detection. However, the performance of state-of-the-art CPL detectors using chiral hybrid metal halide semiconductors is still limited by the low anisotropy factor, poor conductivity, and limited photoresponsivity. Here, we synthesize 0D chiral copper chloride hybrids, templated by chiral methylbenzylammonium (R/S-MBA), i.e., (R-/S-MBA)2CuCl4, that display circular dichroism for the ligand-to-metal charge transfer transition with an absorption anisotropy factor (gCD) among the largest reported for chiral metal halide semiconductor hybrids. To circumvent the poor conductivity of the unpercolated inorganic framework of this chiral absorber, we develop a direct CPL detector that utilizes a heterojunction between the chiral (MBA)2CuCl4 absorber layer and a semiconducting single-walled carbon nanotube (s-SWCNT) transport channel. Our chiral heterostructure shows high photoresponsivity of 452 A/W, a competitive anisotropy factor (gres) of up to 0.21, a current response in microamperes, and low working voltage down to 0.01 V. Our results clearly demonstrate a useful strategy toward high-performance chiral optoelectronic devices, where a nanoscale heterostructure enables direct CPL detection even for highly insulating chiral materials.
Collapse
Affiliation(s)
- Ji Hao
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Haipeng Lu
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (SAR)
| | - Lingling Mao
- Materials Department and Materials Research Laboratory University of California, Santa Barbara, California 93106, United States
| | - Xihan Chen
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Matthew C Beard
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jeffrey L Blackburn
- Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
7
|
Abedin MJ, Barua T, Shaibani M, Majumder M. A High Throughput and Unbiased Machine Learning Approach for Classification of Graphene Dispersions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001600. [PMID: 33101862 PMCID: PMC7578897 DOI: 10.1002/advs.202001600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Indexed: 05/19/2023]
Abstract
Significant research to define and standardize terminologies for describing stacks of atomic layers in bulk graphene materials has been undertaken. Most methods to measure the stacking characteristics are time consuming and are not suited for obtaining information by directly imaging dispersions. Conventional optical microscopy has difficulty in identifying the size and thickness of a few layers of graphene stacks due to their low photon absorption capacity. Utilizing a contrast based on anisotropic refractive index in 2D materials, it is shown that localized thickness-specific information can be captured in birefringence images of graphene dispersions. Coupling pixel-by-pixel information from brightfield and birefringence images and using unsupervised statistical learning algorithms, three unique data clusters representing flakes (unexfoliated), nanoplatelets (partially exfoliated), and 2D sheets (well-exfoliated) species in various laboratory-based and commercial dispersions of graphene and graphene oxide are identified. The high-throughput, multitasking capability of the approach to classify stacking at sub-nanometer to micrometer scale and measure the size, thickness, and concentration of exfoliated-species in generic dispersions of graphene/graphene oxide are demonstrated. The method, at its current stage, requires less than half an hour to quantitatively assess one sample of graphene/graphene oxide dispersion.
Collapse
Affiliation(s)
- Md. Joynul Abedin
- Nanoscale Science and Engineering Laboratory (NSEL)Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVIC3800Australia
- ARC Research Hub on Graphene Enabled Industry TransformationMonash UniversityClaytonVIC3800Australia
| | - Titon Barua
- Vimmaniac Ltd.83/A, Sugandha, PanchlaishChittagong4203Bangladesh
| | - Mahdokht Shaibani
- Nanoscale Science and Engineering Laboratory (NSEL)Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVIC3800Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL)Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVIC3800Australia
- ARC Research Hub on Graphene Enabled Industry TransformationMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
8
|
Jain A, Maurya AK, Ulrich L, Jaeger M, Rossi RM, Neels A, Schucht P, Dommann A, Frenz M, Akarçay HG. Polarimetric imaging in backscattering for the structural characterization of strongly scattering birefringent fibrous media. OPTICS EXPRESS 2020; 28:16673-16695. [PMID: 32549485 DOI: 10.1364/oe.390303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Interpreting the polarimetric data from fiber-like macromolecules constitutive of tissue can be difficult due to strong scattering. In this study, we probed the superficial layers of fibrous tissue models (membranes consisting of nanofibers) displaying varying degrees of alignment. To better understand the manifestation of membranes' degree of alignment in polarimetry, we analyzed the spatial variations of the backscattered light's Stokes vectors as a function of the orientation of the probing beam's linear polarization. The degree of linear polarization reflects the uniaxially birefringent behavior of the membranes. The rotational (a-)symmetry of the backscattered light's degree of linear polarization provides a measure of the membranes' degree of alignment.
Collapse
|
9
|
Saytashev I, Saha S, Chue-Sang J, Lopez P, Laughrey M, Ramella-Roman JC. Self validating Mueller matrix Micro-Mesoscope (SAMMM) for the characterization of biological media. OPTICS LETTERS 2020; 45:2168-2171. [PMID: 32287183 DOI: 10.1364/ol.387747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reflectance Mueller matrix (MM) polarimetry is being used to characterize biological media in multiple clinical applications. The origin of the reflectance polarimetric data is often unclear due to the impact of multiple scattering and tissue heterogeneity. We have developed a new, to the best of our knowledge, multimodal imaging technique combining MM reflectance, MM digital confocal imaging, and co-registered nonlinear microscopy techniques. The instrument unveils the origin of reflectance polarimetric signature in terms of confocal reflectance data. The reconstructed reflected MM demonstrates the capability of our method to provide depth-resolved 3D polarization response from complex biological media in terms of depolarization, retardance, and orientation parameters.
Collapse
|
10
|
Feehan J, Tripodi N, Fraser S, Mikkelsen K, Thewlis A, Kiatos D, Husaric M, Apostolopoulos V. Polarized light therapy: Shining a light on the mechanism underlying its immunomodulatory effects. JOURNAL OF BIOPHOTONICS 2020; 13:e201960177. [PMID: 31816155 PMCID: PMC7065605 DOI: 10.1002/jbio.201960177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the immunomodulatory effects of polychromatic polarized light therapy (PLT) on human monocyte cells. While there is some evidence demonstrating a clinical effect in the treatment of certain conditions, there is little research into its mechanism of action. Herein, U937 monocyte cells were cultured and exposed to PLT. The cells were then analyzed for change in expression of genes and cell surface markers relating to inflammation. It was noted that 6 hours of PLT reduced the expression of the CD14, MHC I and CD11b receptors, and increased the expression of CD86. It was also shown that PLT caused downregulation of the genes IL1B, CCL2, NLRP3 and NOD1, and upregulation of NFKBIA and TLR9. These findings imply that PLT has the capacity for immunomodulation in human immune cells, possibly exerting an anti-inflammatory effect.
Collapse
Affiliation(s)
- Jack Feehan
- Osteopathy Group, College of Health and BiomedicineVictoria UniversityVictoriaAustralia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthSt AlbansVictoriaAustralia
| | - Nicholas Tripodi
- Institute for Health and SportVictoria UniversityVictoriaAustralia
- First Year CollegeVictoria UniversityVictoriaAustralia
| | - Sarah Fraser
- Institute for Health and SportVictoria UniversityVictoriaAustralia
| | | | - April Thewlis
- Osteopathy Group, College of Health and BiomedicineVictoria UniversityVictoriaAustralia
| | - Dimitrios Kiatos
- Osteopathy Group, College of Health and BiomedicineVictoria UniversityVictoriaAustralia
- Institute for Health and SportVictoria UniversityVictoriaAustralia
| | - Maja Husaric
- Institute for Health and SportVictoria UniversityVictoriaAustralia
- First Year CollegeVictoria UniversityVictoriaAustralia
| | | |
Collapse
|
11
|
Abedin MJ, Gamot TD, Martin ST, Ali M, Hassan KI, Mirshekarloo MS, Tabor RF, Green MJ, Majumder M. Graphene Oxide Liquid Crystal Domains: Quantification and Role in Tailoring Viscoelastic Behavior. ACS NANO 2019; 13:8957-8969. [PMID: 31314988 DOI: 10.1021/acsnano.9b02830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide liquid crystals (GOLCs) were exfoliated in a wide variety of solvents (water, ethylene glycol (EG), N-methyl-2-pyrrolidone (NMP), and dimethylformamide (DMF)) by high-speed shearing of graphite oxide. Quantitative polarized light imaging of the equilibrium nematic phases of the lyotropic GOLCs gives insights into the extent of aggregation and quantifiable textural features such as domain size, d. Large nematic domains >100 μm with a high overall degree of order were obtained in water and ethylene glycol, in contrast to ∼5-50 μm domains in NMP and DMF at comparable volume fractions. Comprehensive rheological studies of these GOLCs indicate that larger domains correlate with higher viscosity and higher elasticity, and scaling analysis shows a power-law dependence of the Ericksen number (Er) with domain size (Er ∝ d3.09). The improved understanding of the relationship between the microstructure and flow properties of GOLCs leads us to an approach of mixed solvent-based GOLCs as a means to tune viscoelastic properties. We demonstrate this approach for the formation of shear-aligned GOLC films for advanced flexible electronic applications such as all-carbon conductive films and thermal heaters.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Micah J Green
- Artie McFerrin Department of Chemical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | | |
Collapse
|
12
|
Macdonald CM, Tricoli U, Da Silva A, Markel VA. Numerical investigation of polarization filtering for direct optical imaging within scattering media. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:1330-1338. [PMID: 29036098 DOI: 10.1364/josaa.34.001330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We investigate the ability of polarization filtering to improve direct imaging of absorbing objects which are buried within scattering environments. We extend on previous empirical investigations by exploiting an efficient perturbation-based formalism, which is applicable to arbitrarily arranged sources and detectors with arbitrary polarizations. From this approach, we are able in some cases to find certain non-trivial linear combinations of polarization measurement channels that maximize the object resolution and visibility.
Collapse
|
13
|
Qi J, Elson DS. Mueller polarimetric imaging for surgical and diagnostic applications: a review. JOURNAL OF BIOPHOTONICS 2017; 10:950-982. [PMID: 28464464 DOI: 10.1002/jbio.201600152] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/02/2023]
Abstract
Polarization is a fundamental property of light and a powerful sensing tool that has been applied to many areas. A Mueller matrix is a complete mathematical description of the polarization characteristics of objects that interact with light, and is known as a transfer function of Stokes vectors which characterise the state of polarization of light. Mueller polarimetric imaging measures Mueller matrices over a field of view and thus allows for visualising the polarization characteristics of the objects. It has emerged as a promising technique in recent years for tissue imaging, improving image contrast and providing a unique perspective to reveal additional information that cannot be resolved by other optical imaging modalities. This review introduces the basis of the Stokes-Mueller formulism, interpretation methods of Mueller matrices into fundamental polarization properties, polarization properties of biological tissues, and considerations in the construction of Mueller polarimetric imaging devices for surgical and diagnostic applications, including primary configurations, optimization procedures, calibration methods as well as the instrument polarization properties of several widely-used biomedical optical devices. The paper also reviews recent progress in Mueller polarimetric endoscopes and fibre Mueller polarimeters, followed by the future outlook in applying the technique to surgery and diagnostics. Tissue polarization properties convey morphological, micro-structural and compositional information of tissue with great potential for label free characterization of tissue pathological changes. Recent progress in tissue polarimetric imaging and polarization resolved endoscopy paved the way for translation of polarimetric imaging to surgery and tissue diagnosis.
Collapse
Affiliation(s)
- Ji Qi
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
14
|
Bailey MJ, Verma N, Fradkin L, Lam S, MacAulay C, Poh C, Markey MK, Sokolov K. Detection of precancerous lesions in the oral cavity using oblique polarized reflectance spectroscopy: a clinical feasibility study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:65002. [PMID: 28609512 PMCID: PMC5469421 DOI: 10.1117/1.jbo.22.6.065002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/18/2017] [Indexed: 05/20/2023]
Abstract
We developed a multifiber optical probe for oblique polarized reflectance spectroscopy (OPRS) in vivo and evaluated its performance in detection of dysplasia in the oral cavity. The probe design allows the implementation of a number of methods to enable depth resolved spectroscopic measurements including polarization gating, source–detector separation, and differential spectroscopy; this combination was evaluated in carrying out binary classification tasks between four major diagnostic categories: normal, benign, mild dysplasia (MD), and severe dysplasia (SD). Multifiber OPRS showed excellent performance in the discrimination of normal from benign, MD, SD, and MD plus SD yielding sensitivity/specificity values of 100%/93%, 96%/95%, 100%/98%, and 100%/100%, respectively. The classification of benign versus dysplastic lesions was more challenging with sensitivity and specificity values of 80%/93%, 71%/93%, and 74%/80% in discriminating benign from SD, MD, and SD plus MD categories, respectively; this challenge is most likely associated with a strong and highly variable scattering from a keratin layer that was found in these sites. Classification based on multiple fibers was significantly better than that based on any single detection pair for tasks dealing with benign versus dysplastic sites. This result indicates that the multifiber probe can perform better in the detection of dysplasia in keratinized tissues.
Collapse
Affiliation(s)
- Maria J. Bailey
- University of Texas M.D. Anderson Cancer Center, Department of Imaging Physics, Houston, Texas, United States
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Nishant Verma
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Leonid Fradkin
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Sylvia Lam
- British Columbia Cancer Agency, Integrative Oncology Department, Vancouver, British Columbia, Canada
| | - Calum MacAulay
- British Columbia Cancer Agency, Integrative Oncology Department, Vancouver, British Columbia, Canada
| | - Catherine Poh
- British Columbia Cancer Agency, Integrative Oncology Department, Vancouver, British Columbia, Canada
| | - Mia K. Markey
- University of Texas M.D. Anderson Cancer Center, Department of Imaging Physics, Houston, Texas, United States
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Konstantin Sokolov
- University of Texas M.D. Anderson Cancer Center, Department of Imaging Physics, Houston, Texas, United States
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
- Rice University, Department of Bioengineering, Houston, Texas, United States
| |
Collapse
|
15
|
Lizana A, Van Eeckhout A, Adamczyk K, Rodríguez C, Escalera JC, Garcia-Caurel E, Moreno I, Campos J. Polarization gating based on Mueller matrices. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:56004. [PMID: 28492853 DOI: 10.1117/1.jbo.22.5.056004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/17/2017] [Indexed: 05/02/2023]
Abstract
We present mathematical formulas generalizing polarization gating (PG) techniques. PG refers to a collection of imaging methods based on the combination of different controlled polarization channels. In particular, we show how using the measured Mueller matrix (MM) of a sample, a widespread number of PG configurations can be evaluated just from analytical expressions based on the MM coefficients. We also show the interest of controlling the helicity of the states of polarization used for PG-based metrology, as this parameter has an impact in the image contrast of samples. In addition, we highlight the interest of combining PG techniques with tools of data analysis related to the MM formalism, such as the well-known MM decompositions. The method discussed in this work is illustrated with the results of polarimetric measurements done on artificial phantoms and real ex-vivo tissues.
Collapse
Affiliation(s)
- Angel Lizana
- Universitat Autònoma de Barcelona, Grup d'Òptica, Physics Department, Bellaterra, Spain
| | - Albert Van Eeckhout
- Universitat Autònoma de Barcelona, Grup d'Òptica, Physics Department, Bellaterra, Spain
| | - Kamil Adamczyk
- Universitat Autònoma de Barcelona, Grup d'Òptica, Physics Department, Bellaterra, Spain
| | - Carla Rodríguez
- Universitat Autònoma de Barcelona, Grup d'Òptica, Physics Department, Bellaterra, Spain
| | - Juan Carlos Escalera
- Universitat Autònoma de Barcelona, Grup d'Òptica, Physics Department, Bellaterra, Spain
| | - Enric Garcia-Caurel
- Université Paris-Saclay, LPICM, CNRS, École Polytechnique, Palaiseau, France
| | - Ignacio Moreno
- Universidad Miguel Hernández, Department of Materials Science, Optics and Electronics Technology, Elche, Spain
| | - Juan Campos
- Universitat Autònoma de Barcelona, Grup d'Òptica, Physics Department, Bellaterra, Spain
| |
Collapse
|
16
|
Tricoli U, Macdonald CM, Silva AD, Markel VA. Reciprocity relation for the vector radiative transport equation and its application to diffuse optical tomography with polarized light. OPTICS LETTERS 2017; 42:362-365. [PMID: 28081113 DOI: 10.1364/ol.42.000362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We derive a reciprocity relation for the 3D vector radiative transport equation that describes propagation of polarized light in multiple-scattering media. We then show how this result, together with translational invariance of a plane-parallel sample, can be used to efficiently compute the sensitivity kernel of diffuse optical tomography by Monte Carlo simulations. Numerical examples of polarization-selective sensitivity kernels are given.
Collapse
|
17
|
Bailey MJ, Sokolov K. Depth-resolved measurements with elliptically polarized reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:2861-76. [PMID: 27446712 PMCID: PMC4948636 DOI: 10.1364/boe.7.002861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 05/11/2023]
Abstract
The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed.
Collapse
Affiliation(s)
- Maria J. Bailey
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Konstantin Sokolov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
18
|
Sridhar S, Da Silva A. Enhanced contrast and depth resolution in polarization imaging using elliptically polarized light. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:71107. [PMID: 26868614 DOI: 10.1117/1.jbo.21.7.071107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/08/2016] [Indexed: 05/02/2023]
Abstract
Polarization gating is a popular and widely used technique in biomedical optics to sense superficial tissues (colinear detection), deeper volumes (crosslinear detection), and also selectively probe subsuperficial volumes (using elliptically polarized light). As opposed to the conventional linearly polarized illumination, we propose a new protocol of polarization gating that combines coelliptical and counter-elliptical measurements to selectively enhance the contrast of the images. This new method of eliminating multiple-scattered components from the images shows that it is possible to retrieve a greater signal and a better contrast for subsurface structures. In vivo experiments were performed on skin abnormalities of volunteers to confirm the results of the subtraction method and access subsurface information.
Collapse
Affiliation(s)
- Susmita Sridhar
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, FrancebInstitut de Ciències Fotòniques, Universitat Politècnica de Catalunya, 08860 Castelldefels, Barcelona, Spain
| | - Anabela Da Silva
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France
| |
Collapse
|
19
|
Zhang Y, Chen B, Li D. Propagation of polarized light in the biological tissue: a numerical study by polarized geometric Monte Carlo method. APPLIED OPTICS 2016; 55:2681-91. [PMID: 27139673 DOI: 10.1364/ao.55.002681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To investigate the influence of polarization on the polarized light propagation in biological tissue, a polarized geometric Monte Carlo method is developed. The Stokes-Mueller formalism is expounded to describe the shifting of light polarization during propagation events, including scattering and interface interaction. The scattering amplitudes and optical parameters of different tissue structures are obtained using Mie theory. Through simulations of polarized light (pulsed dye laser at wavelength of 585 nm) propagation in an infinite slab tissue model and a discrete vessel tissue model, energy depositions in tissue structures are calculated and compared with those obtained through general geometric Monte Carlo simulation under the same parameters but without consideration of polarization effect. It is found that the absorption depth of the polarized light is about one half of that determined by conventional simulations. In the discrete vessel model, low penetrability manifests in three aspects: diffuse reflection became the main contributor to the energy escape, the proportion of epidermal energy deposition increased significantly, and energy deposition in the blood became weaker and more uneven. This may indicate that the actual thermal damage of epidermis during the real-world treatment is higher and the deep buried blood vessels are insufficiently damaged by consideration of polarization effect, compared with the conventional prediction.
Collapse
|
20
|
Feng X, Sun L, Zhang E. Depth selectivity for the assessment of microstructure by polarization studies. BIOMEDICAL OPTICS EXPRESS 2013; 4:958-66. [PMID: 23761855 PMCID: PMC3675874 DOI: 10.1364/boe.4.000958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 05/03/2023]
Abstract
A polarimetric imaging system capable of continuously selecting imaging depth in a turbid media is demonstrated. The proposed system is based on the orthogonal polarization spectral (OPS) technique, and is able to detect microstructure and microvessel. First, we compare the performance of four polarization imaging channels on a biological phantom, and find that there is a linear relation between the degrees of ellipticity and image contrast in co-linear/co-elliptical channels. In addition, the cross-linear channel has the best image contrast. We then prove the performance of depth selectivity of microvessel in a mouse ear.
Collapse
|
21
|
Qi J, Ye M, Singh M, Clancy NT, Elson DS. Narrow band 3 × 3 Mueller polarimetric endoscopy. BIOMEDICAL OPTICS EXPRESS 2013; 4:2433-49. [PMID: 24298405 PMCID: PMC3829538 DOI: 10.1364/boe.4.002433] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/04/2013] [Accepted: 08/16/2013] [Indexed: 05/18/2023]
Abstract
Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information.
Collapse
Affiliation(s)
- Ji Qi
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Menglong Ye
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Computing, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Mohan Singh
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Neil T. Clancy
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Daniel S. Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|