1
|
Vargas-Ordaz E, Newman H, Austin C, Catt S, Nosrati R, Cadarso VJ, Neild A, Horta F. Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study. Hum Reprod 2025; 40:41-55. [PMID: 39521726 DOI: 10.1093/humrep/deae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Indexed: 11/16/2024] Open
Abstract
STUDY QUESTION Is it feasible to safely determine metabolic imaging signatures of nicotinamide adenine dinucleotide [NAD(P)H] associated auto-fluorescence in early embryos using a light-sheet on-a-chip approach? SUMMARY ANSWER We developed an optofluidic device capable of obtaining high-resolution 3D images of the NAD(P)H autofluorescence of live mouse embryos using a light-sheet on-a-chip device as a proof-of-concept. WHAT IS KNOWN ALREADY Selecting the most suitable embryos for implantation and subsequent healthy live birth is crucial to the success rate of assisted reproduction and offspring health. Besides morphological evaluation using optical microscopy, a promising alternative is the non-invasive imaging of live embryos to establish metabolic activity performance. Indeed, in recent years, metabolic imaging has been investigated using highly advanced microscopy technologies such as fluorescence-lifetime imaging and hyperspectral microscopy. STUDY DESIGN, SIZE, DURATION The potential safety of the system was investigated by assessing the development and viability of live embryos after embryo culture for 67 h post metabolic imaging at the two-cell embryo stage (n = 115), including a control for culture conditions and sham controls (system non-illuminated). Embryo quality of developed blastocysts was assessed by immunocytochemistry to quantify trophectoderm and inner mass cells (n = 75). Furthermore, inhibition of metabolic activity (FK866 inhibitor) during embryo culture was also assessed (n = 18). PARTICIPANTS/MATERIALS, SETTING, METHODS The microstructures were fabricated following a standard UV-photolithography process integrating light-sheet fluorescence microscopy into a microfluidic system, including on-chip micro-lenses to generate a light-sheet at the centre of a microchannel. Super-ovulated F1 (CBA/C57Bl6) mice were used to produce two-cell embryos and embryo culture experiments. Blastocyst formation rates and embryo quality (immunocytochemistry) were compared between the study groups. A convolutional neural network (ResNet 34) model using metabolic images was also trained. MAIN RESULTS AND THE ROLE OF CHANCE The optofluidic device was capable of obtaining high-resolution 3D images of live mouse embryos that can be linked to their metabolic activity. The system's design allowed continuous tracking of the embryo location, including high control displacement through the light-sheet and fast imaging of the embryos (<2 s), while keeping a low dose of light exposure (16 J · cm-2 and 8 J · cm-2). Optimum settings for keeping sample viability showed that a modest light dosage was capable of obtaining 30 times higher signal-noise-ratio images than images obtained with a confocal system (P < 0.00001; t-test). The results showed no significant differences between the control, illuminated and non-illuminated embryos (sham control) for embryo development as well as embryo quality at the blastocyst stage (P > 0.05; Yate's chi-squared test). Additionally, embryos with inhibited metabolic activity showed a decreased blastocyst formation rate of 22.2% compared to controls, as well as a 47% reduction in metabolic activity measured by metabolic imaging (P < 0.0001; t-test). This indicates that the optofluidic device was capable of producing metabolic images of live embryos by measuring NAD(P)H autofluorescence, allowing a novel and affordable approach. The obtained metabolic images of two-cell embryos predicted blastocyst formation with an AUC of 0.974. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The study was conducted using a mouse model focused on early embryo development assessing illumination at the two-cell stage. Further safety studies are required to assess the safety and use of 405 nm light at the blastocyst stage by investigating any potential negative impact on live birth rates, offspring health, aneuploidy rates, mutational load, changes in gene expression, and/or effects on epigenome stability in newborns. WIDER IMPLICATIONS OF THE FINDINGS This light-sheet on-a-chip approach is novel and after rigorous safety studies and a roadmap for technology development, potential future applications could be developed for ART. The overall cost-efficient fabrication of the device will facilitate scalability and integration into future devices if full-safety application is demonstrated. STUDY FUNDING/COMPETING INTEREST(S) This work was partially supported by an Ideas Grant (no 2004126) from the National Health and Medical Research Council (NHMRC), by the Education Program in Reproduction and Development (EPRD), Department Obstetrics and Gynaecology, Monash University, and by the Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash University. The authors E.V-O, R.N., V.J.C., A.N., and F.H. have applied for a patent on the topic of this technology (PCT/AU2023/051132). The remaining authors have nothing to disclose.
Collapse
Affiliation(s)
- E Vargas-Ordaz
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
- Centre to Impact Antimicrobial Resistance-Sustainable Solutions, Monash University, Clayton, VIC, Australia
| | - H Newman
- Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - C Austin
- Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - S Catt
- Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - R Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - V J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
- Centre to Impact Antimicrobial Resistance-Sustainable Solutions, Monash University, Clayton, VIC, Australia
| | - A Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - F Horta
- Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Monash Data Future Institute, Monash University, Clayton, VIC, Australia
- Fertility & Research Center, Discipline of Women's Health, Royal Hospital for Women & School of Clinical Medicine, The University of New South Wales, UNSW, Randwick, NSW, Australia
| |
Collapse
|
2
|
Ghosh A, Gupta A, Jena S, Kirti A, Choudhury A, Saha U, Sinha A, Kumari S, Kujawska M, Kaushik A, Verma SK. Advances in posterity of visualization in paradigm of nano‐level ultra‐structures for nano–bio interaction studies. VIEW 2024. [DOI: 10.1002/viw.20240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
AbstractThe progression in contemporary scientific field is facilitated by a multitude of sophisticated and cutting‐edge methodologies that are employed for various research purposes. Among these methodologies, microscopy stands out as a fundamental and essential technique utilized in scientific investigations. Moreover, due to the continuous evolution and enhancement of microscopic methodologies, nanotechnology has reached a highly developed stage within modern scientific realm, particularly renowned for its wide‐ranging applications in the fields of biomedicine and environmental science. When it comes to conducting comprehensive and in‐depth experimental analyses to explore the nanotechnological aspects relevant to biological applications, the concept of nano–biological interaction emerges as the focal point of any research initiative. Nonetheless, this particular study necessitates a meticulous approach toward imaging and visualization at diverse magnification levels to ensure accurate observations and interpretations. It is widely acknowledged that modern microscopy has emerged as a sophisticated and invaluable instrument in this regard. This review aims to provide a comprehensive discussion on the progress made in microscopic techniques specifically tailored for visualizing the interactions between nanostructures and biological entities, thereby facilitating the exploration of the practical applications of nanotechnology in the realm of biological sciences.
Collapse
Affiliation(s)
- Aishee Ghosh
- School of Biotechnology KIIT University Bhubaneswar Odisha India
- Department of Physics and Astronomy Uppsala University Uppsala Sweden
| | - Abha Gupta
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Snehasmita Jena
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Apoorv Kirti
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Anmol Choudhury
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Utsa Saha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Adrija Sinha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Shalini Kumari
- Markham College of Commerce Vinoba Bhave University Hazaribagh Jharkhand India
| | - Małgorzata Kujawska
- Department of Toxicology Poznan University of Medical Sciences Poznan Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory Department of Environmental Engineering Florida Polytechnic University Lakeland Florida USA
| | - Suresh K. Verma
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| |
Collapse
|
3
|
Ugawa M, Ota S. Recent Technologies on 2D and 3D Imaging Flow Cytometry. Cells 2024; 13:2073. [PMID: 39768164 PMCID: PMC11674929 DOI: 10.3390/cells13242073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Imaging flow cytometry is a technology that performs microscopy image analysis of cells within flow cytometry and allows high-throughput, high-content cell analysis based on their intracellular molecular distribution and/or cellular morphology. While the technology has been available for a couple of decades, it has recently gained significant attention as technical limitations for higher throughput, sorting capability, and additional imaging dimensions have been overcome with various approaches. These evolutions have enabled imaging flow cytometry to offer a variety of solutions for life science and medicine that are not possible with conventional flow cytometry or microscopy-based screening. It is anticipated that the extent of applications will expand in the upcoming years as the technology becomes more accessible through dissemination. In this review, we will cover the technical advances that have led to this new generation of imaging flow cytometry, focusing on the advantages and limitations of each technique.
Collapse
Affiliation(s)
- Masashi Ugawa
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Sadao Ota
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
- ThinkCyte, Inc., Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Gavriiloglou M, Hammad M, Iliopoulos JM, Layrolle P, Apazidou DA. Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models. J Funct Biomater 2024; 15:330. [PMID: 39590534 PMCID: PMC11595533 DOI: 10.3390/jfb15110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Two-dimensional (2D) culture models and animal experiments have been widely used to study the pathogenesis of periodontal and peri-implant diseases and to test new treatment approaches. However, neither of them can reproduce the complexity of human periodontal tissues, making the development of a successful 3D oral mucosal model a necessity. The soft-tissue attachment formed around a tooth or an implant function like a biologic seal, protecting the deeper tissues from bacterial infection. The aim of this review is to explore the advancements made so far in the biofabrication of a junctional epithelium around a tooth-like or an implant insert in vitro. This review focuses on the origin of cells and the variety of extracellular components and biomaterials that have been used for the biofabrication of 3D oral mucosa models. The existing 3D models recapitulate soft-tissue attachment around implant abutments and hydroxyapatite discs. Hereby, the qualitative and quantitative assessments performed for evidencing the soft-tissue attachment are critically reviewed. In perspective, the design of sophisticated 3D models should work together for oral immunology and microbiology biofilms to accurately reproduce periodontal and peri-implant diseases.
Collapse
Affiliation(s)
- Marianna Gavriiloglou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| | - Mira Hammad
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Jordan M. Iliopoulos
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Pierre Layrolle
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Danae A. Apazidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| |
Collapse
|
5
|
Mascharak S, Guo JL, Griffin M, Berry CE, Wan DC, Longaker MT. Modelling and targeting mechanical forces in organ fibrosis. NATURE REVIEWS BIOENGINEERING 2024; 2:305-323. [PMID: 39552705 PMCID: PMC11567675 DOI: 10.1038/s44222-023-00144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/19/2024]
Abstract
Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell-matrix interactions, cell-cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis. We then discuss engineered models of mechanotransduction in fibrosis, as well as molecular and biomaterials-based therapeutic approaches for limiting fibrosis and promoting regenerative healing phenotypes in various organs. Finally, we discuss challenges within fibrosis research that remain to be addressed and that may greatly benefit from next-generation bioengineered model systems.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Jason L. Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Hua X, Han K, Mandracchia B, Radmand A, Liu W, Kim H, Yuan Z, Ehrlich SM, Li K, Zheng C, Son J, Silva Trenkle AD, Kwong GA, Zhu C, Dahlman JE, Jia S. Light-field flow cytometry for high-resolution, volumetric and multiparametric 3D single-cell analysis. Nat Commun 2024; 15:1975. [PMID: 38438356 PMCID: PMC10912605 DOI: 10.1038/s41467-024-46250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Imaging flow cytometry (IFC) combines flow cytometry and fluorescence microscopy to enable high-throughput, multiparametric single-cell analysis with rich spatial details. However, current IFC techniques remain limited in their ability to reveal subcellular information with a high 3D resolution, throughput, sensitivity, and instrumental simplicity. In this study, we introduce a light-field flow cytometer (LFC), an IFC system capable of high-content, single-shot, and multi-color acquisition of up to 5,750 cells per second with a near-diffraction-limited resolution of 400-600 nm in all three dimensions. The LFC system integrates optical, microfluidic, and computational strategies to facilitate the volumetric visualization of various 3D subcellular characteristics through convenient access to commonly used epi-fluorescence platforms. We demonstrate the effectiveness of LFC in assaying, analyzing, and enumerating intricate subcellular morphology, function, and heterogeneity using various phantoms and biological specimens. The advancement offered by the LFC system presents a promising methodological pathway for broad cell biological and translational discoveries, with the potential for widespread adoption in biomedical research.
Collapse
Affiliation(s)
- Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Afsane Radmand
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Yuan
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Samuel M Ehrlich
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Corey Zheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jeonghwan Son
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Aaron D Silva Trenkle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
7
|
Richard C, Vargas-Ordaz EJ, Zhang Y, Li J, Cadarso VJ, Neild A. Acousto-optofluidic 3D single cell imaging of macrophage phagocytosis of Pseudomonas Aeruginosa. LAB ON A CHIP 2024; 24:480-491. [PMID: 38132834 DOI: 10.1039/d3lc00864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Understanding how immune cells such as monocytes or macrophages within our blood and tissue engulf and destroy foreign organisms is important for developing new therapies. The process undertaken by these cells, called phagocytosis, has yet to be observed in real-time at the single cell level. Microfluidic-based imaging platforms offer a wide range of tools for precise fluid control and biomolecule manipulation that makes regulating long term experiments and data collection possible. With the compatibility between acoustofluidics and light-sheet fluorescent microscopy (LSFM) previously demonstrated, here an acousto-optfluidic device with on-chip fluid flow direction control was developed. The standing surface acoustic waves (SSAWs) were used to trap, load and safeguard individual cells within a highly controllable fluid loop, created via the triggering of on-chip PDMS valves, to demonstrate multiple rounds of live single cell imaging. The valves allowed for the direction of the fluid flow to be changed (between forward and reverse operation) without altering the inlet flow rate, an important factor for performing reproducible and comparable imaging of samples over time. With this high-resolution imaging system, volumetric reconstructions of phagocytosed bacteria within macrophages could be resolved over a total of 9 rounds of imaging: totalling 19 reconstructed images of the cell membrane with visible intracellular bacteria.
Collapse
Affiliation(s)
- Cynthia Richard
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Applied Micro- and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Erick J Vargas-Ordaz
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Applied Micro- and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Yaqi Zhang
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Jian Li
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Victor J Cadarso
- Applied Micro- and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
| | - Adrian Neild
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
8
|
Paiè P, Calisesi G, Candeo A, Comi A, Sala F, Ceccarelli F, De Luigi A, Veglianese P, Muhlberger K, Fokine M, Valentini G, Osellame R, Neil M, Bassi A, Bragheri F. Structured-light-sheet imaging in an integrated optofluidic platform. LAB ON A CHIP 2023; 24:34-46. [PMID: 37791882 DOI: 10.1039/d3lc00639e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterogeneity investigation at the single-cell level reveals morphological and phenotypic characteristics in cell populations. In clinical research, heterogeneity has important implications in the correct detection and interpretation of prognostic markers and in the analysis of patient-derived material. Among single-cell analysis, imaging flow cytometry allows combining information retrieved by single cell images with the throughput of fluidic platforms. Nevertheless, these techniques might fail in a comprehensive heterogeneity evaluation because of limited image resolution and bidimensional analysis. Light sheet fluorescence microscopy opened new ways to study in 3D the complexity of cellular functionality in samples ranging from single-cells to micro-tissues, with remarkably fast acquisition and low photo-toxicity. In addition, structured illumination microscopy has been applied to single-cell studies enhancing the resolution of imaging beyond the conventional diffraction limit. The combination of these techniques in a microfluidic environment, which permits automatic sample delivery and translation, would allow exhaustive investigation of cellular heterogeneity with high throughput image acquisition at high resolution. Here we propose an integrated optofluidic platform capable of performing structured light sheet imaging flow cytometry (SLS-IFC). The system encompasses a multicolor directional coupler equipped with a thermo-optic phase shifter, cylindrical lenses and a microfluidic network to generate and shift a patterned light sheet within a microchannel. The absence of moving parts allows a stable alignment and an automated fluorescence signal acquisition during the sample flow. The platform enables 3D imaging of an entire cell in about 1 s with a resolution enhancement capable of revealing sub-cellular features and sub-diffraction limit details.
Collapse
Affiliation(s)
- Petra Paiè
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Gianmaria Calisesi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Andrea Comi
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Federico Sala
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Francesco Ceccarelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Ada De Luigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, 20156, Italy
| | - Pietro Veglianese
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, 20156, Italy
| | - Korbinian Muhlberger
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, 11421, Sweden
| | - Michael Fokine
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, 11421, Sweden
| | - Gianluca Valentini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Mark Neil
- Physics Department, Imperial College London, Prince Consort Road, London, SW7 2BB, UK
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| |
Collapse
|
9
|
Pozzi P, Candeo A, Paiè P, Bragheri F, Bassi A. Artificial intelligence in imaging flow cytometry. FRONTIERS IN BIOINFORMATICS 2023; 3:1229052. [PMID: 37877042 PMCID: PMC10593470 DOI: 10.3389/fbinf.2023.1229052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Affiliation(s)
- Paolo Pozzi
- Department of Physics, Politecnico di Milano, Milano, Italy
| | - Alessia Candeo
- Department of Physics, Politecnico di Milano, Milano, Italy
| | - Petra Paiè
- Department of Physics, Politecnico di Milano, Milano, Italy
| | - Francesca Bragheri
- Institute for Photonics and Nanotechnologies, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Milano, Italy
| |
Collapse
|
10
|
Siu DMD, Lee KCM, Chung BMF, Wong JSJ, Zheng G, Tsia KK. Optofluidic imaging meets deep learning: from merging to emerging. LAB ON A CHIP 2023; 23:1011-1033. [PMID: 36601812 DOI: 10.1039/d2lc00813k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Propelled by the striking advances in optical microscopy and deep learning (DL), the role of imaging in lab-on-a-chip has dramatically been transformed from a silo inspection tool to a quantitative "smart" engine. A suite of advanced optical microscopes now enables imaging over a range of spatial scales (from molecules to organisms) and temporal window (from microseconds to hours). On the other hand, the staggering diversity of DL algorithms has revolutionized image processing and analysis at the scale and complexity that were once inconceivable. Recognizing these exciting but overwhelming developments, we provide a timely review of their latest trends in the context of lab-on-a-chip imaging, or coined optofluidic imaging. More importantly, here we discuss the strengths and caveats of how to adopt, reinvent, and integrate these imaging techniques and DL algorithms in order to tailor different lab-on-a-chip applications. In particular, we highlight three areas where the latest advances in lab-on-a-chip imaging and DL can form unique synergisms: image formation, image analytics and intelligent image-guided autonomous lab-on-a-chip. Despite the on-going challenges, we anticipate that they will represent the next frontiers in lab-on-a-chip imaging that will spearhead new capabilities in advancing analytical chemistry research, accelerating biological discovery, and empowering new intelligent clinical applications.
Collapse
Affiliation(s)
- Dickson M D Siu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Kelvin C M Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Bob M F Chung
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Justin S J Wong
- Conzeb Limited, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
11
|
Son J, Mandracchia B, Silva Trenkle AD, Kwong GA, Jia S. Portable light-sheet optofluidic microscopy for 3D fluorescence imaging flow cytometry. LAB ON A CHIP 2023; 23:624-630. [PMID: 36633262 PMCID: PMC9931680 DOI: 10.1039/d2lc01024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Imaging flow cytometry (IFC) combines conventional flow cytometry with optical microscopy, allowing for high-throughput, multi-parameter screening of single-cell specimens with morphological and spatial information. However, current 3D IFC systems are limited by instrumental complexity and incompatibility with available microfluidic devices or operations. Here, we report portable light-sheet optofluidic microscopy (PLSOM) for 3D fluorescence cytometric imaging. PLSOM exploits a compact, open-top light-sheet configuration compatible with commonly adopted microfluidic chips. The system offers a subcellular resolution (2-4 μm) in all three dimensions, high throughput (∼1000 cells per s), and portability (30 cm (l) × 10 cm (w) × 26 cm (h)). We demonstrated PLSOM for 3D IFC using various phantom and cell systems. The low-cost and custom-built architecture of PLSOM permits easy adaptability and dissemination for broad 3D flow cytometric investigations.
Collapse
Affiliation(s)
- Jeonghwan Son
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Aaron D Silva Trenkle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Hedde PN, Le BT, Gomez EL, Duong L, Steele RE, Ahrar S. SPIM-Flow: An Integrated Light Sheet and Microfluidics Platform for Hydrodynamic Studies of Hydra. BIOLOGY 2023; 12:biology12010116. [PMID: 36671808 PMCID: PMC9856110 DOI: 10.3390/biology12010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Selective plane illumination microscopy (SPIM), or light sheet microscopy, is a powerful imaging approach. However, access to and interfacing microscopes with microfluidics have remained challenging. Complex interfacing with microfluidics has limited the SPIM's utility for studying the hydrodynamics of freely moving multicellular organisms. We developed SPIM-Flow, an inexpensive light sheet platform that enables easy integration with microfluidics. We used SPIM-Flow to investigate the hydrodynamics of a freely moving Hydra polyp via particle tracking in millimeter-sized chambers. Initial experiments across multiple animals, feeding on a chip (Artemia franciscana nauplii used as food), and baseline behaviors (tentacle swaying, elongation, and bending) indicated the organisms' health inside the system. Fluidics were used to investigate Hydra's response to flow. The results suggested that the animals responded to an established flow by bending and swaying their tentacles in the flow direction. Finally, using SPIM-Flow in a proof-of-concept experiment, the shear stress required to detach an animal from a surface was demonstrated. Our results demonstrated SPIM-Flow's utility for investigating the hydrodynamics of freely moving animals.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, CA 92612, USA
- Correspondence: (P.N.H.); (S.A.)
| | - Brian T. Le
- Department of Biomedical Engineering, CSU Long Beach, Long Beach, CA 90840, USA
| | - Erika L. Gomez
- Department of Biomedical Engineering, CSU Long Beach, Long Beach, CA 90840, USA
| | - Leora Duong
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Robert E. Steele
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Siavash Ahrar
- Department of Biomedical Engineering, CSU Long Beach, Long Beach, CA 90840, USA
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: (P.N.H.); (S.A.)
| |
Collapse
|
13
|
Ahmad A, Sala F, Paiè P, Candeo A, D'Annunzio S, Zippo A, Frindel C, Osellame R, Bragheri F, Bassi A, Rousseau D. On the robustness of machine learning algorithms toward microfluidic distortions for cell classification via on-chip fluorescence microscopy. LAB ON A CHIP 2022; 22:3453-3463. [PMID: 35946995 DOI: 10.1039/d2lc00482h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of these technologies is increased when combined with microfluidics, fluorescence markers, and machine learning. However, this quest faces several challenges. One of these is the effect of the sample flow velocity on the classification performances. Indeed, cell flow speed affects the quality of image acquisition by increasing motion blur and decreasing the number of acquired frames per sample. We investigate how these visual distortions impact the final classification task in a real-world use-case of cancer cell screening, using a microfluidic platform in combination with light sheet fluorescence microscopy. We demonstrate, by analyzing both simulated and experimental data, that it is possible to achieve high flow speed and high accuracy in single-cell classification. We prove that it is possible to overcome the 3D slice variability of the acquired 3D volumes, by relying on their 2D sum z-projection transformation, to reach an efficient real time classification with an accuracy of 99.4% using a convolutional neural network with transfer learning from simulated data. Beyond this specific use-case, we provide a web platform to generate a synthetic dataset and to investigate the effect of flow speed on cell classification for any biological samples and a large variety of fluorescence microscopes (https://www.creatis.insa-lyon.fr/site7/en/MicroVIP).
Collapse
Affiliation(s)
- Ali Ahmad
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRAE IRHS, Université d'Angers, 62 Avenue Notre Dame du Lac, 49000 Angers, France.
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), CNRS UMR 5220 - INSERM U1206, Université Lyon 1, Insa de Lyon, Lyon, France
| | - Federico Sala
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Petra Paiè
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alessia Candeo
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | | | - Carole Frindel
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), CNRS UMR 5220 - INSERM U1206, Université Lyon 1, Insa de Lyon, Lyon, France
| | - Roberto Osellame
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRAE IRHS, Université d'Angers, 62 Avenue Notre Dame du Lac, 49000 Angers, France.
| |
Collapse
|
14
|
Calvarese M, Paiè P, Candeo A, Calisesi G, Ceccarelli F, Valentini G, Osellame R, Gong H, Neil M, Bragheri F, Bassi A. Integrated optical device for Structured Illumination Microscopy. OPTICS EXPRESS 2022; 30:30246-30259. [PMID: 36242132 DOI: 10.1364/oe.466225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Structured Illumination Microscopy (SIM) is a key technology for high resolution and super-resolution imaging of biological cells and molecules. The spread of portable and easy-to-align SIM systems requires the development of novel methods to generate a light pattern and to shift it across the field of view of the microscope. Here we show a miniaturized chip that incorporates optical waveguides, splitters, and phase shifters, to generate a 2D structured illumination pattern suitable for SIM microscopy. The chip creates three point-sources, coherent and controlled in phase, without the need for further alignment. Placed in the pupil of a microscope's objective, the three sources generate a hexagonal illumination pattern on the sample, which is spatially translated thanks to thermal phase shifters. We validate and use the chip, upgrading a commercial inverted fluorescence microscope to a SIM setup and we image biological sample slides, extending the resolution of the microscope.
Collapse
|
15
|
Lucivero VG, Zanoni A, Corrielli G, Osellame R, Mitchell MW. Laser-written vapor cells for chip-scale atomic sensing and spectroscopy. OPTICS EXPRESS 2022; 30:27149-27163. [PMID: 36236892 DOI: 10.1364/oe.469296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 06/16/2023]
Abstract
We report the fabrication of alkali-metal vapor cells using femtosecond laser machining. This laser-written vapor-cell (LWVC) technology allows arbitrarily-shaped 3D interior volumes and has potential for integration with photonic structures and optical components. We use non-evaporable getters both to dispense rubidium and to absorb buffer gas. This enables us to produce cells with sub-atmospheric buffer gas pressures without vacuum apparatus. We demonstrate sub-Doppler saturated absorption spectroscopy and single beam optical magnetometry with a single LWVC. The LWVC technology may find application in miniaturized atomic quantum sensors and frequency references.
Collapse
|
16
|
Ugawa M, Ota S. High‐Throughput Parallel Optofluidic 3D‐Imaging Flow Cytometry. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Masashi Ugawa
- Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| | - Sadao Ota
- Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| |
Collapse
|
17
|
Ugawa M, Ota S. High-speed 3D imaging flow cytometry with optofluidic spatial transformation. BIOMEDICAL OPTICS EXPRESS 2022; 13:3647-3656. [PMID: 35781959 PMCID: PMC9208600 DOI: 10.1364/boe.455714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) fluorescence imaging is important to accurately capture and understand biological structures and phenomena. However, because of its slow acquisition speed, it was difficult to implement 3D fluorescence imaging for imaging flow cytometry. Especially, modern flow cytometers operate at a flow velocity of 1-10 m/s, and no 3D fluorescence imaging technique was able to capture cells at such high velocity. Here, we present a high-speed 3D fluorescence imaging technique in which a set of optical cross sections of a cell is captured within a single frame of a camera by combining strobe light-sheet excitation and optofluidic spatial transformation. Using this technique, we demonstrated 3D fluorescence imaging of cells flowing at a velocity of over 10 m/s, which is the fastest to our knowledge. Such technology can allow integration of 3D imaging with flow systems of common flow cytometers and cell sorters.
Collapse
Affiliation(s)
- Masashi Ugawa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Sadao Ota
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
18
|
Corbetta E, Candeo A, Bassi A, Ancora D. Blind deconvolution in autocorrelation inversion for multiview light-sheet microscopy. Microsc Res Tech 2022; 85:2282-2291. [PMID: 35199902 PMCID: PMC9306839 DOI: 10.1002/jemt.24085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
Combining the information coming from multiview acquisitions is a problem of great interest in light-sheet microscopy. Aligning the views and increasing the resolution of their fusion can be challenging, especially if the setup is not fully calibrated. Here, we tackle these issues by proposing a new reconstruction method based on autocorrelation inversion that avoids alignment procedures. On top of this, we add a blind deconvolution step to improve the resolution of the final reconstruction. Our method permits us to achieve inherently aligned, highly resolved reconstructions while, at the same time, estimating the unknown point-spread function of the system. RESEARCH HIGHLIGHTS: We tackle the problem of multiview light-sheet deconvolution with a blind approach of autocorrelation inversion Our method recovers the object and PSF, requires no alignment and calibration, and enhances the reconstruction of the specimen.
Collapse
Affiliation(s)
- Elena Corbetta
- Politecnico di Milano, Department of Physicspiazza Leonardo da Vinci 32MilanItaly
| | - Alessia Candeo
- Politecnico di Milano, Department of Physicspiazza Leonardo da Vinci 32MilanItaly
| | - Andrea Bassi
- Politecnico di Milano, Department of Physicspiazza Leonardo da Vinci 32MilanItaly
- National Council of Research of ItalyInstitute of Photonics and NanotechnologyMilanItaly
| | - Daniele Ancora
- Politecnico di Milano, Department of Physicspiazza Leonardo da Vinci 32MilanItaly
| |
Collapse
|
19
|
Guo S, Xue J, Liu J, Ye X, Guo Y, Liu D, Zhao X, Xiong F, Han X, Peng H. Smart imaging to empower brain-wide neuroscience at single-cell levels. Brain Inform 2022; 9:10. [PMID: 35543774 PMCID: PMC9095808 DOI: 10.1186/s40708-022-00158-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
A deep understanding of the neuronal connectivity and networks with detailed cell typing across brain regions is necessary to unravel the mechanisms behind the emotional and memorial functions as well as to find the treatment of brain impairment. Brain-wide imaging with single-cell resolution provides unique advantages to access morphological features of a neuron and to investigate the connectivity of neuron networks, which has led to exciting discoveries over the past years based on animal models, such as rodents. Nonetheless, high-throughput systems are in urgent demand to support studies of neural morphologies at larger scale and more detailed level, as well as to enable research on non-human primates (NHP) and human brains. The advances in artificial intelligence (AI) and computational resources bring great opportunity to 'smart' imaging systems, i.e., to automate, speed up, optimize and upgrade the imaging systems with AI and computational strategies. In this light, we review the important computational techniques that can support smart systems in brain-wide imaging at single-cell resolution.
Collapse
Affiliation(s)
- Shuxia Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Jie Xue
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Jian Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiangqiao Ye
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yichen Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Di Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xuan Zhao
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Feng Xiong
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiaofeng Han
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| |
Collapse
|
20
|
Buchanan BC, Yoon JY. Microscopic Imaging Methods for Organ-on-a-Chip Platforms. MICROMACHINES 2022; 13:328. [PMID: 35208453 PMCID: PMC8879989 DOI: 10.3390/mi13020328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Microscopic imaging is essential and the most popular method for in situ monitoring and evaluating the outcome of various organ-on-a-chip (OOC) platforms, including the number and morphology of mammalian cells, gene expression, protein secretions, etc. This review presents an overview of how various imaging methods can be used to image organ-on-a-chip platforms, including transillumination imaging (including brightfield, phase-contrast, and holographic optofluidic imaging), fluorescence imaging (including confocal fluorescence and light-sheet fluorescence imaging), and smartphone-based imaging (including microscope attachment-based, quantitative phase, and lens-free imaging). While various microscopic imaging methods have been demonstrated for conventional microfluidic devices, a relatively small number of microscopic imaging methods have been demonstrated for OOC platforms. Some methods have rarely been used to image OOCs. Specific requirements for imaging OOCs will be discussed in comparison to the conventional microfluidic devices and future directions will be introduced in this review.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
21
|
Modular multimodal platform for classical and high throughput light sheet microscopy. Sci Rep 2022; 12:1969. [PMID: 35121789 PMCID: PMC8817037 DOI: 10.1038/s41598-022-05940-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) has become an important tool for biological and biomedical research. Although several illumination and detection strategies have been developed, the sample mounting still represents a cumbersome procedure as this is highly dependent on the type of sample and often this might be time consuming. This prevents the use of LSFM in other promising applications in which a fast and straightforward sample-mounting procedure and imaging are essential. These include the high-throughput research fields, e.g. in drug screenings and toxicology studies. Here we present a new imaging paradigm for LSFM, which exploits modularity to offer multimodal imaging and straightforward sample mounting strategy, enhancing the flexibility and throughput of the system. We describe its implementation in which the sample can be imaged either as in any classical configuration, as it flows through the light-sheet using a fluidic approach, or a combination of both. We also evaluate its ability to image a variety of samples, from zebrafish embryos and larvae to 3D complex cell cultures.
Collapse
|
22
|
Kleiber A, Kraus D, Henkel T, Fritzsche W. Review: tomographic imaging flow cytometry. LAB ON A CHIP 2021; 21:3655-3666. [PMID: 34514484 DOI: 10.1039/d1lc00533b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Within the last decades, conventional flow cytometry (FC) has evolved as a powerful measurement method in clinical diagnostics, biology, life sciences and healthcare. Imaging flow cytometry (IFC) extends the power of traditional FC by adding high resolution optical and spectroscopic information. However, the conventional IFC only provides a 2D projection of a 3D object. To overcome this limitation, tomographic imaging flow cytometry (tIFC) was developed to access 3D information about the target particles. The goal of tIFC is to visualize surfaces and internal structures in a holistic way. This review article gives an overview of the past and current developments in tIFC.
Collapse
Affiliation(s)
- Andreas Kleiber
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Daniel Kraus
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Thomas Henkel
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| |
Collapse
|
23
|
Vargas-Ordaz EJ, Gorelick S, York HM, Liu B, Halls ML, Arumugam S, Neild A, de Marco A, Cadarso VJ. Three-dimensional imaging on a chip using optofluidics light-sheet fluorescence microscopy. LAB ON A CHIP 2021; 21:2945-2954. [PMID: 34124739 DOI: 10.1039/d1lc00098e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volumetric, sub-micron to micron level resolution imaging is necessary to assay phenotypes or characteristics at the sub-cellular/organelle scale. However, three-dimensional fluorescence imaging of cells is typically low throughput or compromises on the achievable resolution in space and time. Here, we capitalise on the flow control capabilities of microfluidics and combine it with microoptics to integrate light-sheet based imaging directly into a microfluidic chip. Our optofluidic system flows suspended cells through a sub-micrometer thick light-sheet formed using micro-optical components that are cast directly in polydimethylsiloxane (PDMS). This design ensures accurate alignment, drift-free operation, and easy integration with conventional microfluidics, while providing sufficient spatial resolution, optical sectioning and volumetric data acquisition. We demonstrate imaging rates of 120 ms per cell at sub-μm resolution, that allow extraction of complex cellular phenotypes, exemplified by imaging of cell clusters, receptor distribution, and the analysis of endosomal size changes.
Collapse
Affiliation(s)
- Erick J Vargas-Ordaz
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia. and Centre to Impact Antimicrobial Resistance - Sustainable Solutions, Monash University, Clayton, 3800, Victoria, Australia
| | - Sergey Gorelick
- Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Victoria, Australia. and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 3800 Clayton, Victoria, Australia
| | - Harrison M York
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 3800 Clayton, Victoria, Australia and European Molecular Biology Laboratory (EMBL) Australia, Monash University, 3800 Clayton, Victoria, Australia and Department of Anatomy and Developmental Biology, Monash University, 3800 Clayton, Victoria, Australia
| | - Bonan Liu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Senthil Arumugam
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 3800 Clayton, Victoria, Australia and European Molecular Biology Laboratory (EMBL) Australia, Monash University, 3800 Clayton, Victoria, Australia and Department of Anatomy and Developmental Biology, Monash University, 3800 Clayton, Victoria, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Victoria, Australia. and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 3800 Clayton, Victoria, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia. and Centre to Impact Antimicrobial Resistance - Sustainable Solutions, Monash University, Clayton, 3800, Victoria, Australia and The Melbourne Centre for Nanofabrication, Victorian Node - Australian National Fabrication Facility, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Gong H, Guo W, Neil MAA. GPU-accelerated real-time reconstruction in Python of three-dimensional datasets from structured illumination microscopy with hexagonal patterns. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200162. [PMID: 33896199 PMCID: PMC8072201 DOI: 10.1098/rsta.2020.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a structured illumination microscopy system that projects a hexagonal pattern by the interference among three coherent beams, suitable for implementation in a light-sheet geometry. Seven images acquired as the illumination pattern is shifted laterally can be processed to produce a super-resolved image that surpasses the diffraction-limited resolution by a factor of over 2 in an exemplar light-sheet arrangement. Three methods of processing data are discussed depending on whether the raw images are available in groups of seven, individually in a stream or as a larger batch representing a three-dimensional stack. We show that imaging axially moving samples can introduce artefacts, visible as fine structures in the processed images. However, these artefacts are easily removed by a filtering operation carried out as part of the batch processing algorithm for three-dimensional stacks. The reconstruction algorithms implemented in Python include specific optimizations for calculation on a graphics processing unit and we demonstrate its operation on experimental data of static objects and on simulated data of moving objects. We show that the software can process over 239 input raw frames per second at 512 × 512 pixels, generating over 34 super-resolved frames per second at 1024 × 1024 pixels. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.
Collapse
Affiliation(s)
- Hai Gong
- Department of Physics, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, UK
| | - Wenjun Guo
- Department of Physics, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, UK
| | - Mark A. A. Neil
- Department of Physics, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, UK
| |
Collapse
|
25
|
Boland MA, Cohen EAK, Flaxman SR, Neil MAA. Improving axial resolution in Structured Illumination Microscopy using deep learning. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200298. [PMID: 33896203 PMCID: PMC8072200 DOI: 10.1098/rsta.2020.0298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 05/05/2023]
Abstract
Structured Illumination Microscopy (SIM) is a widespread methodology to image live and fixed biological structures smaller than the diffraction limits of conventional optical microscopy. Using recent advances in image up-scaling through deep learning models, we demonstrate a method to reconstruct 3D SIM image stacks with twice the axial resolution attainable through conventional SIM reconstructions. We further demonstrate our method is robust to noise and evaluate it against two-point cases and axial gratings. Finally, we discuss potential adaptions of the method to further improve resolution. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.
Collapse
Affiliation(s)
- Miguel A. Boland
- Department of Mathematics, Imperial College, South Kensington Campus, 180 Queen’s Gate, London SW7 2RH, UK
| | - Edward A. K. Cohen
- Department of Mathematics, Imperial College, South Kensington Campus, 180 Queen’s Gate, London SW7 2RH, UK
| | - Seth R. Flaxman
- Department of Mathematics, Imperial College, South Kensington Campus, 180 Queen’s Gate, London SW7 2RH, UK
| | - Mark A. A. Neil
- Department of Mathematics, Imperial College, South Kensington Campus, 180 Queen’s Gate, London SW7 2RH, UK
| |
Collapse
|
26
|
Yordanov S, Neuhaus K, Hartmann R, Díaz-Pascual F, Vidakovic L, Singh PK, Drescher K. Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries. BIOMEDICAL OPTICS EXPRESS 2021; 12:3372-3391. [PMID: 34221666 PMCID: PMC8221969 DOI: 10.1364/boe.420788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional fluorescence-based imaging of living cells and organisms requires the sample to be exposed to substantial excitation illumination energy, typically causing phototoxicity and photobleaching. Light sheet fluorescence microscopy dramatically reduces phototoxicity, yet most implementations are limited to objective lenses with low numerical aperture and particular sample geometries that are built for specific biological systems. To overcome these limitations, we developed a single-objective light sheet fluorescence system for biological imaging based on axial plane optical microscopy and digital confocal slit detection, using either Bessel or Gaussian beam shapes. Compared to spinning disk confocal microscopy, this system displays similar optical resolution, but a significantly reduced photobleaching at the same signal level. This single-objective light sheet technique is built as an add-on module for standard research microscopes and the technique is compatible with high-numerical aperture oil immersion objectives and standard samples mounted on coverslips. We demonstrate the performance of this technique by imaging three-dimensional dynamic processes, including bacterial biofilm dispersal, the response of biofilms to osmotic shocks, and macrophage phagocytosis of bacterial cells.
Collapse
Affiliation(s)
- Stoyan Yordanov
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Equal contribution
| | - Konstantin Neuhaus
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Renthof 5, 35037 Marburg, Germany
- Equal contribution
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Francisco Díaz-Pascual
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Lucia Vidakovic
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Renthof 5, 35037 Marburg, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| |
Collapse
|
27
|
Memeo R, Paiè P, Sala F, Castriotta M, Guercio C, Vaccari T, Osellame R, Bassi A, Bragheri F. Automatic imaging of Drosophila embryos with light sheet fluorescence microscopy on chip. JOURNAL OF BIOPHOTONICS 2021; 14:e202000396. [PMID: 33295053 DOI: 10.1002/jbio.202000396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
We present a microscope on chip for automated imaging of Drosophila embryos by light sheet fluorescence microscopy. This integrated device, constituted by both optical and microfluidic components, allows the automatic acquisition of a 3D stack of images for specimens diluted in a liquid suspension. The device has been fully optimized to address the challenges related to the specimens under investigation. Indeed, the thickness and the high ellipticity of Drosophila embryos can degrade the image quality. In this regard, optical and fluidic optimization has been carried out to implement dual-sided illumination and automatic sample orientation. In addition, we highlight the dual color investigation capabilities of this device, by processing two sample populations encoding different fluorescent proteins. This work was made possible by the versatility of the used fabrication technique, femtosecond laser micromachining, which allows straightforward fabrication of both optical and fluidic components in glass substrates.
Collapse
Affiliation(s)
- Roberto Memeo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Petra Paiè
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Federico Sala
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Michele Castriotta
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Chiara Guercio
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, Milan, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, Milan, Italy
| | - Roberto Osellame
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci, Milan, Italy
| |
Collapse
|
28
|
Sala F, Paié P, Martínez Vázquez R, Osellame R, Bragheri F. Effects of Thermal Annealing on Femtosecond Laser Micromachined Glass Surfaces. MICROMACHINES 2021; 12:180. [PMID: 33670373 PMCID: PMC7918068 DOI: 10.3390/mi12020180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Femtosecond laser micromachining (FLM) of fused silica allows for the realization of three-dimensional embedded optical elements and microchannels with micrometric feature size. The performances of these components are strongly affected by the machined surface quality and residual roughness. The polishing of 3D buried structures in glass was demonstrated using different thermal annealing processes, but precise control of the residual roughness obtained with this technique is still missing. In this work, we investigate how the FLM irradiation parameters affect surface roughness and we characterize the improvement of surface quality after thermal annealing. As a result, we achieved a strong roughness reduction, from an average value of 49 nm down to 19 nm. As a proof of concept, we studied the imaging performances of embedded mirrors before and after thermal polishing, showing the capacity to preserve a minimum feature size of the reflected image lower than μ5μm. These results allow for us to push forward the capabilities of this enabling fabrication technology, and they can be used as a starting point to improve the performances of more complex optical elements, such as hollow waveguides or micro-lenses.
Collapse
Affiliation(s)
- Federico Sala
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (F.S.); (R.O.)
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (R.M.V.); (F.B.)
| | - Petra Paié
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (R.M.V.); (F.B.)
| | - Rebeca Martínez Vázquez
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (R.M.V.); (F.B.)
| | - Roberto Osellame
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (F.S.); (R.O.)
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (R.M.V.); (F.B.)
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (R.M.V.); (F.B.)
| |
Collapse
|
29
|
Mandracchia B, Son J, Jia S. Super-resolution optofluidic scanning microscopy. LAB ON A CHIP 2021; 21:489-493. [PMID: 33325966 PMCID: PMC8024922 DOI: 10.1039/d0lc00889c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Optofluidics enables visualizing diverse anatomical and functional traits of single-cell specimens with new degrees of imaging capabilities. However, the current optofluidic microscopy systems suffer from either low resolution to reveal subcellular details or incompatibility with general microfluidic devices or operations. Here, we report optofluidic scanning microscopy (OSM) for super-resolution, live-cell imaging. The system exploits multi-focal excitation using the innate fluidic motion of the specimens, allowing for minimal instrumental complexity and full compatibility with various microfluidic configurations. The results present effective resolution doubling, optical sectioning and contrast enhancement. We anticipate the OSM system to offer a promising super-resolution optofluidic paradigm for miniaturization and different levels of integration at the chip scale.
Collapse
Affiliation(s)
- Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Jeonghwan Son
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
30
|
Xu T, Lim YJ, Zheng Y, Jung M, Gaus K, Gardiner EE, Lee WM. Modified inverted selective plane illumination microscopy for sub-micrometer imaging resolution in polydimethylsiloxane soft lithography devices. LAB ON A CHIP 2020; 20:3960-3969. [PMID: 32940306 DOI: 10.1039/d0lc00598c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Moldable, transparent polydimethylsiloxane (PDMS) elastomer microdevices enable a broad range of complex studies of three-dimensional cellular networks in their microenvironment in vitro. However, the uneven distribution of refractive index change, external to PDMS devices and internally in the sample chamber, creates a significant optical path difference (OPD) that distorts the light sheet beam and so restricts diffraction limited performance. We experimentally showed that an OPD of 120 μm results in the broadening of the lateral point spread function by over 4-fold. In this paper, we demonstrate steps to adapt a commercial inverted selective plane illumination microscope (iSPIM) and remove the OPD so as to achieve sub-micrometer imaging ranging from 0.6 ± 0.04 μm to 0.91 ± 0.03 μm of a fluorescence biological sample suspended in regular saline (RI ≈1.34) enclosed in 1.2 to 2 mm thick micromolded PDMS microdevices. We have proven that the removal of the OPD from the external PDMS layer by refractive index (RI) matching with a readily accessible, inexpensive sucrose solution is critical to achieve a >3-fold imaging resolution improvement. To monitor the RI matching process, a single-mode fiber (SMF) illuminator was integrated into the iSPIM. To remove the OPD inside the PDMS channel, we used an electrically tunable lens (ETL) that par-focuses the light sheet beam with the detection objective lens and so minimised axial distortions to attain sub-micrometer imaging resolution. We termed this new light sheet imaging protocol as modified inverted selective plane illumination microscopy (m-iSPIM). Using the high spatial-temporal 3D imaging of m-iSPIM, we experimentally captured single platelet (≈2 μm) recruitment to a platelet aggregate (22.5 μm × 22.5 μm × 6 μm) under flow at a 150 μm depth within a microfluidic channel. m-iSPIM paves the way for the application of light sheet imaging to a wide range of 3D biological models in microfluidic devices which recapitulate features of the physiological microenvironment and elucidate subcellular responses.
Collapse
Affiliation(s)
- Tienan Xu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Yean Jin Lim
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia. and ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yujie Zheng
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - MoonSun Jung
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Woei Ming Lee
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia. and ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|