1
|
Xu G, Smart TJ, Durech E, Sarunic MV. Image metric-based multi-observation single-step deep deterministic policy gradient for sensorless adaptive optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:4795-4814. [PMID: 39346980 PMCID: PMC11427189 DOI: 10.1364/boe.528579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Sensorless adaptive optics (SAO) has been widely used across diverse fields such as astronomy, microscopy, and ophthalmology. Recent advances have proved the feasibility of using the deep deterministic policy gradient (DDPG) for image metric-based SAO, achieving fast correction speeds compared to the coordinate search Zernike mode hill climbing (ZMHC) method. In this work, we present a multi-observation single-step DDPG (MOSS-DDPG) optimization framework for SAO on a confocal scanning laser ophthalmoscope (SLO) system with particular consideration for applications in preclinical retinal imaging. MOSS-DDPG optimizes N target Zernike coefficients in a single-step manner based on 2N + 1 observations of the image sharpness metric values. Through in silico simulations, MOSS-DDPG has demonstrated the capability to quickly achieve diffraction-limited resolution performance with long short-term memory (LSTM) network implementation. In situ tests suggest that knowledge learned through simulation adapts swiftly to imperfections in the real system by transfer learning, exhibiting comparable in situ performance to the ZMHC method with a greater than tenfold reduction in the required number of iterations.
Collapse
Affiliation(s)
- Guozheng Xu
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Thomas J Smart
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| | - Eduard Durech
- School of Engineering Science, Simon Fraser University, Burnaby BC V5A 1S6, Canada
| | - Marinko V Sarunic
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
- School of Engineering Science, Simon Fraser University, Burnaby BC V5A 1S6, Canada
| |
Collapse
|
2
|
Ni S, Ng R, Huang D, Chen S, Young BK, Peter Campbell J, Jian Y. Non-mydriatic ultra-widefield diffraction-limited retinal imaging. OPTICS LETTERS 2024; 49:3902-3905. [PMID: 39008737 DOI: 10.1364/ol.525364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
We demonstrate a new non-mydriatic ultra-widefield optical coherence tomography retinal imaging system, designed with custom optics to improve the imaging field of view, lateral resolution, and patient comfort. The key motivation is to address the challenge with conventional systems that require pupillary dilation, adding time, expense, discomfort, and medical risk to the examination of the retina. Our system provides an ultrawide 100° field of view (beam scanning angle at the scanning pivot point) and maintains a lateral resolution of 20 µm on the center. It also allows a generous working distance of 16 mm, 2-3 times longer than existing ultra-widefield OCT imaging systems. This advanced system was able to avoid iris vignetting artifacts without pharmacological dilation and ensure diffraction-limited ultra-widefield imaging under a generalized eye model. This enables a comprehensive evaluation of retina diseases, especially those affecting the peripheral regions.
Collapse
|
3
|
Kurokawa K, Nemeth M. Multifunctional adaptive optics optical coherence tomography allows cellular scale reflectometry, polarimetry, and angiography in the living human eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:1331-1354. [PMID: 38404344 PMCID: PMC10890865 DOI: 10.1364/boe.505395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Clinicians are unable to detect glaucoma until substantial loss or dysfunction of retinal ganglion cells occurs. To this end, novel measures are needed. We have developed an optical imaging solution based on adaptive optics optical coherence tomography (AO-OCT) to discern key clinical features of glaucoma and other neurodegenerative diseases at the cellular scale in the living eye. Here, we test the feasibility of measuring AO-OCT-based reflectance, retardance, optic axis orientation, and angiogram at specifically targeted locations in the living human retina and optic nerve head. Multifunctional imaging, combined with focus stacking and global image registration algorithms, allows us to visualize cellular details of retinal nerve fiber bundles, ganglion cell layer somas, glial septa, superior vascular complex capillaries, and connective tissues. These are key histologic features of neurodegenerative diseases, including glaucoma, that are now measurable in vivo with excellent repeatability and reproducibility. Incorporating this noninvasive cellular-scale imaging with objective measurements will significantly enhance existing clinical assessments, which is pivotal in facilitating the early detection of eye disease and understanding the mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Morgan Nemeth
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
4
|
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:387-428. [PMID: 36698659 PMCID: PMC9841996 DOI: 10.1364/boe.472274] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 05/02/2023]
Abstract
Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Contributed equally
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
- Contributed equally
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
- Contributed equally
| |
Collapse
|
5
|
Zhang W, Man T, Zhang M, Zhang L, Wan Y. Computational adaptive holographic fluorescence microscopy based on the stochastic parallel gradient descent algorithm. BIOMEDICAL OPTICS EXPRESS 2022; 13:6431-6442. [PMID: 36589573 PMCID: PMC9774870 DOI: 10.1364/boe.470959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 05/02/2023]
Abstract
Optical aberrations introduced by sample or system elements usually degrade the image quality of a microscopic imaging system. Computational adaptive optics has unique advantages for 3D biological imaging since neither bulky wavefront sensors nor complicated indirect wavefront sensing procedures are required. In this paper, a stochastic parallel gradient descent computational adaptive optics method is proposed for high-efficiency aberration correction in the fluorescent incoherent digital holographic microscope. The proposed algorithm possesses the advantage of parallelly estimating various aberrations with fast convergence during the iteration; thus, the wavefront aberration is corrected quickly, and the original object image is retrieved accurately. Owing to its high-efficiency adaptive optimization, the proposed method exhibits better performances for a 3D sample with complex and anisotropic optical aberration. The proposed method can be a powerful tool for the visualization of dynamic events that happen inside cells or thick tissues.
Collapse
|
6
|
Abstract
The eye, the photoreceptive organ used to perceive the external environment, is of great importance to humans. It has been proven that some diseases in humans are accompanied by fundus changes; therefore, the health status of people may be interpreted from retinal images. However, the human eye is not a perfect refractive system for the existence of ocular aberrations. These aberrations not only affect the ability of human visual discrimination and recognition, but restrict the observation of the fine structures of human eye and reduce the possibility of exploring the mechanisms of eye disease. Adaptive optics (AO) is a technique that corrects optical wavefront aberrations. Once integrated into ophthalmoscopes, AO enables retinal imaging at the cellular level. This paper illustrates the principle of AO in correcting wavefront aberrations in human eyes, and then reviews the applications and advances of AO in ophthalmology, including the adaptive optics fundus camera (AO-FC), the adaptive optics scanning laser ophthalmoscope (AO-SLO), the adaptive optics optical coherence tomography (AO-OCT), and their combined multimodal imaging technologies. The future development trend of AO in ophthalmology is also prospected.
Collapse
|
7
|
Ni S, Khan S, Nguyen TTP, Ng R, Lujan BJ, Tan O, Huang D, Jian Y. Volumetric directional optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:950-961. [PMID: 35284155 PMCID: PMC8884206 DOI: 10.1364/boe.447882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Photoreceptor loss and resultant thinning of the outer nuclear layer (ONL) is an important pathological feature of retinal degenerations and may serve as a useful imaging biomarker for age-related macular degeneration. However, the demarcation between the ONL and the adjacent Henle's fiber layer (HFL) is difficult to visualize with standard optical coherence tomography (OCT). A dedicated OCT system that can precisely control and continuously and synchronously update the imaging beam entry points during scanning has not been realized yet. In this paper, we introduce a novel imaging technology, Volumetric Directional OCT (VD-OCT), which can dynamically adjust the incident beam on the pupil without manual adjustment during a volumetric OCT scan. We also implement a customized spoke-circular scanning pattern to observe the appearance of HFL with sufficient optical contrast in continuous cross-sectional scans through the entire volume. The application of VD-OCT for retinal imaging to exploit directional reflectivity properties of tissue layers has the potential to allow for early identification of retinal diseases.
Collapse
Affiliation(s)
- Shuibin Ni
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Shanjida Khan
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Thanh-Tin P. Nguyen
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Ringo Ng
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Brandon J. Lujan
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Ou Tan
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
8
|
Cannon TM, Bouma BE, Uribe-Patarroyo N. Layer-based, depth-resolved computation of attenuation coefficients and backscattering fractions in tissue using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:5037-5056. [PMID: 34513241 PMCID: PMC8407832 DOI: 10.1364/boe.427833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 05/18/2023]
Abstract
Structural optical coherence tomography (OCT) images of tissue stand to benefit from greater functionalization and quantitative interpretation. The OCT attenuation coefficient µ, an analogue of the imaged sample's scattering coefficient, offers potential functional contrast based on the relationship of µ to sub-resolution physical properties of the sample. Attenuation coefficients are computed either by fitting a representative µ over several depth-wise pixels of a sample's intensity decay, or by using previously-developed depth-resolved attenuation algorithms by Girard et al. [Invest. Ophthalmol. Vis. Sci.52, 7738 (2011). 10.1167/iovs.10-6925] and Vermeer et al. [Biomed. Opt. Express5, 322 (2014). 10.1364/BOE.5.000322]. However, the former method sacrifices axial information in the tomogram, while the latter relies on the stringent assumption that the sample's backscattering fraction, another optical property, does not vary along depth. This assumption may be violated by layered tissues commonly observed in clinical imaging applications. Our approach preserves the full depth resolution of the attenuation map but removes its dependence on backscattering fraction by performing signal analysis inside individual discrete layers over which the scattering properties (e.g., attenuation and backscattering fraction) vary minimally. Although this approach necessitates the detection of these layers, it removes the constant-backscattering-fraction assumption that has constrained quantitative attenuation coefficient analysis in the past, and additionally yields a layer-resolved backscattering fraction, providing complementary scattering information to the attenuation coefficient. We validate our approach using automated layer detection in layered phantoms, for which the measured optical properties were in good agreement with theoretical values calculated with Mie theory, and show preliminary results in tissue alongside corresponding histological analysis. Together, accurate backscattering fraction and attenuation coefficient measurements enable the estimation of both particle density and size, which is not possible from attenuation measurements alone. We hope that this improvement to depth-resolved attenuation coefficient measurement, augmented by a layer-resolved backscattering fraction, will increase the diagnostic power of quantitative OCT imaging.
Collapse
Affiliation(s)
- Taylor M. Cannon
- Massachusetts Institute of Technology, Institute of Medical Engineering and Science, 70 Massachusetts Avenue, Cambridge, MA 02141, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom St, Boston, MA 02114, USA
| | - Brett E. Bouma
- Massachusetts Institute of Technology, Institute of Medical Engineering and Science, 70 Massachusetts Avenue, Cambridge, MA 02141, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom St, Boston, MA 02114, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom St, Boston, MA 02114, USA
| |
Collapse
|
9
|
Song G, Jelly ET, Chu KK, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2021; 3:032002. [PMID: 37645660 PMCID: PMC10465117 DOI: 10.1088/2516-1091/abfeb7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Optical coherence tomography (OCT) is a powerful optical imaging technique capable of visualizing the internal structure of biological tissues at near cellular resolution. For years, OCT has been regarded as the standard of care in ophthalmology, acting as an invaluable tool for the assessment of retinal pathology. However, the costly nature of most current commercial OCT systems has limited its general accessibility, especially in low-resource environments. It is therefore timely to review the development of low-cost OCT systems as a route for applying this technology to population-scale disease screening. Low-cost, portable and easy to use OCT systems will be essential to facilitate widespread use at point of care settings while ensuring that they offer the necessary imaging performances needed for clinical detection of retinal pathology. The development of low-cost OCT also offers the potential to enable application in fields outside ophthalmology by lowering the barrier to entry. In this paper, we review the current development and applications of low-cost, portable and handheld OCT in both translational and research settings. Design and cost-reduction techniques are described for general low-cost OCT systems, including considerations regarding spectrometer-based detection, scanning optics, system control, signal processing, and the role of 3D printing technology. Lastly, a review of clinical applications enabled by low-cost OCT is presented, along with a detailed discussion of current limitations and outlook.
Collapse
Affiliation(s)
- Ge Song
- Author to whom any correspondence should be addressed.
| | | | - Kengyeh K Chu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Wesley Y Kendall
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
10
|
Tan B, Sim YC, Chua J, Yusufi D, Wong D, Yow AP, Chin C, Tan ACS, Sng CCA, Agrawal R, Gopal L, Sim R, Tan G, Lamoureux E, Schmetterer L. Developing a normative database for retinal perfusion using optical coherence tomography angiography. BIOMEDICAL OPTICS EXPRESS 2021; 12:4032-4045. [PMID: 34457397 PMCID: PMC8367249 DOI: 10.1364/boe.423469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 05/25/2023]
Abstract
Visualizing and characterizing microvascular abnormalities with optical coherence tomography angiography (OCTA) has deepened our understanding of ocular diseases, such as glaucoma, diabetic retinopathy, and age-related macular degeneration. Two types of microvascular defects can be detected by OCTA: focal decrease because of localized absence and collapse of retinal capillaries, which is referred to as the non-perfusion area in OCTA, and diffuse perfusion decrease usually detected by comparing with healthy case-control groups. Wider OCTA allows for insights into peripheral retinal vascularity, but the heterogeneous perfusion distribution from the macula, parapapillary area to periphery hurdles the quantitative assessment. A normative database for OCTA could estimate how much individual's data deviate from the normal range, and where the deviations locate. Here, we acquired OCTA images using a swept-source OCT system and a 12×12 mm protocol in healthy subjects. We automatically segmented the large blood vessels with U-Net, corrected for anatomical factors such as the relative position of fovea and disc, and segmented the capillaries by a moving window scheme. A total of 195 eyes were included and divided into 4 age groups: < 30 (n=24) years old, 30-49 (n=28) years old, 50-69 (n=109) years old and >69 (n=34) years old. This provides an age-dependent normative database for characterizing retinal perfusion abnormalities in 12×12 mm OCTA images. The usefulness of the normative database was tested on two pathological groups: one with diabetic retinopathy; the other with glaucoma.
Collapse
Affiliation(s)
- Bingyao Tan
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- NTU Institute for Health Technologies, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yin Ci Sim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Jacqueline Chua
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Dheo Yusufi
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Damon Wong
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- NTU Institute for Health Technologies, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Ai Ping Yow
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- NTU Institute for Health Technologies, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Calvin Chin
- Duke-NUS Medical School, Singapore
- National Heart Centre Singapore, Singapore
| | - Anna C. S. Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Changi General Hospital, Singapore
| | - Chelvin C. A. Sng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Ophthalmology, National University Hospital, Singapore
| | - Rupesh Agrawal
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Ralene Sim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Gavin Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Ecosse Lamoureux
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Leopold Schmetterer
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- NTU Institute for Health Technologies, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
11
|
Ni S, Wei X, Ng R, Ostmo S, Chiang MF, Huang D, Jia Y, Campbell JP, Jian Y. High-speed and widefield handheld swept-source OCT angiography with a VCSEL light source. BIOMEDICAL OPTICS EXPRESS 2021; 12:3553-3570. [PMID: 34221678 PMCID: PMC8221946 DOI: 10.1364/boe.425411] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) and OCT angiography (OCTA) enable noninvasive structural and angiographic imaging of the eye. Portable handheld OCT/OCTA systems are required for imaging patients in the supine position. Examples include infants in the neonatal intensive care unit (NICU) and operating room (OR). The speed of image acquisition plays a pivotal role in acquiring high-quality OCT/OCTA images, particularly with the handheld system, since both the operator hand tremor and subject motion can cause significant motion artifacts. In addition, having a large field of view and the ability of real-time data visualization are critical elements in rapid disease screening, reducing imaging time, and detecting peripheral retinal pathologies. The arrangement of optical components is less flexible in the handheld system due to the limitation of size and weight. In this paper, we introduce a 400-kHz, 55-degree field of view handheld OCT/OCTA system that has overcome many technical challenges as a portable OCT system as well as a high-speed OCTA system. We demonstrate imaging premature infants with retinopathy of prematurity (ROP) in the NICU, a patient with incontinentia pigmenti (IP), and a patient with X-linked retinoschisis (XLRS) in the OR using our handheld OCT system. Our design may have the potential for improving the diagnosis of retinal diseases and help provide a practical guideline for designing a flexible and portable OCT system.
Collapse
Affiliation(s)
- Shuibin Ni
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Xiang Wei
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ringo Ng
- Department of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Susan Ostmo
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Michael F. Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - J. Peter Campbell
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yifan Jian
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology. Ther Adv Ophthalmol 2021; 13:25158414211002400. [PMID: 35187398 PMCID: PMC8855415 DOI: 10.1177/25158414211002400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.
Collapse
Affiliation(s)
- Morgan J. Ringel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric M. Tang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
13
|
Akyol E, Hagag AM, Sivaprasad S, Lotery AJ. Adaptive optics: principles and applications in ophthalmology. Eye (Lond) 2021; 35:244-264. [PMID: 33257798 PMCID: PMC7852593 DOI: 10.1038/s41433-020-01286-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
This is a comprehensive review of the principles and applications of adaptive optics (AO) in ophthalmology. It has been combined with flood illumination ophthalmoscopy, scanning laser ophthalmoscopy, as well as optical coherence tomography to image photoreceptors, retinal pigment epithelium (RPE), retinal ganglion cells, lamina cribrosa and the retinal vasculature. In this review, we highlight the clinical studies that have utilised AO to understand disease mechanisms. However, there are some limitations to using AO in a clinical setting including the cost of running an AO imaging service, the time needed to scan patients, the lack of normative databases and the very small size of area imaged. However, it is undoubtedly an exceptional research tool that enables visualisation of the retina at a cellular level.
Collapse
Affiliation(s)
- Engin Akyol
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ahmed M Hagag
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Andrew J Lotery
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|