1
|
Mann P, Joshi H, Nayyar V, Mishra D, Mehta DS. Birefringence mapping of biological tissues based on polarization sensitive non-interferometric quantitative phase imaging technique. Photodiagnosis Photodyn Ther 2024; 46:104094. [PMID: 38642728 DOI: 10.1016/j.pdpdt.2024.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE Oral cancer is a leading cause of mortality globally, particularly affecting developing regions where oral hygiene is often overlooked. The optical properties of tissues are vital for diagnostics, with polarization imaging emerging as a label-free, contrast-enhancing technique widely employed in medical and scientific research over past few decades. MATERIALS AND METHODS We present a novel polarization sensitive quantitative phase imaging of biological tissues by incorporating the conventional polarization microscope and transport of intensity equation-based phase retrieval algorithm. This integration provides access to the birefringence mapping of biological tissues. The inherent optical anisotropy in biological tissues induces the polarization dependent refractive index variations which can provide the detailed insights into the birefringence characteristics of their extracellular constituents. Experimental investigations were conducted on both normal and cancerous oral tissue samples by recording a set of three polarization intensity images for each case with a step size of 2 μm. RESULTS A noteworthy increment in birefringence quantification was observed in cancerous as compared to the normal tissues, attributed to the proliferation of abnormal cells during cancer progression. The mean birefringence values were calculated for both normal and cancerous tissues, revealing a significant increase in birefringence of cancerous tissues (2.1 ± 0.2) × 10-2 compared to normal tissues (0.8 ± 0.2) × 10-2. Data were collected from 8 patients in each group under identical experimental conditions. CONCLUSION This polarization sensitive non-interferometric optical approach demonstrated effective discrimination between cancerous and normal tissues, with various parameters indicating elevated values in cancerous tissues.
Collapse
Affiliation(s)
- Priyanka Mann
- Bio-Photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Himanshu Joshi
- Bio-Photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Vivek Nayyar
- Department of Oral Pathology and Microbiology, Centre for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Dalip Singh Mehta
- Bio-Photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Sharma M, Unni SN, Shaji C, Balasubramanian S, Sundaram S. Characterizing colon cancer stages through optical polarimetry-assisted digital staining. Lasers Med Sci 2024; 39:59. [PMID: 38336913 DOI: 10.1007/s10103-024-04006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Tissue polarimetry has been gaining importance in extracting useful diagnostic information from the structural attributes of tissues, which vary in response to the tissue health status and hence find great potential in cancer diagnosis. However, the complexities associated with cancer make it challenging to isolate the characteristic changes as the tumor progresses using polarimetry. This study attempts to experimentally characterize the polarimetric behavior in colon cancer associated with various stages of development. Bulk and unstained sections of normal and tumor colon tissue were imaged in the reflection and transmission polarimetry configurations at low and high imaging resolutions using an in-house developed Mueller polarimeter. Through this study, we observed that the information about the major contributors of scattering in colon tissue, manifesting in depolarization and retardance, can be obtained from the bulk tissue and unstained sections. These parameters aid in characterizing the polarimetric changes as the colon tumor progresses. While the unstained colon section best indicated the depolarization contrast between normal and tumor, the contrast through the retardance parameter was more pronounced in the bulk colon tissue. The results suggest that the polarimetric "digitally stained" images obtained by Mueller polarimetry are comparable with the bulk tissue counterparts, making it useful for characterizing colon cancer tissues across different stages of development.
Collapse
Affiliation(s)
- Mahima Sharma
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Sujatha Narayanan Unni
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - Chitra Shaji
- Biophotonics Lab, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Subalakshmi Balasubramanian
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, SRIHER, Porur, Chennai, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, SRIHER, Porur, Chennai, India
| |
Collapse
|
3
|
Mann P, Thapa P, Nayyar V, Surya V, Mishra D, Mehta DS. Multispectral polarization microscopy of different stages of human oral tissue: A polarization study. JOURNAL OF BIOPHOTONICS 2024; 17:e202300236. [PMID: 37789505 DOI: 10.1002/jbio.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Many optical techniques have been used in various diagnostics and biomedical applications since a decade and polarization imaging is one of the non-invasive and label free optical technique to investigate biological samples making it an important tool in diagnostics, biomedical applications. We report a multispectral polarization-based imaging of oral tissue by utilizing a polarization microscope system with a broadband-light source. Experiments were performed on oral tissue samples and multispectral Stokes mapping was done by recording a set of intensity images. Polarization-based parameters like degree of polarization, angle of fast axis, retardation and linear birefringence have been retrieved. The statistical moments of these polarization components have also been reported at multiples wavelengths. The polarimetric properties of oral tissue at different stages of cancer have been analyzed and significant changes from normal to pre-cancerous lesions to the cancerous are observed in linear birefringence quantification as (1.7 ± 0.1) × 10-3 , (2.5 ± 0.2) × 10-3 and (3.3 ± 0.2) × 10-3 respectively.
Collapse
Affiliation(s)
- Priyanka Mann
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Pramila Thapa
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Vivek Nayyar
- Department of Oral Pathology and Microbiology, Centre for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Varun Surya
- Department of Oral Pathology and Microbiology, Centre for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Education & Research, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Dalip Singh Mehta
- Bio-photonics and Green-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
4
|
Hao R, Zeng N, Zhang Z, He H, He C, Ma H. Discrepancy of coordinate system selection in backscattering Mueller matrix polarimetry: exploring photon coordinate system transformation invariants. OPTICS EXPRESS 2024; 32:3804-3816. [PMID: 38297593 DOI: 10.1364/oe.513999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
In biomedical studies, Mueller matrix polarimetry is gaining increasing attention because it can comprehensively characterize polarization-related vectorial properties of the sample, which are crucial for microstructural identification and evaluation. For backscattering Mueller matrix polarimetry, there are two photon coordinate selection conventions, which can affect the following Mueller matrix parameters calculation and information acquisition quantitatively. In this study, we systematically analyze the influence of photon coordinate system selection on the backscattering Mueller matrix polarimetry. We compare the Mueller matrix elements in the right-handed-nonunitary and non-right-handed-unitary coordinate systems, and specifically deduce the changes of Mueller matrix polar decomposition, Mueller matrix Cloude decomposition and Mueller matrix transformation parameters widely used in backscattering Mueller matrix imaging as the photon coordinate system varied. Based on the theoretical analysis and phantom experiments, we provide a group of photon coordinate system transformation invariants for backscattering Mueller matrix polarimetry. The findings presented in this study give a crucial criterion of parameters selection for backscattering Mueller matrix imaging under different photon coordinate systems.
Collapse
|
5
|
Agarwal V, Bajpai M. Imaging and Non-imaging Analytical Techniques Used for Drug Nanosizing and their Patents: An Overview. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:494-518. [PMID: 37953622 DOI: 10.2174/0118722105243388230920013508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Nanosizing is widely recognized as an effective technique for improving the solubility, dissolution rate, onset of action, and bioavailability of poorly water-soluble drugs. To control the execution and behavior of the output product, more advanced and valuable analytical techniques are required. OBJECTIVE The primary intent of this review manuscript was to furnish the understanding of imaging and non-imaging techniques related to nanosizing analysis by focusing on related patents. In addition, the study also aimed to collect and illustrate the information on various classical (laser diffractometry, photon correlation spectroscopy, zeta potential, laser Doppler electrophoresis, X-ray diffractometry, differential scanning calorimeter, scanning electron microscopy, transmission electron microscopy), new, and advanced analytical techniques (improved dynamic light scattering method, Brunauer-Emmett- Teller method, ultrasonic attenuation, biosensor), as well as commercial techniques, like inductively coupled plasma mass spectroscopy, aerodynamic particle sizer, scanning mobility particle sizer, and matrix- assisted laser desorption/ionization mass spectroscopy, which all relate to nano-sized particles. METHODS The present manuscript has taken a fresh look at the various aspects of the analytical techniques utilized in the process of nanosizing, and has achieved this through the analysis of a wide range of peer-reviewed literature. All summarized literature studies provide the information that can meet the basic needs of nanotechnology. RESULTS A variety of analytical techniques related to the nanosizing process have already been established and have great potential to weed out several issues. However, the current scenarios require more relevant, accurate, and advanced analytical techniques that can minimize the time and deviations associated with different instrumental and process parameters. To meet this requirement, some new and more advanced analytical techniques have recently been discovered, like ultrasonic attenuation technique, BET technique, biosensors, etc. Conclusion: The present overview certifies the significance of different analytical techniques utilized in the nanosizing process. The overview also provides information on various patents related to sophisticated analytical tools that can meet the needs of such an advanced field. The data show that the nanotechnology field will flourish in the coming future.
Collapse
Affiliation(s)
- Vijay Agarwal
- Rajkumar Goel Institute of Technology (Pharmacy), Delhi-Meerut Road, Ghaziabad, UP, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, G.L.A. University, Mathura-Delhi Road, Mathura, UP, India
| |
Collapse
|
6
|
Deng L, Chen C, Yu W, Shao C, Shen Z, Wang Y, He C, Li H, Liu Z, He H, Ma H. Influence of hematoxylin and eosin staining on linear birefringence measurement of fibrous tissue structures in polarization microscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:102909. [PMID: 37786544 PMCID: PMC10541683 DOI: 10.1117/1.jbo.28.10.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Significance For microscopic polarization imaging of tissue slices, two types of samples are often prepared: one unstained tissue section for polarization imaging to avoid possible influence from staining dyes quantitatively and one hematoxylin-eosin (H&E) stained adjacent tissue section for histological diagnosis and structural feature identification. However, this sample preparation strategy requires high-quality adjacent tissue sections, and labeling the structural features on unstained tissue sections is impossible. With the fast development of data driven-based polarimetric analysis, which requires a large amount of pixel labeled images, a possible method is to directly use H&E stained slices, which are standard samples archived in clinical hospitals for polarization measurement. Aim We aim to study the influence of hematoxylin and eosin staining on the linear birefringence measurement of fibrous tissue structures. Approach We examine the linear birefringence properties of four pieces of adjacent bone tissue slices with abundant collagen fibers that are unstained, H&E stained, hematoxylin (H) stained, and eosin (E) stained. After obtaining the spatial maps of linear retardance values for the four tissue samples, we carry out a comparative study using a frequency distribution histogram and similarity analysis based on the Bhattacharyya coefficient to investigate how H&E staining affects the linear birefringence measurement of bone tissues. Results Linear retardance increased after H&E, H, or E staining (41.7%, 40.8%, and 72.5% increase, respectively). However, there is no significant change in the imaging contrast of linear retardance in bone tissues. Conclusions The linear retardance values induced by birefringent collagen fibers can be enhanced after H&E, H, or E staining. However, the structural imaging contrasts based on linear retardance did not change significantly or the staining did not generate linear birefringence on the sample area without collagen. Therefore, it can be acceptable to prepare H&E stained slices for clinical applications of polarimetry based on such a mapping relationship.
Collapse
Affiliation(s)
- Liangyu Deng
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China
| | - Chunyan Chen
- Shanghai Jiao Tong University School of Medicine, Shanghai Sixth People’s Hospital, Department of Pathology, Shanghai, China
| | - Wenxi Yu
- Shanghai Jiao Tong University School of Medicine, Shanghai Sixth People’s Hospital, Department of Oncology, Shanghai, China
| | - Conghui Shao
- Tsinghua University, Department of Physics, Beijing, China
| | - Zan Shen
- Shanghai Jiao Tong University School of Medicine, Shanghai Sixth People’s Hospital, Department of Oncology, Shanghai, China
| | - Yonggang Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai Sixth People’s Hospital, Department of Oncology, Shanghai, China
| | - Chao He
- University of Oxford, Department of Engineering Science, Oxford, United Kingdom
| | - Hongtao Li
- Shanghai Jiao Tong University School of Medicine, Shanghai Sixth People’s Hospital, Department of Oncology, Shanghai, China
| | - Zhiyan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai Sixth People’s Hospital, Department of Pathology, Shanghai, China
| | - Honghui He
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China
| | - Hui Ma
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China
- Tsinghua University, Department of Physics, Beijing, China
| |
Collapse
|
7
|
Deng L, Fan Z, Chen B, Zhai H, He H, He C, Sun Y, Wang Y, Ma H. A Dual-Modality Imaging Method Based on Polarimetry and Second Harmonic Generation for Characterization and Evaluation of Skin Tissue Structures. Int J Mol Sci 2023; 24:ijms24044206. [PMID: 36835613 PMCID: PMC9966533 DOI: 10.3390/ijms24044206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The characterization and evaluation of skin tissue structures are crucial for dermatological applications. Recently, Mueller matrix polarimetry and second harmonic generation microscopy have been widely used in skin tissue imaging due to their unique advantages. However, the features of layered skin tissue structures are too complicated to use a single imaging modality for achieving a comprehensive evaluation. In this study, we propose a dual-modality imaging method combining Mueller matrix polarimetry and second harmonic generation microscopy for quantitative characterization of skin tissue structures. It is demonstrated that the dual-modality method can well divide the mouse tail skin tissue specimens' images into three layers of stratum corneum, epidermis, and dermis. Then, to quantitatively analyze the structural features of different skin layers, the gray level co-occurrence matrix is adopted to provide various evaluating parameters after the image segmentations. Finally, to quantitatively measure the structural differences between damaged and normal skin areas, an index named Q-Health is defined based on cosine similarity and the gray-level co-occurrence matrix parameters of imaging results. The experiments confirm the effectiveness of the dual-modality imaging parameters for skin tissue structure discrimination and assessment. It shows the potential of the proposed method for dermatological practices and lays the foundation for further, in-depth evaluation of the health status of human skin.
Collapse
Affiliation(s)
- Liangyu Deng
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhipeng Fan
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Binguo Chen
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Haoyu Zhai
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Honghui He
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence: (H.H.); (C.H.)
| | - Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Correspondence: (H.H.); (C.H.)
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Khan F, Naeem K, Khalid A, Khan MN, Ahmad I. Photoacoustic imaging for characterization of radiofrequency ablated cardiac tissues. Lasers Med Sci 2023; 38:61. [PMID: 36732430 DOI: 10.1007/s10103-023-03723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Photoacoustic (PA) imaging is an emerging technique being explored for various clinical applications. PA imaging offers a portable, inexpensive, stand-alone modality for evaluating optical contrast agents. PA signals are well-correlated with tissue physical parameters and can quantify various physiological variables (e.g., oxygenation of hemoglobin). Moreover, radiofrequency (RF) ablation is a promising treatment for certain cardiac arrhythmias. Assessment of RF-ablated lesions is of clinical importance. The purpose of this study is to elaborate the PA imaging to characterize RF-ablated cardiac tissues. Specifically, we describe the application of PA imaging to identify, characterize, and quantify cardiac RF lesions, highlighting the fundamental principles and unique benefits of this optical imaging technique. Potential future clinical application of PA imaging that reveals additional information about structural damage in RF-treated cardiac tissue are also anticipated.
Collapse
Affiliation(s)
- Farwa Khan
- Services Institute of Medical Sciences, Lahore, Pakistan
| | | | - Amna Khalid
- Nishtar Medical University, Multan, Pakistan
| | | | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
9
|
Chen Y, Dong Y, Si L, Yang W, Du S, Tian X, Li C, Liao Q, Ma H. Dual Polarization Modality Fusion Network for Assisting Pathological Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:304-316. [PMID: 36155433 DOI: 10.1109/tmi.2022.3210113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polarization imaging is sensitive to sub-wavelength microstructures of various cancer tissues, providing abundant optical characteristics and microstructure information of complex pathological specimens. However, how to reasonably utilize polarization information to strengthen pathological diagnosis ability remains a challenging issue. In order to take full advantage of pathological image information and polarization features of samples, we propose a dual polarization modality fusion network (DPMFNet), which consists of a multi-stream CNN structure and a switched attention fusion module for complementarily aggregating the features from different modality images. Our proposed switched attention mechanism could obtain the joint feature embeddings by switching the attention map of different modality images to improve their semantic relatedness. By including a dual-polarization contrastive training scheme, our method can synthesize and align the interaction and representation of two polarization features. Experimental evaluations on three cancer datasets show the superiority of our method in assisting pathological diagnosis, especially in small datasets and low imaging resolution cases. Grad-CAM visualizes the important regions of the pathological images and the polarization images, indicating that the two modalities play different roles and allow us to give insightful corresponding explanations and analysis on cancer diagnosis conducted by the DPMFNet. This technique has potential to facilitate the performance of pathological aided diagnosis and broaden the current digital pathology boundary based on pathological image features.
Collapse
|
10
|
Li Y, Li Y, Zhou G, Yan X, Ning T, Liu K, Liu L, Liu A, Ma Z. Holistic and efficient calibration method for Mueller matrix imaging polarimeter with a high numerical aperture. APPLIED OPTICS 2022; 61:9937-9945. [PMID: 36606825 DOI: 10.1364/ao.474531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
High-numerical aperture (N A>0.6) Mueller matrix imaging polarimeter (MMIP) (high-NA MMIP) is urgently needed for higher resolution. Usually, the working distance of high-NA MMIP is too short to perform in situ calibration by a usual reference sample, such as polarizer and retarder plates. The polarization effects of the substrate that attach the sample are never calibrated. So, the resolution and accuracy of the MMIP is hard to further promote. In this paper, a holistic and efficient calibration method is innovated for high-NA MMIP. Two film polarizers and a film retarder as well as a blank substrate are first adopted as the reference samples in calibration. Different from the conventional eigenvalue calibration method (ECM), the holistic calibration theory and process are established. All polarimetric errors arising from the devices, subsystems, and the substrate can be calibrated in one process. The normalized measurement error is less than 0.0024 for NA 0.95 MMIP, which is an order of magnitude lower than those of NA 0.1 and 0.2 MMIPs in publications. The excellent performance of calibrated high-NA MMIP is demonstrated by tissue polarimetry with higher resolution, accuracy, and more appropriate dynamic range.
Collapse
|
11
|
Shao C, Chen B, He H, He C, Shen Y, Zhai H, Ma H. Analyzing the Influence of Imaging Resolution on Polarization Properties of Scattering Media Obtained From Mueller Matrix. Front Chem 2022; 10:936255. [PMID: 35903191 PMCID: PMC9315153 DOI: 10.3389/fchem.2022.936255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
The Mueller matrix contains abundant micro- and even nanostructural information of media. Especially, it can be used as a powerful tool to characterize anisotropic structures quantitatively, such as the particle size, density, and orientation information of fibers in the sample. Compared with unpolarized microscopic imaging techniques, Mueller matrix microscopy can also obtain some essential structural information about the sample from the derived parameters images at low resolution. Here, to analyze the comprehensive effects of imaging resolution on polarization properties obtained from the Mueller matrix, we, first, measure the microscopic Mueller matrices of unstained rat dorsal skin tissue slices rich in collagen fibers using a series of magnifications or numerical aperture (NA) values of objectives. Then, the first-order moments and image texture parameters are quantified and analyzed in conjunction with the polarization parameter images. The results show that the Mueller matrix polar decomposition parameters diattenuation D, linear retardance δ, and depolarization Δ images obtained using low NA objective retain most of the structural information of the sample and can provide fast imaging speed. In addition, the scattering phase function analysis and Monte Carlo simulation based on the cylindrical scatterers reveal that the diattenuation parameter D images with different imaging resolutions are expected to be used to distinguish among the fibrous scatterers in the medium with different particle sizes. This study provides a criterion to decide which structural information can be accurately and rapidly obtained using a transmission Mueller matrix microscope with low NA objectives to assist pathological diagnosis and other applications.
Collapse
Affiliation(s)
- Conghui Shao
- Department of Physics, Tsinghua University, Beijing, China
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Binguo Chen
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Honghui He
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- *Correspondence: Honghui He, ; Chao He,
| | - Chao He
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- *Correspondence: Honghui He, ; Chao He,
| | - Yuanxing Shen
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Haoyu Zhai
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hui Ma
- Department of Physics, Tsinghua University, Beijing, China
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
12
|
Wan J, Dong Y, Xue JH, Lin L, Du S, Dong J, Yao Y, Li C, Ma H. Polarization-based probabilistic discriminative model for quantitative characterization of cancer cells. BIOMEDICAL OPTICS EXPRESS 2022; 13:3339-3354. [PMID: 35781945 PMCID: PMC9208602 DOI: 10.1364/boe.456649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 05/25/2023]
Abstract
We propose a polarization-based probabilistic discriminative model for deriving a set of new sigmoid-transformed polarimetry feature parameters, which not only enables accurate and quantitative characterization of cancer cells at pixel level, but also accomplish the task with a simple and stable model. By taking advantages of polarization imaging techniques, these parameters enable a low-magnification and wide-field imaging system to separate the types of cells into more specific categories that previously were distinctive under high magnification. Instead of blindly choosing the model, the L0 regularization method is used to obtain the simplified and stable polarimetry feature parameter. We demonstrate the model viability by using the pathological tissues of breast cancer and liver cancer, in each of which there are two derived parameters that can characterize the cells and cancer cells respectively with satisfactory accuracy and sensitivity. The stability of the final model opens the possibility for physical interpretation and analysis. This technique may bypass the typically labor-intensive and subjective tumor evaluating system, and could be used as a blueprint for an objective and automated procedure for cancer cell screening.
Collapse
Affiliation(s)
- Jiachen Wan
- Guangdong Engineering Center of
Polarization Imaging and Sensing Technology, Tsinghua Shenzhen
International Graduate School, Tsinghua
University, Shenzhen 518055, China
- Equal contributors
| | - Yang Dong
- Guangdong Engineering Center of
Polarization Imaging and Sensing Technology, Tsinghua Shenzhen
International Graduate School, Tsinghua
University, Shenzhen 518055, China
- Center for Precision Medicine and
Healthcare, Tsinghua-Berkeley Shenzhen Institute,
Tsinghua University, Shenzhen 518071,
China
- Equal contributors
| | - Jing-Hao Xue
- Department of Statistical Science,
University College London, London WC1E 6BT,
UK
| | - Liyan Lin
- Department of Pathology,
Fujian Medical University Cancer Hospital,
Fujian Cancer Hospital, Fuzhou 350014, China
| | - Shan Du
- Department of Pathology,
University of Chinese Academy of Sciences Shenzhen
Hospital, Shenzhen 518106, China
| | - Jia Dong
- Guangdong Engineering Center of
Polarization Imaging and Sensing Technology, Tsinghua Shenzhen
International Graduate School, Tsinghua
University, Shenzhen 518055, China
| | - Yue Yao
- Guangdong Engineering Center of
Polarization Imaging and Sensing Technology, Tsinghua Shenzhen
International Graduate School, Tsinghua
University, Shenzhen 518055, China
- Center for Precision Medicine and
Healthcare, Tsinghua-Berkeley Shenzhen Institute,
Tsinghua University, Shenzhen 518071,
China
| | - Chao Li
- Department of Pathology,
Fujian Medical University Cancer Hospital,
Fujian Cancer Hospital, Fuzhou 350014, China
| | - Hui Ma
- Guangdong Engineering Center of
Polarization Imaging and Sensing Technology, Tsinghua Shenzhen
International Graduate School, Tsinghua
University, Shenzhen 518055, China
- Center for Precision Medicine and
Healthcare, Tsinghua-Berkeley Shenzhen Institute,
Tsinghua University, Shenzhen 518071,
China
- Department of Physics,
Tsinghua University, Beijing 100084,
China
| |
Collapse
|
13
|
Chen Y, Chu J, Tang WC, Zhang R, Zhao M, Xin B. Study of the spatial scale stability of Mueller matrix parameters for textural characterization of biological tissues. JOURNAL OF BIOPHOTONICS 2022; 15:e202100269. [PMID: 34837329 DOI: 10.1002/jbio.202100269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Mueller matrix imaging polarimetry (MMIP) is a promising technique for the textural characterization of biological tissue structures. To reveal the influence of imaging magnification on the robustness of Mueller matrix parameters (MMPs), the spatial scale stability of MMPs was studied. We established a new MMIP detector and derived the mathematical model of the spatial scale stability of MMPs. The biological tissues with well-defined structural components were imaged under different magnifications. Then, we compared and analyzed the textural features of the MMPs in the resulting images. The experimental results match the predictions of the mathematical model in these aspects: (a) magnification exhibits a strong nonlinear effect on the textural contrasts of MMPs images; (b) higher magnification does not necessarily lead to superior contrast for textural characterization; and (c) for different biological tissues, MMPs contrasts can be optimized differently, with some showing superior results. This study provides a reference for the experimental design and operation of the MMIP technique and is helpful for improving the characterization ability of MMPs.
Collapse
Affiliation(s)
- Yongtai Chen
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Jinkui Chu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Ran Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Mingyu Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Benda Xin
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
14
|
Polarization Aberrations in High-Numerical-Aperture Lens Systems and Their Effects on Vectorial-Information Sensing. REMOTE SENSING 2022. [DOI: 10.3390/rs14081932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The importance of polarization aberrations has been recognized and studied in numerous optical systems and related applications. It is known that polarization aberrations are particularly crucial in certain photogrammetry and microscopy techniques that are related to vectorial information—such as polarization imaging, stimulated emission depletion microscopy, and structured illumination microscopy. Hence, a reduction in polarization aberrations would be beneficial to different types of optical imaging/sensing techniques with enhanced vectorial information. In this work, we first analyzed the intrinsic polarization aberrations induced by a high-NA lens theoretically and experimentally. The aberrations of depolarization, diattenuation, and linear retardance were studied in detail using the Mueller matrix polar-decomposition method. Based on an analysis of the results, we proposed strategies to compensate the polarization aberrations induced by high-NA lenses for hardware-based solutions. The preliminary imaging results obtained using a Mueller matrix polarimeter equipped with multiple coated aspheric lenses for polarization-aberration reduction confirmed that the conclusions and strategies proposed in this study had the potential to provide more precise polarization information of the targets for applications spanning across classical optics, remote sensing, biomedical imaging, photogrammetry, and vectorial optical-information extraction.
Collapse
|
15
|
Si L, Huang T, Wang X, Yao Y, Dong Y, Liao R, Ma H. Deep learning Mueller matrix feature retrieval from a snapshot Stokes image. OPTICS EXPRESS 2022; 30:8676-8689. [PMID: 35299314 DOI: 10.1364/oe.451612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A Mueller matrix (MM) provides a comprehensive representation of the polarization properties of a complex medium and encodes very rich information on the macro- and microstructural features. Histopathological features can be characterized by polarization parameters derived from MM. However, a MM must be derived from at least four Stokes vectors corresponding to four different incident polarization states, which makes the qualities of MM very sensitive to small changes in the imaging system or the sample during the exposures, such as fluctuations in illumination light and co-registration of polarization component images. In this work, we use a deep learning approach to retrieve MM-based specific polarimetry basis parameters (PBPs) from a snapshot Stokes vector. This data post-processing method is capable of eliminating errors introduced by multi-exposure, as well as reducing the imaging time and hardware complexity. It shows the potential for accurate MM imaging on dynamic samples or in unstable environments. The translation model is designed based on generative adversarial network with customized loss functions. The effectiveness of the approach was demonstrated on liver and breast tissue slices and blood smears. Finally, we evaluated the performance by quantitative similarity assessment methods in both pixel and image levels.
Collapse
|
16
|
Yao Y, Zhang F, Wang B, Wan J, Si L, Dong Y, Zhu Y, Liu X, Chen L, Ma H. Polarization imaging-based radiomics approach for the staging of liver fibrosis. BIOMEDICAL OPTICS EXPRESS 2022; 13:1564-1580. [PMID: 35414973 PMCID: PMC8973194 DOI: 10.1364/boe.450294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 05/25/2023]
Abstract
Mueller matrix imaging contains abundant biological microstructure information and has shown promising potential in clinical applications. Compared with the ordinary unpolarized light microscopy that relies on the spatial resolution to reveal detailed histological features, Mueller matrix imaging encodes rich information on the microstructures even at low-resolution and wide-field conditions. Accurate staging of liver fibrosis is essential for the therapeutic diagnosis and prognosis of chronic liver diseases. In the clinic, pathologists commonly use semiquantitative numerical scoring systems to determine the stages of liver fibrosis based on the visualization of stained characteristic morphological changes, which require skilled staining technicians and well-trained pathologists. A polarization imaging based quantitative diagnostic method can help to reduce the time-consuming multiple staining processes and provide quantitative information to facilitate the accurate staging of liver fibrosis. In this study, we report a polarization imaging based radiomics approach to provide quantitative diagnostic features for the staging of liver fibrosis. Comparisons between polarization image features under a 4× objective lens with H&E image features under 4×, 10×, 20×, and 40× objective lenses were performed to highlight the superiority of the high dimensional polarization image features in the characterization of the histological microstructures of liver fibrosis tissues at low-resolution and wide-field conditions.
Collapse
Affiliation(s)
- Yue Yao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Center for Precision Medicine and Healthcare, Shenzhen 518071, China
- Tsinghua Shenzhen International Graduate School, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen 518055, China
| | - Fengdi Zhang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Center for Precision Medicine and Healthcare, Shenzhen 518071, China
- Tsinghua Shenzhen International Graduate School, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen 518055, China
| | - Bin Wang
- Fujian Medical University, Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fuzhou 350014, China
- Fujian Medical University, Diagnostic Pathology Center, Fuzhou 350014, China
- Fujian Medical University, Mengchao Hepatobiliary Hospital, Fuzhou 350014, China
| | - Jiachen Wan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Center for Precision Medicine and Healthcare, Shenzhen 518071, China
- Tsinghua Shenzhen International Graduate School, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen 518055, China
| | - Lu Si
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Center for Precision Medicine and Healthcare, Shenzhen 518071, China
- Tsinghua Shenzhen International Graduate School, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen 518055, China
| | - Yang Dong
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Center for Precision Medicine and Healthcare, Shenzhen 518071, China
- Tsinghua Shenzhen International Graduate School, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen 518055, China
| | - Yuanhuan Zhu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Center for Precision Medicine and Healthcare, Shenzhen 518071, China
- Tsinghua Shenzhen International Graduate School, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen 518055, China
| | - Xiaolong Liu
- Tsinghua University, Department of Physics, Beijing 100084, China
| | - Lihong Chen
- Fujian Medical University, Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fuzhou 350014, China
- Fujian Medical University, Diagnostic Pathology Center, Fuzhou 350014, China
- Fujian Medical University, Mengchao Hepatobiliary Hospital, Fuzhou 350014, China
| | - Hui Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Center for Precision Medicine and Healthcare, Shenzhen 518071, China
- Tsinghua Shenzhen International Graduate School, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Shenzhen 518055, China
- Tsinghua University, Department of Physics, Beijing 100084, China
| |
Collapse
|
17
|
Zhang X, Zhao X, Li H, Hao X, Xu J, Tian J, Wang Y. Detection Methods of Nanoparticles Synthesized by Gas-Phase Method: A Review. Front Chem 2022; 10:845363. [PMID: 35295972 PMCID: PMC8919326 DOI: 10.3389/fchem.2022.845363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
The detection of nanoparticles is the basis of the study of synthesis mechanism, active regulation of the synthesis process, and the study of nanoparticle properties after synthesis. It is significantly meaningful to the academia and engineering industry. Although there are many relevant detection methods at present, each method has its own advantages and disadvantages, and their measurement quantity and application conditions are also different. There is a lack of unified sorting and generalization. In this paper, the significance of detection of nanoparticles synthesized by a gas-phase method is introduced, the development of detection technology is reviewed, and the future is prospected. It is hoped that this paper will provide a reference for the detection of nanoparticles under various conditions and for the development of new detection methods.
Collapse
Affiliation(s)
- Xiushuo Zhang
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Xiaolong Zhao
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Hongsheng Li
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Xiaorui Hao
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Jing Xu
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Jingjing Tian
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| | - Yong Wang
- Laboratory of Optical Detection and Imaging, School of Science, Qingdao University of Technology, Qingdao, China
- Quantum Physics Laboratory, School of Science, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
18
|
Dong Y, Wan J, Wang X, Xue JH, Zou J, He H, Li P, Hou A, Ma H. A Polarization-Imaging-Based Machine Learning Framework for Quantitative Pathological Diagnosis of Cervical Precancerous Lesions. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3728-3738. [PMID: 34260351 DOI: 10.1109/tmi.2021.3097200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polarization images encode high resolution microstructural information even at low resolution. We propose a framework combining polarization imaging and traditional microscopy imaging, constructing a dual-modality machine learning framework that is not only accurate but also generalizable and interpretable. We demonstrate the viability of our proposed framework using the cervical intraepithelial neoplasia grading task, providing a polarimetry feature parameter to quantitatively characterize microstructural variations with lesion progression in hematoxylin-eosin-stained pathological sections of cervical precancerous tissues. By taking advantages of polarization imaging techniques and machine learning methods, the model enables interpretable and quantitative diagnosis of cervical precancerous lesion cases with improved sensitivity and accuracy in a low-resolution and wide-field system. The proposed framework applies routine image-analysis technology to identify the macro-structure and segment the target region in H&E-stained pathological images, and then employs emerging polarization method to extract the micro-structure information of the target region, which intends to expand the boundary of the current image-heavy digital pathology, bringing new possibilities for quantitative medical diagnosis.
Collapse
|
19
|
Guo Z, Deng H, Li J, Liao R, Ma H. Optimized Classification of Suspended Particles in Seawater by Dense Sampling of Polarized Light Pulses. SENSORS 2021; 21:s21217344. [PMID: 34770652 PMCID: PMC8587070 DOI: 10.3390/s21217344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Suspended particles affect the state and vitality of the marine ecosystem. In situ probing and accurately classifying the suspended particles in seawater have an important impact on ecological research and environmental monitoring. Individual measurement of the optical polarization parameters scattered by the suspended particles has been proven to be a powerful tool to classify the particulate compositions in seawater. In previous works, the temporal polarized light pulses are sampled and averaged to evaluate the polarization parameters. In this paper, a method based on dense sampling of polarized light pulses is proposed and the experimental setup is built. The experimental results show that the dense sampling method optimizes the classification and increases the average accuracy by at least 16% than the average method. We demonstrate the feasibility of dense sampling method by classifying the multiple types of particles in mixed suspensions and show its excellent generalization ability by multi-classification of the particles. Additional analysis indicates that the dense sampling method basically takes advantage of the high-quality polarization parameters to optimize the classification performance. The above results suggest that the proposed dense sampling method has the potential to probe the suspended particles in seawater in red-tide early warning, as well as sediment and microplastics monitoring.
Collapse
Affiliation(s)
- Zhiming Guo
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Z.G.); (H.D.); (J.L.)
| | - Hanbo Deng
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Z.G.); (H.D.); (J.L.)
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajin Li
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Z.G.); (H.D.); (J.L.)
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Ran Liao
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Z.G.); (H.D.); (J.L.)
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Shenzhen Key Laboratory of Marine IntelliSensing and Computation, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-869-75-301
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Ali Z, Mahmood T, Shahzad A, Iqbal M, Ahmad I. Assessment of tissue pathology using optical polarimetry. Lasers Med Sci 2021; 37:1907-1919. [PMID: 34689277 DOI: 10.1007/s10103-021-03450-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Optical polarimetry have been extensively used for the non-invasive assessment of biological tissues. However, the knowledge regarding differences in polarimetric signatures of different tissue pathologies is very scattered, confounding the deduction of a global trend of the polarimetric variables for healthy and pathological tissues. The purpose of this study was to bridge this gap. We conducted a rigorous online survey to collect all published studies that report the two most common polarimetric variables (i.e., depolarization and retardance) for any type of tissue pathology. A total of 101 studies describing the polarimetric assessment of tissues were collected, wherein 253 (i.e., nhuman = 149, nanimal = 104) different type of tissues were optically characterized. Most tissue samples (172/253) were investigated in ex vivo settings. The data showed 32 different types of tissues pathologies, where the most common pathology was cancer and its subtypes. The skin tissues were the most frequently explored tissues, followed by tissue samples from breast, colon, liver, and cervix. Although differences in polarimetric signatures of different tissue pathologies were summarized from the included studies, generalization of the results was hindered by the presentation of polarimetric data in a non-uniform format. The analyses presented in this study may provide an important reference for future polarimetric studies that conduct optical assessment of tissues at greater depth, particularly in the context of optical biopsy/digital staining.
Collapse
Affiliation(s)
- Zahra Ali
- DHQ and Teaching Hospital, Sahiwal, Pakistan
| | | | | | - Muaz Iqbal
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
21
|
He C, He H, Chang J, Chen B, Ma H, Booth MJ. Polarisation optics for biomedical and clinical applications: a review. LIGHT, SCIENCE & APPLICATIONS 2021; 10:194. [PMID: 34552045 PMCID: PMC8458371 DOI: 10.1038/s41377-021-00639-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
Many polarisation techniques have been harnessed for decades in biological and clinical research, each based upon measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various advanced vector measurement/sensing techniques, physical interpretation methods, and approaches to analyse biomedically relevant information have been developed and harnessed. In this review, we focus mainly on summarising methodologies and applications related to tissue polarimetry, with an emphasis on the adoption of the Stokes-Mueller formalism. Several recent breakthroughs, development trends, and potential multimodal uses in conjunction with other techniques are also presented. The primary goal of the review is to give the reader a general overview in the use of vectorial information that can be obtained by polarisation optics for applications in biomedical and clinical research.
Collapse
Affiliation(s)
- Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Honghui He
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| | - Jintao Chang
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Binguo Chen
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
| | - Hui Ma
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|