1
|
Shamim S, Mohsin AS, Rahman MM, Hossain Bhuian MB. Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains. Heliyon 2024; 10:e33272. [PMID: 39040247 PMCID: PMC11260956 DOI: 10.1016/j.heliyon.2024.e33272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Recently, metamaterials and metasurface have gained rapidly increasing attention from researchers due to their extraordinary optical and electrical properties. Metamaterials are described as artificially defined periodic structures exhibiting negative permittivity and permeability simultaneously. Whereas metasurfaces are the 2D analogue of metamaterials in the sense that they have a small but not insignificant depth. Because of their high optical confinement and adjustable optical resonances, these artificially engineered materials appear as a viable photonic platform for biosensing applications. This review paper discusses the recent development of metamaterial and metasurface in biosensing applications based on the gigahertz, terahertz, and optical frequency domains encompassing the whole electromagnetic spectrum. Overlapping features such as material selection, structure, and physical mechanisms were considered during the classification of our biosensing applications. Metamaterials and metasurfaces working in the GHz range provide prospects for better sensing of biological samples, THz frequencies, falling between GHz and optical frequencies, provide unique characteristics for biosensing permitting the exact characterization of molecular vibrations, with an emphasis on molecular identification, label-free analysis, and imaging of biological materials. Optical frequencies on the other hand cover the visible and near-infrared regions, allowing fine regulation of light-matter interactions enabling metamaterials and metasurfaces to offer excellent sensitivity and specificity in biosensing. The outcome of the sensor's sensitivity to an electric or magnetic field and the resonance frequency are, in theory, determined by the frequency domain and features. Finally, the challenges and possible future perspectives in biosensing application areas have been presented that use metamaterials and metasurfaces across diverse frequency domains to improve sensitivity, specificity, and selectivity in biosensing applications.
Collapse
Affiliation(s)
- Shadmani Shamim
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Abu S.M. Mohsin
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Md. Mosaddequr Rahman
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Mohammed Belal Hossain Bhuian
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
2
|
Rhie J, Lee D, Kim T, Kim S, Seo M, Kim DS, Bahk YM. Optical Tweezing Terahertz Probing for a Single Metal Nanoparticle. NANO LETTERS 2024; 24:6753-6760. [PMID: 38708988 DOI: 10.1021/acs.nanolett.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.
Collapse
Affiliation(s)
- Jiyeah Rhie
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dukhyung Lee
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Taehoon Kim
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Seonghun Kim
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Mi Bahk
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
3
|
Luo X, Li J, Huang G, Xie F, He Z, Zeng X, Tian H, Liu Y, Fu W, Yang X. Metal-Graphene Hybrid Terahertz Metasurfaces for Circulating Tumor DNA Detection Based on Dual Signal Amplification. ACS Sens 2024; 9:2122-2133. [PMID: 38602840 DOI: 10.1021/acssensors.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.
Collapse
Affiliation(s)
- Xizi Luo
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jining Li
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhe He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaojun Zeng
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yu Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
4
|
Hii ARK, Qi X, Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B 2024; 12:1467-1489. [PMID: 38288550 DOI: 10.1039/d3tb01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaole Qi
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, China Pharmaceutical University, 210009, 310018, Nanjing, Hangzhou, P. R. China.
| | - Zhenghong Wu
- Pharmaceutical University, 210009, Nanjing, P. R. China.
| |
Collapse
|
5
|
Zhang W, Lin J, Yuan Z, Lin Y, Shang W, Chin LK, Zhang M. Terahertz Metamaterials for Biosensing Applications: A Review. BIOSENSORS 2023; 14:3. [PMID: 38275304 PMCID: PMC10813048 DOI: 10.3390/bios14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
In recent decades, THz metamaterials have emerged as a promising technology for biosensing by extracting useful information (composition, structure and dynamics) of biological samples from the interaction between the THz wave and the biological samples. Advantages of biosensing with THz metamaterials include label-free and non-invasive detection with high sensitivity. In this review, we first summarize different THz sensing principles modulated by the metamaterial for bio-analyte detection. Then, we compare various resonance modes induced in the THz range for biosensing enhancement. In addition, non-conventional materials used in the THz metamaterial to improve the biosensing performance are evaluated. We categorize and review different types of bio-analyte detection using THz metamaterials. Finally, we discuss the future perspective of THz metamaterial in biosensing.
Collapse
Affiliation(s)
- Wu Zhang
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (W.Z.); (J.L.); (Z.Y.); (Y.L.)
| | - Jiahan Lin
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (W.Z.); (J.L.); (Z.Y.); (Y.L.)
| | - Zhengxin Yuan
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (W.Z.); (J.L.); (Z.Y.); (Y.L.)
| | - Yanxiao Lin
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (W.Z.); (J.L.); (Z.Y.); (Y.L.)
| | - Wenli Shang
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China;
- Key Laboratory of On-Chip Communication and Sensor Chip of Guangdong Higher Education Institutes, Guangzhou 510006, China
| | - Lip Ket Chin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Meng Zhang
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China;
- Key Laboratory of On-Chip Communication and Sensor Chip of Guangdong Higher Education Institutes, Guangzhou 510006, China
| |
Collapse
|
6
|
Richter M, Loth Y, Wigger AK, Nordhoff D, Rachinger N, Weisenstein C, Bosserhoff AK, Bolívar PH. High specificity THz metamaterial-based biosensor for label-free transcription factor detection in melanoma diagnostics. Sci Rep 2023; 13:20708. [PMID: 38001098 PMCID: PMC10673904 DOI: 10.1038/s41598-023-46876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, we present a promising diagnostic tool for melanoma diagnosis. With the proposed terahertz biosensor, it was possible to selectively and sensitively detect the early growth response protein 2, a transcription factor with an increased activity in melanoma cells, from a complex sample of cellular proteins. Fundamentally, the sensor belongs to the frequency selective surface type metamaterials and consists of a two-dimensional array of asymmetrically, doubly split ring resonator unit cells. The single elements are slits in a metallic layer and are complemented by an undercut etch. This allows a selective functionalization of the active area of the sensor and increases the sensitivity towards the target analyte. Hereby, specific detection of a defined transcription factor is feasible.
Collapse
Affiliation(s)
- Merle Richter
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany.
| | - Yannik Loth
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| | - Anna Katharina Wigger
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| | - Daniela Nordhoff
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| | - Nicole Rachinger
- Biochemistry and Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christian Weisenstein
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| | - Anja Katrin Bosserhoff
- Biochemistry and Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Peter Haring Bolívar
- High Frequency and Quantum Electronics, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
7
|
Li X, Liu D, Su J, Sun L, Luo H, Chen G, Ma C, Zhang Q. Enhanced Near-Infrared Ultra-Narrow Absorber Based on a Dielectric Nano-Resonant Ring for Refractive Index Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:8402. [PMID: 37896499 PMCID: PMC10611014 DOI: 10.3390/s23208402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
In this paper, a plasmon resonance-enhanced narrow-band absorber based on the nano-resonant ring array of transparent conductive oxides (TCOs) is proposed and verified numerically. Due to the unique properties of TCOs, the structure achieves an ultra-narrowband perfect absorption by exhibiting a near-field enhancement effect. Consequently, we achieve a peak absorption rate of 99.94% at 792.2 nm. The simulation results indicate that the Full Width Half Maximum (FWHM) can be limited to within 8.8 nm. As a refractive index sensor, the device reaches a sensitivity S of 300 nm/RIU and a Figure of Merit (FOM) value of 34.1 1/RIU. By analyzing the distribution characteristics of the electromagnetic field at the 792.2 nm, we find high absorption with a narrow FWHM of the ITO nano-resonant ring (INRR) owing to plasmon resonance excited by the free carriers at the interface between the metal and the interior of the ITO. Additionally, the device exhibits polarization independence and maintains absorption rates above 90% even when the incident formed by the axis perpendicular to the film is greater than 13°. This study opens a new prospective channel for research into TCOs, which will increase the potential of compact photoelectric devices, such as optical sensing, narrowband filtering, non-radiative data transmission and biomolecular manipulation.
Collapse
Affiliation(s)
- Xingyu Li
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (X.L.); (J.S.); (L.S.); (G.C.); (C.M.); (Q.Z.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Dingquan Liu
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (X.L.); (J.S.); (L.S.); (G.C.); (C.M.); (Q.Z.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junli Su
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (X.L.); (J.S.); (L.S.); (G.C.); (C.M.); (Q.Z.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Leihao Sun
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (X.L.); (J.S.); (L.S.); (G.C.); (C.M.); (Q.Z.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Haihan Luo
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (X.L.); (J.S.); (L.S.); (G.C.); (C.M.); (Q.Z.)
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (X.L.); (J.S.); (L.S.); (G.C.); (C.M.); (Q.Z.)
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chong Ma
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (X.L.); (J.S.); (L.S.); (G.C.); (C.M.); (Q.Z.)
| | - Qiuyu Zhang
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (X.L.); (J.S.); (L.S.); (G.C.); (C.M.); (Q.Z.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
8
|
Shi WN, Wang YM, Fan F, Liu JY, Cheng JR, Wang XH, Chang SJ. THz enantiomers of drugs recognized by the polarization enhancement of gold nanoparticles on an asymmetric metasurface. NANOSCALE 2023; 15:14146-14154. [PMID: 37591823 DOI: 10.1039/d3nr01826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Chirality plays an important role in biological processes, and enantiomers often possess similar physical properties and different physiological functions. Thus, chiral detection of enantiomers has become a hot topic in recent years, and methods to enhance chiral molecular recognition are in urgent demand. In this work, a polarization detection method was used for different chiral drugs based on a specially designed metasurface composed of asymmetric double-opened rings and the surface enhancement effect of gold nanoparticles (GNPs). The experiment results show that the frequency shifts caused by the nearfield interaction of the metasurface and biomolecules have been significantly improved by GNPs, and both the limit of detection and detection precision of the metasurface can reach the 10-5 g ml-1 level. Moreover, the polarization sensing characterized by right circular polarization (RCP), the polarization elliptical angle (PEA), and the polarization rotation angle (PRA) shows that the enantiomers of three drugs can be distinguished, especially using the PEA spectrum; the maximum difference between enantiomers is over 30° with a precision of 6.6 × 10-7 g mL-1. Our THz polarization sensing and the GNP enhancement method inspire an efficient strategy for the highly sensitive detection of enantiomers.
Collapse
Affiliation(s)
- Wei-Nan Shi
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
| | - Yi-Ming Wang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Jia-Yue Liu
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
| | - Jie-Rong Cheng
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
| | - Xiang-Hui Wang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
| | - Sheng-Jiang Chang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| |
Collapse
|
9
|
Andrade LM, Costa GMJ. Insights into Gold Nanoparticles Possibilities for Diagnosis and Treatment of the Head and Neck Upper Aerodigestive Tract Cancers. Cancers (Basel) 2023; 15:2080. [PMID: 37046740 PMCID: PMC10093449 DOI: 10.3390/cancers15072080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer affecting people and accounts for more than 300,000 deaths worldwide. Improvements in treatment modalities, including immunotherapy, have demonstrated promising prognoses for eligible patients. Nevertheless, the five-year overall survival rate has not increased significantly, and the tumor recurrence ratio remains at 50% or higher, except for patients with HPV-positive HNSCC. Over the last decades, nanotechnology has provided promising tools, especially for biomedical applications, due to some remarkable physicochemical properties of numerous nanomaterials, particularly gold nanoparticles. This review addresses the features and some applications of gold nanoparticles reported in the literature over the last five years regarding the diagnosis and treatment of head and neck cancer, highlighting the exciting possibilities of this nanomaterial in oncology. METHODS The scientific papers selected for this review were obtained from the PubMed Advanced, Web of Science, Scopus, ClinicalTrials.gov, and Google Scholar platforms. CONCLUSIONS Results from papers applying gold nanoparticles have suggested that their application is a feasible approach to diagnostics, prognostics, and the treatment of HNC. Moreover, phase I clinical trials suggest that gold nanoparticles are safe and can potentially become theranostic agents for humans.
Collapse
Affiliation(s)
- Lídia M. Andrade
- Laboratory of Cell Biology, Department of Morphology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
- Nanobiomedical Research Group, Department of Physics, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Guilherme M. J. Costa
- Laboratory of Cell Biology, Department of Morphology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| |
Collapse
|
10
|
Shi WN, Fan F, Zhang TR, Liu JY, Wang XH, Chang S. Terahertz phase shift sensing and identification of a chiral amino acid based on a protein-modified metasurface through the isoelectric point and peptide bonding. BIOMEDICAL OPTICS EXPRESS 2023; 14:1096-1106. [PMID: 36950227 PMCID: PMC10026576 DOI: 10.1364/boe.484181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The efficient sensing of amino acids, especially the distinction of their chiral enantiomers, is important for biological, chemical, and pharmaceutical research. In this work, a THz phase shift sensing method was performed for amino acid detection based on a polarization-dependent electromagnetically induced transparency (EIT) metasurface. More importantly, a method for binding the specific amino acids to the functional proteins modified on the metasurface was developed based on the isoelectric point theory so that the specific recognition for Arginine (Arg) was achieved among the four different amino acids. The results show that via high-Q phase shift, the detection precision for L-Arg is 2.5 × 10-5 g /ml, much higher than traditional sensing parameters. Due to the specific electrostatic adsorption by the functionalized metasurface to L-Arg, its detection sensitivity and precision are 22 times higher than the other amino acids. Furthermore, by comparing nonfunctionalized and functionalized metasurfaces, the D- and L-chiral enantiomers of Arg were distinguished due to their different binding abilities to the functionalized metasurface. Therefore, this EIT metasurface sensor and its specific binding method improve both detection precision and specificity in THz sensing for amino acids, and it will promote the development of THz highly sensitive detection of chiral enantiomers.
Collapse
Affiliation(s)
- Wei-Nan Shi
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Tian-Rui Zhang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Jia-Yue Liu
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Xiang-Hui Wang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - ShengJiang Chang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| |
Collapse
|
11
|
Gezimati M, Singh G. Advances in terahertz technology for cancer detection applications. OPTICAL AND QUANTUM ELECTRONICS 2022; 55:151. [PMID: 36588663 PMCID: PMC9791634 DOI: 10.1007/s11082-022-04340-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 06/12/2023]
Abstract
Currently, there is an increasing demand for the diagnostic techniques that provide functional and morphological information with early cancer detection capability. Novel modern medical imaging systems driven by the recent advancements in technology such as terahertz (THz) and infrared radiation-based imaging technologies which are complementary to conventional modalities are being developed, investigated, and validated. The THz cancer imaging techniques offer novel opportunities for label free, non-ionizing, non-invasive and early cancer detection. The observed image contrast in THz cancer imaging studies has been mostly attributed to higher refractive index, absorption coefficient and dielectric properties in cancer tissue than that in the normal tissue due the local increase of the water molecule content in tissue and increased blood supply to the cancer affected tissue. Additional image contrast parameters and cancer biomarkers that have been reported to contribute to THz image contrast include cell structural changes, molecular density, interactions between agents (e.g., contrast agents and embedding agents) and biological tissue as well as tissue substances like proteins, fiber and fat etc. In this paper, we have presented a systematic and comprehensive review of the advancements in the technological development of THz technology for cancer imaging applications. Initially, the fundamentals principles and techniques for THz radiation generation and detection, imaging and spectroscopy are introduced. Further, the application of THz imaging for detection of various cancers tissues are presented, with more focus on the in vivo imaging of skin cancer. The data processing techniques for THz data are briefly discussed. Also, we identify the advantages and existing challenges in THz based cancer detection and report the performance improvement techniques. The recent advancements towards THz systems which are optimized and miniaturized are also reported. Finally, the integration of THz systems with artificial intelligent (AI), internet of things (IoT), cloud computing, big data analytics, robotics etc. for more sophisticated systems is proposed. This will facilitate the large-scale clinical applications of THz for smart and connected next generation healthcare systems and provide a roadmap for future research.
Collapse
Affiliation(s)
- Mavis Gezimati
- Centre for Smart Information and Communication Systems, Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O Box 524, Johannesburg, 2006 South Africa
| | - Ghanshyam Singh
- Centre for Smart Information and Communication Systems, Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O Box 524, Johannesburg, 2006 South Africa
| |
Collapse
|
12
|
Hao D, Zhang Y, Yang D, Li R, Zhao D, Zhang Z, Wang S, Jin W, Tian H, Duan J, Fan F, Chang S, Maro R, Ma L. Silicon bowtie structure based adjustable nonrigid all-nonmetal metamaterial terahertz filter. OPTICS LETTERS 2022; 47:6101-6104. [PMID: 37219182 DOI: 10.1364/ol.471704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
An all-nonmetal metamaterial (ANM) terahertz device with a silicon bowtie structure has been developed, which has comparable efficiency to that of its metallic counterparts, and better compatibility with modern semiconductor fabrication processes. Moreover, a highly tunable ANM with the same structure was successfully fabricated through integration with a flexible substrate, which demonstrated large tunability over a wide frequency range. Such a device can be used in terahertz systems for numerous applications, and is a promising substitute for conventional metal-based structures.
Collapse
|
13
|
Tabassum S, Nayemuzzaman SK, Kala M, Kumar Mishra A, Mishra SK. Metasurfaces for Sensing Applications: Gas, Bio and Chemical. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22186896. [PMID: 36146243 PMCID: PMC9504383 DOI: 10.3390/s22186896] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/11/2023]
Abstract
Performance of photonic devices critically depends upon their efficiency on controlling the flow of light therein. In the recent past, the implementation of plasmonics, two-dimensional (2D) materials and metamaterials for enhanced light-matter interaction (through concepts such as sub-wavelength light confinement and dynamic wavefront shape manipulation) led to diverse applications belonging to spectroscopy, imaging and optical sensing etc. While 2D materials such as graphene, MoS2 etc., are still being explored in optical sensing in last few years, the application of plasmonics and metamaterials is limited owing to the involvement of noble metals having a constant electron density. The capability of competently controlling the electron density of noble metals is very limited. Further, due to absorption characteristics of metals, the plasmonic and metamaterial devices suffer from large optical loss. Hence, the photonic devices (sensors, in particular) require that an efficient dynamic control of light at nanoscale through field (electric or optical) variation using substitute low-loss materials. One such option may be plasmonic metasurfaces. Metasurfaces are arrays of optical antenna-like anisotropic structures (sub-wavelength size), which are designated to control the amplitude and phase of reflected, scattered and transmitted components of incident light radiation. The present review put forth recent development on metamaterial and metastructure-based various sensors.
Collapse
Affiliation(s)
- Shawana Tabassum
- Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - SK Nayemuzzaman
- Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Manish Kala
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Akhilesh Kumar Mishra
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Satyendra Kumar Mishra
- Centre of Optics and Photonics (COPL), University of Laval, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
14
|
Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, Abdullah RS, Mehrdel B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int J Mol Sci 2022; 23:7400. [PMID: 35806405 PMCID: PMC9266776 DOI: 10.3390/ijms23137400] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility. AuNPs have physical features that distinguish them from bulk materials, small molecules and other nanoscale particles. Their unique combination of characteristics is just now being fully realized in various biomedical applications. In this review, we focus on the research accomplishments and new opportunities in this field, and we describe the rising developments in the use of monodisperse AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications, and future theranostic applications. Moving forward, we also consider the possible development of functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate that as research advances, flexible AuNPs will become a crucial platform for medical applications.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, Muscat 112, Oman;
| | - Mahmood S. Jameel
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nazila Oladzadabbasabadi
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | | | - Raja Saleh Abdullah
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
| | - Baharak Mehrdel
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Science, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
15
|
Fang W, Ma Z, Lv X, Liu J, Pei W, Geng Z. Flexible terahertz metamaterial biosensor for label-free sensing of serum tumor marker modified on a non-metal area. OPTICS EXPRESS 2022; 30:16630-16643. [PMID: 36221501 DOI: 10.1364/oe.454647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Terahertz (THz) metamaterials for rapid label-free sensing show application potential for the detection of cancer biomarkers. A novel flexible THz metamaterial biosensor based on a low refraction index parylene-C substrate is proposed. The biomarkers are modified on non-metal areas by a three-step modification method that simplifies the modification steps and improves the modified effectivity. Simulation results for non-metal modification illustrate that a bulk refractive index sensitivity of 325 GHz/RIU is achieved, which is larger than that obtained for the traditional metal modification (147 GHz/RIU). Meanwhile, several fluorescence experiments proved the uniform modification effect and selective adsorption capacity of the non-metal modification method. The concentration of the carcinoembryonic antigen (CEA) biomarkers for breast cancer patients tested using this THz biosensor is found to be consistent with results obtained from traditional clinical tests. The limit of detection reaches 2.97 ng/mL. These findings demonstrate that the flexible THz metamaterial biosensor can be extensively used for the rapid detection of cancer biomarkers in the future.
Collapse
|
16
|
Lu S, Zhao J, Zhou D, Huang J, Sun Y, Sun Y, Qian Z, Fan S. Enhanced sensitivity of dilute aqueous adrenaline solution with an asymmetric hexagonal ring structure in the terahertz frequencies. OPTICS EXPRESS 2022; 30:12268-12277. [PMID: 35472865 DOI: 10.1364/oe.452416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Quantitative detection of neurotransmitters in aqueous environment is crucial for the early diagnosis of many neurological disorders. Terahertz waves, as a non-contact and non-labeling tool, have demonstrated large potentials in quantitative biosensing. Although the detection of trace-amount analyte has been achieved with terahertz metamaterials in the recent decades, most studies have been focused on dried samples. Here, a hexagonal asymmetric metamaterial sensor was designed and fabricated for aqueous solution sensing with terahertz waves in the reflection geometry. An absorption enhancement of 43 was determined from the simulation. Dilute adrenaline solutions ranging from 30 µM to 0.6 mM were measured on our sensor using a commercial terahertz time-domain spectroscopy system, and the effective absorption was found to be linearly correlated with the concentration (R2 = 0.81). Furthermore, we found that as the concentration becomes higher (>0.6 mM), a non-linear relationship starts to take place, which confirmed the previous theory on the extended solvation shell that can be probed on the picosecond scale. Our sensor, without the need of high-power and stable terahertz sources, has enabled the detection of subtle absorption changes induced by the solvation dynamics.
Collapse
|
17
|
Zhang P, Cai T, Zhou Q, She G, Liang W, Deng Y, Ning T, Shi W, Zhang L, Zhang C. Ultrahigh Modulation Enhancement in All-Optical Si-Based THz Modulators Integrated with Gold Nanobipyramids. NANO LETTERS 2022; 22:1541-1548. [PMID: 35118860 DOI: 10.1021/acs.nanolett.1c04229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical regulation strategy with the aid of hybrid materials can significantly optimize the performance of terahertz devices. Gold nanobipyramids (AuNBPs) with synthetical tunability to the near-infrared band show strong local field enhancement, which improves optical coupling at the interface and benefits the modulation performance. We design AuNBPs-integrated terahertz modulators with multiple structured surfaces and demonstrate that introducing AuNBPs can effectively enhance their modulation depths. In particular, an ultrahigh modulation enhancement of 1 order of magnitude can be achieved in the AuNBPs hybrid metamaterials accompanied by the multifunctional modulation characteristics. By application of the coupled Lorentz oscillator model, the theoretical calculation suggests that the optical regulation with AuNBPs originates from increased damping rate and higher coupling coefficient under pump excitation. Additionally, a terahertz spatial light modulator is constructed to demonstrate multiple imaging display and consume extremely low power, which is promising for the potential application in spatial and frequency selective imaging.
Collapse
Affiliation(s)
- Pujing Zhang
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Tong Cai
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingli Zhou
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wanlin Liang
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Yuwang Deng
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Tingyin Ning
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - WenSheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liangliang Zhang
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Cunlin Zhang
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
| |
Collapse
|