1
|
Jiang Y, Chen Q, Shi D, Miao S, Liu Y, Wang J, Liu L, Chen Y, Wang R. Association of retinal microvascular curve tortuosity and multiple sclerosis: A cross-section analysis from the UK Biobank. Mult Scler Relat Disord 2024; 88:105753. [PMID: 38996710 DOI: 10.1016/j.msard.2024.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND There is growing evidence supporting that vascular abnormalities contribute to multiple sclerosis (MS), and retinal microvasculature functions as a visible window to observe vessels. We hypothesized that retinal vascular curve tortuosity is associated with MS, which this study aims to address. METHODS Participants from the UK Biobank with complete clinical records and gradable fundus photos were included in the study. Arteriolar and venular curve tortuosity and vessel area density are quantified automatically using a deep learning system. Individuals with MS were matched to healthy controls using propensity score matching (PSM). Conditional logistic regression was used to investigate the association between retinal vascular characteristics and MS. We also used a receiver operating characteristic (ROC) curve to assess the diagnostic performance of MS. RESULTS Venular curve tortuosity (VCT) was found to be significantly associated with MS. And patients with multiple sclerosis were probable to have lower VCT than the non-MS group (OR = 0.22 [95 % CI, 0.05 to 0.92], P < 0.05). CONCLUSIONS Our study reveals a significant association between vessel curve tortuosity and MS. The lower curve tortuosity of the retinal venular network may indicate a higher risk of incident multiple sclerosis.
Collapse
Affiliation(s)
- Yuzhe Jiang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Qi Chen
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Danli Shi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Suyu Miao
- First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Yifeng Liu
- First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Jinyang Wang
- First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yufan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ruobing Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Torm MEW, Pircher M, Bonnin S, Johannesen J, Klefter ON, Schmidt MF, Frederiksen JL, Lefaudeux N, Andilla J, Valdes C, Loza-Alvarez P, Brea LS, De Jesus DA, Grieve K, Paques M, Larsen M, Gocho K. Detection of capillary abnormalities in early diabetic retinopathy using scanning laser ophthalmoscopy and optical coherence tomography combined with adaptive optics. Sci Rep 2024; 14:13450. [PMID: 38862584 PMCID: PMC11166634 DOI: 10.1038/s41598-024-63749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
This study tested if a high-resolution, multi-modal, multi-scale retinal imaging instrument can provide novel information about structural abnormalities in vivo. The study examined 11 patients with very mild to moderate non-proliferative diabetic retinopathy (NPDR) and 10 healthy subjects using fundus photography, optical coherence tomography (OCT), OCT angiography (OCTA), adaptive optics scanning laser ophthalmoscopy (AO-SLO), adaptive optics OCT and OCTA (AO-OCT(A)). Of 21 eyes of 11 patients, 11 had very mild NPDR, 8 had mild NPDR, 2 had moderate NPDR, and 1 had no retinopathy. Using AO-SLO, capillary looping, inflections and dilations were detected in 8 patients with very mild or mild NPDR, and microaneurysms containing hyperreflective granular elements were visible in 9 patients with mild or moderate NPDR. Most of the abnormalities were seen to be perfused in the corresponding OCTA scans while a few capillary loops appeared to be occluded or perfused at a non-detectable flow rate, possibly because of hypoperfusion. In one patient with moderate NPDR, non-perfused capillaries, also called ghost vessels, were identified by alignment of corresponding en face AO-OCT and AO-OCTA images. The combination of multiple non-invasive imaging methods could identify prominent microscopic abnormalities in diabetic retinopathy earlier and more detailed than conventional fundus imaging devices.
Collapse
Affiliation(s)
- Marie Elise Wistrup Torm
- Department of Ophthalmology, Center for Research in Eye Diseases, Rigshospitalet, Section 37, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark.
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sophie Bonnin
- INSERM-DGOS CIC 1423, CHNO des Quinze-Vingts, 28 Rue de Charenton, 75012, Paris, France
- INSERM, CNRS, Institut de La Vision, Sorbonne Université, 17 Rue Moreau, 75012, Paris, France
- Foundation Rothschild Hospital, 25-29, Rue Manin, 75019, Paris, France
| | - Jesper Johannesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
- Department of Pediatrics, Herlev-Gentofte Hospital, Borgmester Ib Juuls Vej 25C, Herlev, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, Herlev, Denmark
| | - Oliver Niels Klefter
- Department of Ophthalmology, Center for Research in Eye Diseases, Rigshospitalet, Section 37, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Mathias Falck Schmidt
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
- Department of Neurology, Clinic of Optic Neuritis, The Danish Multiple Sclerosis Center (DMSC), Rigshospitalet, Valdemar Hansens Vej 13, Glostrup, Denmark
| | - Jette Lautrup Frederiksen
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
- Department of Neurology, Clinic of Optic Neuritis, The Danish Multiple Sclerosis Center (DMSC), Rigshospitalet, Valdemar Hansens Vej 13, Glostrup, Denmark
| | | | - Jordi Andilla
- The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, 08860, Castelldefels, Barcelona, Spain
| | - Claudia Valdes
- The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, 08860, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, 08860, Castelldefels, Barcelona, Spain
| | - Luisa Sanchez Brea
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, The Rotterdam Ophthalmic Institute, Schiedamse Vest 160, Rotterdam, The Netherlands
| | - Danilo Andrade De Jesus
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Dr. Molewaterplein 40, Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, The Rotterdam Ophthalmic Institute, Schiedamse Vest 160, Rotterdam, The Netherlands
| | - Kate Grieve
- INSERM-DGOS CIC 1423, CHNO des Quinze-Vingts, 28 Rue de Charenton, 75012, Paris, France
- INSERM, CNRS, Institut de La Vision, Sorbonne Université, 17 Rue Moreau, 75012, Paris, France
| | - Michel Paques
- INSERM-DGOS CIC 1423, CHNO des Quinze-Vingts, 28 Rue de Charenton, 75012, Paris, France
- INSERM, CNRS, Institut de La Vision, Sorbonne Université, 17 Rue Moreau, 75012, Paris, France
| | - Michael Larsen
- Department of Ophthalmology, Center for Research in Eye Diseases, Rigshospitalet, Section 37, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Kiyoko Gocho
- INSERM-DGOS CIC 1423, CHNO des Quinze-Vingts, 28 Rue de Charenton, 75012, Paris, France
- INSERM, CNRS, Institut de La Vision, Sorbonne Université, 17 Rue Moreau, 75012, Paris, France
| |
Collapse
|
3
|
Garg AK, Scott AW. Systemic medications for sickle cell disease and potential applications for sickle cell retinopathy. Curr Opin Ophthalmol 2024; 35:185-191. [PMID: 38465910 DOI: 10.1097/icu.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE OF REVIEW To review the literature evaluating systemic medications for treatment of sickle cell disease (SCD) and their applications for sickle cell retinopathy. RECENT FINDINGS Prior studies have demonstrated the efficacy of traditional systemic therapies in reducing the risk of development of sickle cell retinopathy. Since 2017, several new and promising disease-modifying therapies for sickle cell disease have been approved for clinical use, including the first genetic therapies such as exagamglogene autotemcel (exa-cel) and lovotibeglogene autotemcel (lovo-cel). These treatments have shown promising results for systemic management but are not widely utilized due to limited access and high cost. The efficacy of these therapies for the prevention of sickle cell retinopathy remains unknown and opens the door to new avenues for research. Furthermore, the role of systemic therapy for the management of hemoglobin SC (HbSC) disease, which has milder systemic effects but higher likelihood of causing retinopathy, remains poorly understood. SUMMARY Hydroxyurea has been a mainstay of systemic management of SCD with prior work suggesting its ability to reduce the likelihood of developing retinopathy. There are several new and potentially curative systemic therapies for SCD, though their role in retinopathy prevention and management has not been studied extensively. Future studies are necessary to understand the implications of these emerging therapies for sickle cell retinopathy.
Collapse
Affiliation(s)
- Anupam K Garg
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
4
|
Chen N, Zhu Z, Yang W, Wang Q. Progress in clinical research and applications of retinal vessel quantification technology based on fundus imaging. Front Bioeng Biotechnol 2024; 12:1329263. [PMID: 38456011 PMCID: PMC10917897 DOI: 10.3389/fbioe.2024.1329263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Retinal blood vessels are the only directly observed blood vessels in the body; changes in them can help effective assess the occurrence and development of ocular and systemic diseases. The specificity and efficiency of retinal vessel quantification technology has improved with the advancement of retinal imaging technologies and artificial intelligence (AI) algorithms; it has garnered attention in clinical research and applications for the diagnosis and treatment of common eye and related systemic diseases. A few articles have reviewed this topic; however, a summary of recent research progress in the field is still needed. This article aimed to provide a comprehensive review of the research and applications of retinal vessel quantification technology in ocular and systemic diseases, which could update clinicians and researchers on the recent progress in this field.
Collapse
Affiliation(s)
- Naimei Chen
- Department of Ophthalmology, Huaian Hospital of Huaian City, Huaian, China
| | - Zhentao Zhu
- Department of Ophthalmology, Huaian Hospital of Huaian City, Huaian, China
| | - Weihua Yang
- Department of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Qiang Wang
- Department of Ophthalmology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, China
| |
Collapse
|
5
|
Szpernal J, Gaffney M, Linderman RE, Langlo CS, Hemsworth K, Walesa A, Higgins BP, Rosen RB, Chui TYP, Carroll J. Assessing the Sensitivity of OCT-A Retinal Vasculature Metrics. Transl Vis Sci Technol 2023; 12:2. [PMID: 37531114 PMCID: PMC10405864 DOI: 10.1167/tvst.12.8.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/20/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose The purpose of this study was to examine the sensitivity of quantitative metrics of the retinal vasculature derived from optical coherence tomography angiography (OCT-A) images. Methods Full retinal vascular slab OCT-A images were obtained from 94 healthy participants. Capillary loss, at 1% increments up to 50%, was simulated by randomly removing capillary segments (1000 iterations of randomized loss for each participant at each percent loss). Thirteen quantitative metrics were calculated for each image: foveal avascular zone (FAZ) area, vessel density, vessel complexity index (VCI), vessel perimeter index (VPI), fractal dimension (FD), and parafoveal intercapillary area (PICA) measurements with and without the FAZ (mean PICA, summed PICA, PICA regularity, and PICA standard deviation [PICA SD]). The sensitivity of each metric was calculated as the percent loss at which 80% of the iterations for a participant fell outside of two standard deviations from the sample's normative mean. Results The most used OCT-A metrics, FAZ area and vessel density, were not significantly different from normative values until 27.69% and 16.00% capillary loss, respectively. Across the remaining metrics, metric sensitivity ranged from 6.37% (PICA SD without FAZ) to 39.78% (Summed PICA without FAZ). Conclusions The sensitivity of vasculature metrics for detecting random capillary loss varies substantially. Further efforts simulating different patterns of capillary loss are needed for comparison. Additionally, mapping the repeatability of metrics over time in a normal population is needed to further define metric sensitivity. Translational Relevance Quantitative metrics vary in their ability to detect vascular abnormalities in OCT-A images. Metric choice in screening studies will need to balance expected capillary abnormalities and the quality of the OCT-A images being used.
Collapse
Affiliation(s)
- Jacob Szpernal
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mina Gaffney
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rachel E. Linderman
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher S. Langlo
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Internal Medicine, Ascension St. Joseph Hospital, Milwaukee, WI, USA
| | - Katherine Hemsworth
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashleigh Walesa
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian P. Higgins
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard B. Rosen
- New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Toco Y. P. Chui
- New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Carroll
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Pinhas A, Migacz JV, Zhou DB, Castanos Toral MV, Otero-Marquez O, Israel S, Sun V, Gillette PN, Sredar N, Dubra A, Glassberg J, Rosen RB, Chui TY. Insights into Sickle Cell Disease through the Retinal Microvasculature: Adaptive Optics Scanning Light Ophthalmoscopy Correlates of Clinical OCT Angiography. OPHTHALMOLOGY SCIENCE 2022; 2:100196. [PMID: 36531581 PMCID: PMC9754983 DOI: 10.1016/j.xops.2022.100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 05/06/2023]
Abstract
PURPOSE Clinical OCT angiography (OCTA) of the retinal microvasculature offers a quantitative correlate to systemic disease burden and treatment efficacy in sickle cell disease (SCD). The purpose of this study was to use the higher resolution of adaptive optics scanning light ophthalmoscopy (AOSLO) to elucidate OCTA features of parafoveal microvascular compromise identified in SCD patients. DESIGN Case series of 11 SCD patients and 1 unaffected control. PARTICIPANTS A total of 11 eyes of 11 SCD patients (mean age, 33 years; range, 23-44; 8 female, 3 male) and 1 eye of a 34-year-old unaffected control. METHODS Ten sequential 3 × 3 mm parafoveal OCTA full vascular slab scans were obtained per eye using a commercial spectral domain OCT system (Avanti RTVue-XR; Optovue). These were used to identify areas of compromised perfusion near the foveal avascular zone (FAZ), designated as regions of interest (ROIs). Immediately thereafter, AOSLO imaging was performed on these ROIs to examine the cellular details of abnormal perfusion. Each participant was imaged at a single cross-sectional time point. Additionally, 2 of the SCD patients were imaged prospectively 2 months after initial imaging to study compromised capillary segments across time and with treatment. MAIN OUTCOME MEASURES Detection and characterization of parafoveal perfusion abnormalities identified using OCTA and resolved using AOSLO imaging. RESULTS We found evidence of abnormal blood flow on OCTA and AOSLO imaging among all 11 SCD patients with diverse systemic and ocular histories. Adaptive optics scanning light ophthalmoscopy imaging revealed a spectrum of phenomena, including capillaries with intermittent blood flow, blood cell stasis, and sites of thrombus formation. Adaptive optics scanning light ophthalmoscopy imaging was able to resolve single sickled red blood cells, rouleaux formations, and blood cell-vessel wall interactions. OCT angiography and AOSLO imaging were sensitive enough to document improved retinal perfusion in an SCD patient 2 months after initiation of oral hydroxyurea therapy. CONCLUSIONS Adaptive optics scanning light ophthalmoscopy imaging was able to reveal the cellular details of perfusion abnormalities detected using clinical OCTA. The synergy between these clinical and laboratory imaging modalities presents a promising avenue in the management of SCD through the development of noninvasive ocular biomarkers to prognosticate progression and measure the response to systemic treatment.
Collapse
Key Words
- ADD, airy disk diameter
- AOSLO, adaptive optics scanning light ophthalmoscopy
- Adaptive optics
- BCVA, best-corrected visual acuity
- D, diopters
- FA, fluorescein angiography
- FAZ, foveal avascular zone
- HbSC, hemoglobin SC
- HbSS, hemoglobin SS
- IOP, intraocular pressure
- OCT angiography
- OCTA, OCT angiography
- Oculomics
- RBC, red blood cell
- ROI, region of interest
- Retinal microvasculature
- SCD, sickle cell disease
- SCR, sickle cell retinopathy
- Sickle cell disease
Collapse
Affiliation(s)
- Alexander Pinhas
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Justin V. Migacz
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Davis B. Zhou
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria V. Castanos Toral
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Oscar Otero-Marquez
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Sharon Israel
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Department of Human Biology, City University of New York Hunter College, New York, New York
| | - Vincent Sun
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Peter N. Gillette
- Department of Hematology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Nripun Sredar
- Department of Ophthalmology, Stanford University, Palo Alto, California
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California
| | | | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Toco Y.P. Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
- Correspondence: Toco Y.P. Chui, PhD, New York Eye and Ear Infirmary of Mount Sinai, 310 E 14th Street, New York, NY 10003.
| |
Collapse
|
7
|
Pinhas A, Zhou DB, Otero-Marquez O, Castanos Toral MV, Migacz JV, Glassberg J, Rosen RB, Chui TYP. Efficacy of CRISPR-Based Gene Editing in a Sickle Cell Disease Patient as Measured through the Eye. Case Rep Hematol 2022; 2022:6079631. [PMID: 36046774 PMCID: PMC9424027 DOI: 10.1155/2022/6079631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Sickle cell disease (SCD) exists on a phenotypic spectrum with variable genetic expressivity, making it difficult to assess an individual patient's risk of complications at any particular point in time. Current and emerging SCD treatments, including CRISPR-based gene editing, result in a variable proportion of affected red blood cells (RBCs) still vulnerable to sickling. Clinical serological indicators of disease such as hemoglobin, indirect bilirubin, and reticulocyte count and clinical metrics including number of emergency department visits and hospitalizations over time often fall short in their ability to objectively quantify ischemic disease activity and efficacy of treatments. Clearly, better clinical biomarkers are needed. The rapidly developing field of oculomics leverages the transparent nature of the ocular tissue to directly study the retinal microvasculature in order to characterize the status of systemic diseases. In this case report, we demonstrate the ability of optical coherence tomography angiography (OCT-A) to detect and measure micro-occlusive events within the retinal capillary bed before and after RBC exchange transfusion and following CRISPR-based gene editing, as an indicator of systemic ischemic disease activity and measure of treatment efficacy. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Alexander Pinhas
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Davis B Zhou
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oscar Otero-Marquez
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Maria V Castanos Toral
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Justin V Migacz
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Jeffrey Glassberg
- Departments of Emergency Medicine,Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Toco Y P Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|