1
|
Olson ES, Dong W, Applegate BE, Charaziak KK, Dewey JB, Frost BL, Meenderink SWF, Nam JH, Oghalai JS, Puria S, Ren T, Strimbu CE, van der Heijden M. Visualizing motions within the cochlea's organ of Corti and illuminating cochlear mechanics with optical coherence tomography. Hear Res 2025; 455:109154. [PMID: 39626338 DOI: 10.1016/j.heares.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Beginning in 2006, optical coherence tomography (OCT) has been adapted for use as a vibrometer for hearing research. The application of OCT in this field, particularly for studying cochlear mechanics, represents a revolutionary advance over previous technologies. OCT provides detailed evidence of the motions of components within the organ of Corti, extending beyond the first-encountered surface of observation. By imaging through the bony capsule as well as through the round window membrane, OCT has measured vibration at multiple locations along the cochlear spiral, in vivo, under nearly natural conditions. In this document, we present examples of recent research findings to illustrate the applications of OCT in studying cochlear mechanics in both normal and impaired ears.
Collapse
Affiliation(s)
- Elizabeth S Olson
- Department of Otolaryngology - Head and Neck Surgery, Department of Biomedical Engineering, Columbia University, New York City, NY USA.
| | - Wei Dong
- VA Loma Linda Healthcare System, Loma Linda, CA, USA, Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA USA
| | - Brian E Applegate
- Caruso Department of Otolaryngology -Head and Neck Surgery, Department of Ophthalmology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Karolina K Charaziak
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA USA
| | - James B Dewey
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA USA
| | | | | | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY USA
| | - John S Oghalai
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA USA
| | - Sunil Puria
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Tianying Ren
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR USA
| | - C Elliott Strimbu
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York City, NY USA
| | | |
Collapse
|
2
|
Frost BL, Janjušević NP, Strimbu CE, Hendon CP. Compressed sensing on displacement signals measured with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:5539-5554. [PMID: 38021133 PMCID: PMC10659783 DOI: 10.1364/boe.503168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Optical coherence tomography (OCT) is capable of angstrom-scale vibrometry of particular interest to researchers of auditory mechanics. We develop a method for compressed sensing vibrometry using OCT that significantly reduces acquisition time for dense motion maps. Our method, based on total generalized variation with uniform subsampling, can reduce the number of samples needed to measure motion maps by a factor of ten with less than 5% normalized mean square error when tested on a diverse set of in vivo measurements from the gerbil cochlea. This opens up the possibility for more complex in vivo experiments for cochlear mechanics.
Collapse
Affiliation(s)
- Brian L. Frost
- Department of Electrical Engineering, Columbia University, 500 W. 120th St., Mudd 1310, New York, NY 10027,
USA
| | - Nikola P. Janjušević
- New York University, Tandon School of
Engineering, Electrical and Computer
Engineering, 370 Jay St, Brooklyn, NY 11201, USA
| | - C. Elliott Strimbu
- Columbia
University, Department of Otolaryngology, 630 West 168th
Street, New York, NY 10032, USA
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, 500 W. 120th St., Mudd 1310, New York, NY 10027,
USA
| |
Collapse
|
3
|
Frost BL, Strimbu CE, Olson ES. Reconstruction of transverse-longitudinal vibrations in the organ of Corti complex via optical coherence tomography. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1347. [PMID: 36859114 PMCID: PMC9957605 DOI: 10.1121/10.0017345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 05/06/2023]
Abstract
Optical coherence tomography (OCT) is a common modality for measuring vibrations within the organ of Corti complex (OCC) in vivo. OCT's uniaxial nature leads to limitations that complicate the interpretation of data from cochlear mechanics experiments. The relationship between the optical axis (axis of motion measurement) and anatomically relevant axes in the cochlea varies across experiments, and generally is not known. This leads to characteristically different motion measurements taken from the same structure at different orientations. We present a method that can reconstruct two-dimensional (2-D) motion of intra-OCC structures in the cochlea's longitudinal-transverse plane. The method requires only a single, unmodified OCT system, and does not require any prior knowledge of precise structural locations or measurement angles. It uses the cochlea's traveling wave to register points between measurements taken at multiple viewing angles. We use this method to reconstruct 2-D motion at the outer hair cell/Deiters cell junction in the gerbil base, and show that reconstructed transverse motion resembles directly measured transverse motion, thus validating the method. The technique clarifies the interpretation of OCT measurements, enhancing their utility in probing the micromechanics of the cochlea.
Collapse
Affiliation(s)
- Brian L Frost
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, Mudd 1310, New York, New York 10027, USA
| | - Clark Elliott Strimbu
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA
| | - Elizabeth S Olson
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA
| |
Collapse
|
4
|
The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea. Sci Rep 2022; 12:19810. [PMID: 36396720 PMCID: PMC9671912 DOI: 10.1038/s41598-022-24394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
The prevailing theory of cochlear function states that outer hair cells amplify sound-induced vibration to improve hearing sensitivity and frequency specificity. Recent micromechanical measurements in the basal turn of gerbil cochleae through the round window have demonstrated that the reticular lamina vibration lags the basilar membrane vibration, and it is physiologically vulnerable not only at the best frequency but also at the low frequencies. These results suggest that outer hair cells from a broad cochlear region enhance hearing sensitivity through a global hydromechanical mechanism. However, the time difference between the reticular lamina and basilar membrane vibration has been thought to result from a systematic measurement error caused by the optical axis non-perpendicular to the cochlear partition. To address this concern, we measured the reticular lamina and basilar membrane vibrations in the transverse direction through an opening in the cochlear lateral wall in this study. Present results show that the phase difference between the reticular lamina and basilar membrane vibration decreases with frequency by ~ 180 degrees from low frequencies to the best frequency, consistent with those measured through the round window. Together with the round-window measurement, the low-coherence interferometry through the cochlear lateral wall demonstrates that the time difference between the reticular lamina and basilar membrane vibration results from the cochlear active processing rather than a measurement error.
Collapse
|