1
|
Ma H, Chen M, Xu J, Yang Y, Zhao Y, Liu Y. An Omni-Mesoscope for multiscale high-throughput quantitative phase imaging of cellular dynamics and high-content molecular characterization. SCIENCE ADVANCES 2024; 10:eadq5009. [PMID: 39413179 PMCID: PMC11482309 DOI: 10.1126/sciadv.adq5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The mesoscope has emerged as a powerful imaging tool in biomedical research, yet its high cost and low resolution have limited its broader application. Here, we introduce the Omni-Mesoscope, a high-spatial-temporal and multimodal mesoscopic imaging platform built from cost-efficient off-the-shelf components. This system uniquely merges the capabilities of label-free quantitative phase microscopy to capture live-cell morphodynamics across thousands of cells with highly multiplexed fluorescence imaging for comprehensive molecular characterization. This Omni-Mesoscope offers a mesoscale field of view of ~5 square millimeters with a high spatial resolution down to 700 nanometers, enabling the capture of detailed subcellular features. We demonstrate its capability in delineating molecular characteristics underlying rare morphodynamic cellular phenomena, including cancer cell responses to chemotherapy and the emergence of polyploidy in drug-resistant cells. We also integrate expansion technique to enhance three-dimensional volumetric super-resolution imaging of thicker tissues, opening the avenues for biological exploration at unprecedented scales and resolutions.
Collapse
Affiliation(s)
- Hongqiang Ma
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Maomao Chen
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yaxin Yang
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongxin Zhao
- Departments of Biological Sciences and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Viron Molecular Medicine Institute, Boston, MA 02201, USA
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Bioengineering and Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Chaumet PC, Bon P, Maire G, Sentenac A, Baffou G. Quantitative phase microscopies: accuracy comparison. LIGHT, SCIENCE & APPLICATIONS 2024; 13:288. [PMID: 39394163 PMCID: PMC11470049 DOI: 10.1038/s41377-024-01619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 10/13/2024]
Abstract
Quantitative phase microscopies (QPMs) play a pivotal role in bio-imaging, offering unique insights that complement fluorescence imaging. They provide essential data on mass distribution and transport, inaccessible to fluorescence techniques. Additionally, QPMs are label-free, eliminating concerns of photobleaching and phototoxicity. However, navigating through the array of available QPM techniques can be complex, making it challenging to select the most suitable one for a particular application. This tutorial review presents a thorough comparison of the main QPM techniques, focusing on their accuracy in terms of measurement precision and trueness. We focus on 8 techniques, namely digital holographic microscopy (DHM), cross-grating wavefront microscopy (CGM), which is based on QLSI (quadriwave lateral shearing interferometry), diffraction phase microscopy (DPM), differential phase-contrast (DPC) microscopy, phase-shifting interferometry (PSI) imaging, Fourier phase microscopy (FPM), spatial light interference microscopy (SLIM), and transport-of-intensity equation (TIE) imaging. For this purpose, we used a home-made numerical toolbox based on discrete dipole approximation (IF-DDA). This toolbox is designed to compute the electromagnetic field at the sample plane of a microscope, irrespective of the object's complexity or the illumination conditions. We upgraded this toolbox to enable it to model any type of QPM, and to take into account shot noise. In a nutshell, the results show that DHM and PSI are inherently free from artefacts and rather suffer from coherent noise; In CGM, DPC, DPM and TIE, there is a trade-off between precision and trueness, which can be balanced by varying one experimental parameter; FPM and SLIM suffer from inherent artefacts that cannot be discarded experimentally in most cases, making the techniques not quantitative especially for large objects covering a large part of the field of view, such as eukaryotic cells.
Collapse
Affiliation(s)
- Patrick C Chaumet
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Pierre Bon
- Université de Limoges, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Guillaume Maire
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Anne Sentenac
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France.
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Ma H, Chen M, Xu J, Zhao Y, Liu Y. An Omni-Mesoscope for multiscale high-throughput quantitative phase imaging of cellular dynamics and high-content molecular characterization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604137. [PMID: 39071371 PMCID: PMC11275778 DOI: 10.1101/2024.07.18.604137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mesoscope has emerged as a powerful imaging tool in biomedical research, yet its high cost and low resolution have limited its broader application. Here, we introduce the Omni-Mesoscope, a cost-effective high-spatial-temporal, multimodal, and multiplex mesoscopic imaging platform built from cost-efficient off-the-shelf components. This system uniquely merges the capabilities of quantitative phase microscopy to capture live-cell dynamics over a large cell population with highly multiplexed fluorescence imaging for comprehensive molecular characterization. This integration facilitates simultaneous tracking of live-cell morphodynamics across thousands of cells, alongside high-content molecular analysis at the single-cell level. Furthermore, the Omni-Mesoscope offers a mesoscale field of view of approximately 5 mm 2 with a high spatial resolution down to 700 nm, enabling the capture of information-rich images with detailed sub-cellular features. We demonstrate such capability in delineating molecular characteristics underlying rare dynamic cellular phenomena, such as cancer cell responses to chemotherapy and the emergence of polyploidy in drug-resistant cells. Moreover, the cost-effectiveness and the simplicity of our Omni-Mesoscope democratizes mesoscopic imaging, making it accessible across diverse biomedical research fields. To further demonstrate its versatility, we integrate expansion microscopy to enhance 3D volumetric super-resolution imaging of thicker tissues, opening new avenues for biological exploration at unprecedented scales and resolutions.
Collapse
|
4
|
Marthy B, Bénéfice M, Baffou G. Single-shot quantitative phase-fluorescence imaging using cross-grating wavefront microscopy. Sci Rep 2024; 14:2142. [PMID: 38273005 PMCID: PMC10810858 DOI: 10.1038/s41598-024-52510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The article introduces an optical microscopy technique capable of simultaneously acquiring quantitative fluorescence and phase (or equivalently wavefront) images with a single camera sensor, avoiding any delay between both images, or registration of images acquired separately. The method is based on the use of a 2-dimensional diffraction grating (aka cross-grating) positioned at a millimeter distance from a 2-color camera. Fluorescence and wavefront images are extracted from the two color channels of the camera, and retrieved by image demodulation. The applicability of the method is illustrated on various samples, namely fluorescent micro-beads, bacteria and mammalian cells.
Collapse
Affiliation(s)
- Baptiste Marthy
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Maëlle Bénéfice
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France.
| |
Collapse
|
5
|
Bénéfice M, Gorlas A, Marthy B, Da Cunha V, Forterre P, Sentenac A, Chaumet PC, Baffou G. Dry mass photometry of single bacteria using quantitative wavefront microscopy. Biophys J 2023; 122:3159-3172. [PMID: 37393431 PMCID: PMC10432216 DOI: 10.1016/j.bpj.2023.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Quantitative phase microscopy (QPM) represents a noninvasive alternative to fluorescence microscopy for cell observation with high contrast and for the quantitative measurement of dry mass (DM) and growth rate at the single-cell level. While DM measurements using QPM have been widely conducted on mammalian cells, bacteria have been less investigated, presumably due to the high resolution and high sensitivity required by their smaller size. This article demonstrates the use of cross-grating wavefront microscopy, a high-resolution and high-sensitivity QPM, for accurate DM measurement and monitoring of single microorganisms (bacteria and archaea). The article covers strategies for overcoming light diffraction and sample focusing, and introduces the concepts of normalized optical volume and optical polarizability (OP) to gain additional information beyond DM. The algorithms for DM, optical volume, and OP measurements are illustrated through two case studies: monitoring DM evolution in a microscale colony-forming unit as a function of temperature, and using OP as a potential species-specific signature.
Collapse
Affiliation(s)
- Maëlle Bénéfice
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Aurore Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Baptiste Marthy
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France; Département de Microbiologie, Institut Pasteur, Paris, France
| | - Anne Sentenac
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Patrick C Chaumet
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille, Marseille, France.
| |
Collapse
|