1
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
2
|
Maillet M, Kammoun M, Avril S, Ho Ba Tho MC, Trabelsi O. Non-destructive Characterization of Skeletal Muscle Extracellular Matrix Morphology by Combining Optical Coherence Tomography (OCT) Imaging with Tissue Clearing. Ann Biomed Eng 2023; 51:2323-2336. [PMID: 37310491 DOI: 10.1007/s10439-023-03274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Histology is an essential step to visualize and analyze the microstructure of any biological tissue; however, histological processing is often irreversible, and histological samples are unable to be imaged or tested further. In this work, a novel non-destructive protocol is proposed for morphological analysis of skeletal muscles, combining Optical Coherence Tomography (OCT) imaging with Tissue Clearing. Imaging combining OCT and Propylene Glycol (PG) as a tissue-clearing agent, was performed on rat tail and extensor digitorum longus (EDL) muscle. The results show that the extracellular matrix morphology of skeletal muscles, including muscular fibers and the whole microstructure architecture were clearly identified. PG improved OCT imaging as measured by image quality metric Contrast Per Pixel CPP (increases by 3.9%), Naturalness Image Quality Evaluator NIQE (decreases by 23%), and Volume of Interest VOI size (higher for CPP and lower for NIQE values). The tendon microstructure was observed with less precision, as collagen fibers could not be clearly detected. The reversibility of the optical effects of the PG on the immersed tissue (in a Phosphate-Buffered Saline solution) was studied comparing native and rehydrated OCT image acquisition from a single EDL sample. Optical properties and microstructure visibility (CPP and NIQE) have been recovered to 99% of the native sample values. Moreover, clearing process caused shrinkage of the tissue recovered to 86% of the original width. Future work will aim to employ the proposed experimental protocol to identify the local mechanical properties of biological tissues.
Collapse
Affiliation(s)
- Maxence Maillet
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France
| | - Malek Kammoun
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Jean Monnet Saint-Etienne, Inserm, U 1059 Sainbiose, 42023, Saint-Etienne, France
| | - Marie-Christine Ho Ba Tho
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France
| | - Olfa Trabelsi
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France.
| |
Collapse
|
3
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Hwang Y, Choi YS, Grounds MD, Kennedy BF. Three-dimensional mechanical characterization of murine skeletal muscle using quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5879-5899. [PMID: 36733728 PMCID: PMC9872891 DOI: 10.1364/boe.471062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Skeletal muscle function is governed by both the mechanical and structural properties of its constituent tissues, which are both modified by disease. Characterizing the mechanical properties of skeletal muscle tissue at an intermediate scale, i.e., between that of cells and organs, can provide insight into diseases such as muscular dystrophies. In this study, we use quantitative micro-elastography (QME) to characterize the micro-scale elasticity of ex vivo murine skeletal muscle in three-dimensions in whole muscles. To address the challenge of achieving high QME image quality with samples featuring uneven surfaces and geometry, we encapsulate the muscles in transparent hydrogels with flat surfaces. Using this method, we study aging and disease in quadriceps tissue by comparing normal wild-type (C57BL/6J) mice with dysferlin-deficient BLAJ mice, a model for the muscular dystrophy dysferlinopathy, at 3, 10, and 24 months of age (sample size of three per group). We observe a 77% decrease in elasticity at 24 months in dysferlin-deficient quadriceps compared to wild-type quadriceps.
Collapse
Affiliation(s)
- Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
4
|
Li J, Pijewska E, Fang Q, Szkulmowski M, Kennedy BF. Analysis of strain estimation methods in phase-sensitive compression optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2224-2246. [PMID: 35519281 PMCID: PMC9045929 DOI: 10.1364/boe.447340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 05/11/2023]
Abstract
In compression optical coherence elastography (OCE), deformation is quantified as the local strain at each pixel in the OCT field-of-view. A range of strain estimation methods have been demonstrated, yet it is unclear which method provides the best performance. Here, we analyze the two most prevalent strain estimation methods used in phase-sensitive compression OCE, i.e., weighted least squares (WLS) and the vector method. We introduce a framework to compare strain imaging metrics, incorporating strain sensitivity, strain signal-to-noise ratio (SNR), strain resolution, and strain accuracy. In addition, we propose a new phase unwrapping algorithm in OCE, fast phase unwrapping (FPU), and combine it with WLS, termed WLSFPU. Using the framework, we compare this new strain estimation method with both a current implementation of WLS that incorporates weighted phase unwrapping (WPU), termed WLSWPU, and the vector method. Our analysis reveals that the three methods provide similar strain sensitivity, strain SNR, and strain resolution, but that WLSFPU extends the dynamic range of accurate, measurable local strain, e.g., measuring a strain of 2.5 mɛ with ∼4% error, that is ×11 and ×15 smaller than the error measured using WLSWPU and the vector method, respectively. We also demonstrate, for the first time, the capability to detect sub-resolution contrast in compression OCE, i.e., changes in strain occurring within the strain axial resolution, and how this contrast varies between the different strain estimation methods. Lastly, we compare the performance of the three strain estimation methods on mouse skeletal muscle and human breast tissue and demonstrate that WLSFPU avoids strain imaging artifacts resulting from phase unwrapping errors in WLSWPU and provides improved contrast over the other two methods.
Collapse
Affiliation(s)
- Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley 6009, Australia
- Australian Research Council Centre for Personalized Therapeutics Technologies, Australia
- These authors contributed equally to this work
| | - Ewelina Pijewska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
- These authors contributed equally to this work
| | - Qi Fang
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley 6009, Australia
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley 6009, Australia
- Australian Research Council Centre for Personalized Therapeutics Technologies, Australia
| |
Collapse
|
5
|
Miyazawa A, Makita S, Li E, Yamazaki K, Kobayashi M, Sakai S, Yasuno Y. Polarization-sensitive optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2019; 10:5162-5181. [PMID: 31646039 PMCID: PMC6788587 DOI: 10.1364/boe.10.005162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 05/05/2023]
Abstract
Polarization-sensitive optical coherence elastography (PS-OCE) is developed for improved tissue discrimination. It integrates Jones matrix-based PS-optical coherence tomography (PS-OCT) with compression OCE. The method simultaneously measures the OCT intensity, attenuation coefficient, birefringence, and microstructural deformation (MSD) induced by tissue compression. Ex vivo porcine aorta and esophagus tissues were investigated by PS-OCE and histological imaging. The tissue properties measured by PS-OCE are shown as cross-sectional images and a three-dimensional (3-D) depth-trajectory plot. In this trajectory plot, the average attenuation coefficient, birefringence, and MSD were computed at each depth, and the trajectory in the depth direction was plotted in a 3-D feature space of these three properties. The tissue boundaries in a histological image corresponded with the depth-trajectory inflection points. Histogram analysis and t-distributed stochastic neighbour embedding (t-SNE) visualization of the three tissue properties indicated that the PS-OCE measurements provide sufficient information to discriminate porcine esophagus tissues.
Collapse
Affiliation(s)
- Arata Miyazawa
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - En Li
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kohei Yamazaki
- Biological Science Research, Kao Corporation, 5-3-28, Kotobukicho, Odawara, Kanagawa, 250-0002, Japan
| | - Masaki Kobayashi
- Biological Science Research, Kao Corporation, 5-3-28, Kotobukicho, Odawara, Kanagawa, 250-0002, Japan
| | - Shingo Sakai
- Skin Care Product Research, Kao Corporation, 5-3-28, Kotobukicho, Odawara, Kanagawa, 250-0002, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
6
|
B A, Rao S, Pandya HJ. Engineering approaches for characterizing soft tissue mechanical properties: A review. Clin Biomech (Bristol, Avon) 2019; 69:127-140. [PMID: 31344655 DOI: 10.1016/j.clinbiomech.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
From cancer diagnosis to detailed characterization of arterial wall biomechanics, the elastic property of tissues is widely studied as an early sign of disease onset. The fibrous structural features of tissues are a direct measure of its health and functionality. Alterations in the structural features of tissues are often manifested as local stiffening and are early signs for diagnosing a disease. These elastic properties are measured ex vivo in conventional mechanical testing regimes, however, the heterogeneous microstructure of tissues can be accurately resolved over relatively smaller length scales with enhanced spatial resolution using techniques such as micro-indentation, microelectromechanical (MEMS) based cantilever sensors and optical catheters which also facilitate in vivo assessment of mechanical properties. In this review, we describe several probing strategies (qualitative and quantitative) based on the spatial scale of mechanical assessment and also discuss the potential use of machine learning techniques to compute the mechanical properties of soft tissues. This work details state of the art advancement in probing strategies, associated challenges toward quantitative characterization of tissue biomechanics both from an engineering and clinical standpoint.
Collapse
Affiliation(s)
- Alekya B
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 12, India
| | - Sanjay Rao
- Department of Pediatric Surgery, Mazumdar Shaw Multispecialty Hospital, Narayana Health, Bangalore 99, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 12, India.
| |
Collapse
|
7
|
Wijesinghe P, Johansen NJ, Curatolo A, Sampson DD, Ganss R, Kennedy BF. Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta. Biophys J 2018; 113:2540-2551. [PMID: 29212007 DOI: 10.1016/j.bpj.2017.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Cellular-scale imaging of the mechanical properties of tissue has helped to reveal the origins of disease; however, cellular-scale resolution is not readily achievable in intact tissue volumes. Here, we demonstrate volumetric imaging of Young's modulus using ultrahigh-resolution optical coherence elastography, and apply it to characterizing the stiffness of mouse aortas. We achieve isotropic resolution of better than 15 μm over a 1-mm lateral field of view through the entire depth of an intact aortic wall. We employ a method of quasi-static compression elastography that measures volumetric axial strain and uses a compliant, transparent layer to measure surface axial stress. This combination is used to estimate Young's modulus throughout the volume. We demonstrate differentiation by stiffness of individual elastic lamellae and vascular smooth muscle. We observe stiffening of the aorta in regulator of G protein signaling 5-deficient mice, a model that is linked to vascular remodeling and fibrosis. We observe increased stiffness with proximity to the heart, as well as regions with micro-structural and micro-mechanical signatures characteristic of fibrous and lipid-rich tissue. High-resolution imaging of Young's modulus with optical coherence elastography may become an important tool in vascular biology and in other fields concerned with understanding the role of mechanics within the complex three-dimensional architecture of tissue.
Collapse
Affiliation(s)
- Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia.
| | - Niloufer J Johansen
- Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; Research Department, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Andrea Curatolo
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - David D Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease. Sci Rep 2017; 7:1517. [PMID: 28473708 PMCID: PMC5431417 DOI: 10.1038/s41598-017-01431-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/30/2017] [Indexed: 01/25/2023] Open
Abstract
This study tested the utility of optical coherence tomography (OCT)-based indentation to assess mechanical properties of respiratory tissues in disease. Using OCT-based indentation, the elastic modulus of mouse diaphragm was measured from changes in diaphragm thickness in response to an applied force provided by an indenter. We used a transgenic mouse model of chronic lung disease induced by the overexpression of transforming growth factor-alpha (TGF-α), established by the presence of pleural and peribronchial fibrosis and impaired lung mechanics determined by the forced oscillation technique and plethysmography. Diaphragm elastic modulus assessed by OCT-based indentation was reduced by TGF-α at both left and right lateral locations (p < 0.05). Diaphragm elastic modulus at left and right lateral locations were correlated within mice (r = 0.67, p < 0.01) suggesting that measurements were representative of tissue beyond the indenter field. Co-localised images of diaphragm after TGF-α overexpression revealed a layered fibrotic appearance. Maximum diaphragm force in conventional organ bath studies was also reduced by TGF-α overexpression (p < 0.01). Results show that OCT-based indentation provided clear delineation of diseased diaphragm, and together with organ bath assessment, provides new evidence suggesting that TGF-α overexpression produces impairment in diaphragm function and, therefore, an increase in the work of breathing in chronic lung disease.
Collapse
|
9
|
Chin L, Latham B, Saunders CM, Sampson DD, Kennedy BF. Simplifying the assessment of human breast cancer by mapping a micro-scale heterogeneity index in optical coherence elastography. JOURNAL OF BIOPHOTONICS 2017; 10:690-700. [PMID: 27618159 DOI: 10.1002/jbio.201600092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/08/2016] [Accepted: 08/13/2016] [Indexed: 05/02/2023]
Abstract
Surgical treatment of breast cancer aims to identify and remove all malignant tissue. Intraoperative assessment of tumor margins is, however, not exact; thus, re-excision is frequently needed, or excess normal tissue is removed. Imaging methods applicable intraoperatively could help to reduce re-excision rates whilst minimizing removal of excess healthy tissue. Optical coherence elastography (OCE) has been proposed for use in breast-conserving surgery; however, intraoperative interpretation of complex OCE images may prove challenging. Observations of breast cancer on multiple length scales, by OCE, ultrasound elastography, and atomic force microscopy, have shown an increase in the mechanical heterogeneity of malignant breast tumors compared to normal breast tissue. In this study, a micro-scale mechanical heterogeneity index is introduced and used to form heterogeneity maps from OCE scans of 10 ex vivo human breast tissue samples. Through comparison of OCE, optical coherence tomography images, and corresponding histology, malignant tissue is shown to possess a higher heterogeneity index than benign tissue. The heterogeneity map simplifies the contrast between tumor and normal stroma in breast tissue, facilitating the rapid identification of possible areas of malignancy, which is an important step towards intraoperative margin assessment using OCE.
Collapse
Affiliation(s)
- Lixin Chin
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, Perth, WA 6009, Australia
| | - Bruce Latham
- PathWest, Fiona Stanley Hospital, Robin Warren Drive, Murdoch, WA 6150, Australia
| | - Christobel M Saunders
- School of Surgery, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Breast Clinic, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - David D Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Brendan F Kennedy
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Larin KV, Sampson DD. Optical coherence elastography - OCT at work in tissue biomechanics [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1172-1202. [PMID: 28271011 PMCID: PMC5330567 DOI: 10.1364/boe.8.001172] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography - the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright.
Collapse
Affiliation(s)
- Kirill V Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA;
| | - David D Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
| |
Collapse
|
11
|
Kennedy KM, Chin L, McLaughlin RA, Latham B, Saunders CM, Sampson DD, Kennedy BF. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography. Sci Rep 2015; 5:15538. [PMID: 26503225 PMCID: PMC4622092 DOI: 10.1038/srep15538] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 01/22/2023] Open
Abstract
Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues.
Collapse
Affiliation(s)
- Kelsey M Kennedy
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic &Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Lixin Chin
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic &Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Robert A McLaughlin
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic &Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Bruce Latham
- PathWest, Fiona Stanley Hospital, Robin Warren Drive, Murdoch, WA 6150, Australia
| | - Christobel M Saunders
- School of Surgery, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,Breast Clinic, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - David D Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic &Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.,Centre for Microscopy, Characterisation &Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Brendan F Kennedy
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic &Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
12
|
Düwel D, Otte C, Schulz K, Saathoff T, Schlaefer A. Towards contactless optical coherence elastography with acoustic tissue excitation. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2015. [DOI: 10.1515/cdbme-2015-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Elastography presents an interesting approach to complement image data with mechanical tissue properties. Typically, the tissue is excited by direct contact to a probe. We study contactless elastography based on optical coherence tomography (OCT) and dynamic acoustic tissue excitation with airborne sound. We illustrate the principle and an implementation using sound waves of 135 Hz to excite the tissue. The displacement is measured and results of several tests indicate the feasibility to obtain a qualitative measure of the mechanical tissue properties. The approach is interesting for optical palpation, e.g., to enhance navigation and tissue characterization in minimally invasive and robot-assisted surgery.
Collapse
Affiliation(s)
- Dino Düwel
- Institute of Medical Technology, Hamburg University of Technology
| | - Christoph Otte
- Institute of Medical Technology, Hamburg University of Technology
| | - Kevin Schulz
- Institute of Medical Technology, Hamburg University of Technology
| | - Thore Saathoff
- Institute of Medical Technology, Hamburg University of Technology
| | | |
Collapse
|
13
|
Lavagnino M, Wall ME, Little D, Banes AJ, Guilak F, Arnoczky SP. Tendon mechanobiology: Current knowledge and future research opportunities. J Orthop Res 2015; 33:813-22. [PMID: 25763779 PMCID: PMC4524513 DOI: 10.1002/jor.22871] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
Abstract
Tendons mainly function as load-bearing tissues in the muscloskeletal system; transmitting loads from muscle to bone. Tendons are dynamic structures that respond to the magnitude, direction, frequency, and duration of physiologic as well as pathologic mechanical loads via complex interactions between cellular pathways and the highly specialized extracellular matrix. This paper reviews the evolution and current knowledge of mechanobiology in tendon development, homeostasis, disease, and repair. In addition, we review several novel mechanotransduction pathways that have been identified recently in other tissues and cell types, providing potential research opportunities in the field of tendon mechanobiology. We also highlight current methods, models, and technologies being used in a wide variety of mechanobiology research that could be investigated in the context of their potential applicability for answering some of the fundamental unanswered questions in this field. The article concludes with a review of the major questions and future goals discussed during the recent ORS/ISMMS New Frontiers in Tendon Research Conference held on September 10 and 11, 2014 in New York City.
Collapse
Affiliation(s)
- Michael Lavagnino
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine Michigan State University, East Lansing, Michigan
| | | | | | | | | | | |
Collapse
|
14
|
Wang S, Larin KV. Optical coherence elastography for tissue characterization: a review. JOURNAL OF BIOPHOTONICS 2015; 8:279-302. [PMID: 25412100 PMCID: PMC4410708 DOI: 10.1002/jbio.201400108] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 05/05/2023]
Abstract
Optical coherence elastography (OCE) represents the frontier of optical elasticity imaging techniques and focuses on the micro-scale assessment of tissue biomechanics in 3D that is hard to achieve with traditional elastographic methods. Benefit from the advancement of optical coherence tomography, and driven by the increasing requirements in nondestructive biomechanical characterization, this emerging technique recently has experienced a rapid development. In this paper, we start with the description of the mechanical contrast that has been employed by OCE and review the state-of-the-art techniques based on the reported applications and discuss the current technical challenges, emphasizing the unique role of OCE in tissue mechanical characterization. The position of OCE among other elastography techniques.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas, 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of medicine, one Baylor Plaza, Houston, Texas, 77030, USA
| | | |
Collapse
|
15
|
Wang S, Larin KV. Optical coherence elastography for tissue characterization: a review. JOURNAL OF BIOPHOTONICS 2015. [PMID: 25412100 DOI: 10.1002/jbio.v8.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical coherence elastography (OCE) represents the frontier of optical elasticity imaging techniques and focuses on the micro-scale assessment of tissue biomechanics in 3D that is hard to achieve with traditional elastographic methods. Benefit from the advancement of optical coherence tomography, and driven by the increasing requirements in nondestructive biomechanical characterization, this emerging technique recently has experienced a rapid development. In this paper, we start with the description of the mechanical contrast that has been employed by OCE and review the state-of-the-art techniques based on the reported applications and discuss the current technical challenges, emphasizing the unique role of OCE in tissue mechanical characterization. The position of OCE among other elastography techniques.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas, 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of medicine, one Baylor Plaza, Houston, Texas, 77030, USA
| | | |
Collapse
|