1
|
Amini N, Esteki A, Ahmadi M, Sasanpour P. Impact of light polarization on laser speckle contrast imaging with a custom phantom for microvascular flow. Sci Rep 2024; 14:26652. [PMID: 39496642 PMCID: PMC11535229 DOI: 10.1038/s41598-024-73757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024] Open
Abstract
Laser speckle contrast imaging (LSCI) is a non-invasive, powerful, and cost-effective imaging technique that has seen widespread adoption across various medical fields, particularly for blood flow imaging. While LSCI provides physicians with valuable insights into changes or occlusions in blood flow, the technique is susceptible to various factors and parameters that can impact measurement sensitivity and signal-to-noise ratio (SNR). These include the scattering of light, which can affect the quality and reliability of the LSCI data. The polarization of light holds significant promise to enhance the performance of LSCI. In this study, we employed polarization manipulation of light to investigate its impact on the performance of LSCI for measuring flow. Focusing on the application of LSCI in microcirculation within capillaries, we examined the effect of polarization control on the technique's flow measurement capabilities using a custom-designed phantom system. This phantom consisted of three tubes with inner diameters of 1.1 mm, 1.6 mm, and 2.8 mm, embedded in a polydimethylsiloxane (PDMS) matrix with optical properties similar to biological tissue. By manipulating the polarization of both the incident and reflected light, alternating between parallel and perpendicular states, we compared the performance of our LSCI system in detecting flow for different tube diameters and depths within the phantom. Our study revealed that while depth is a critical parameter influencing flow detection using LSCI, employing perpendicular polarization (between incident and reflected light) resulted in the lowest measurement error and highest SNR compared to parallel polarization and the absence of polarization control.
Collapse
Affiliation(s)
- Nasrin Amini
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esteki
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Ahmadi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran.
| |
Collapse
|
2
|
Lim XR, Abd-Alhaseeb MM, Ippolito M, Koide M, Senatore AJ, Plante C, Hariharan A, Weir N, Longden TA, Laprade KA, Stafford JM, Ziemens D, Schwaninger M, Wenzel J, Postnov DD, Harraz OF. Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow. Nat Commun 2024; 15:8686. [PMID: 39375369 PMCID: PMC11458797 DOI: 10.1038/s41467-024-52969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Hyperemia in response to neural activity is essential for brain health. A hyperemic response delivers O2 and nutrients, clears metabolic waste, and concomitantly exposes cerebrovascular endothelial cells to hemodynamic forces. While neurovascular research has primarily centered on the front end of hyperemia-neuronal activity-to-vascular response-the mechanical consequences of hyperemia have gone largely unexplored. Piezo1 is an endothelial mechanosensor that senses hyperemia-associated forces. Using genetic mouse models and pharmacologic approaches to manipulate endothelial Piezo1 function, we evaluated its role in blood flow control and whether it impacts cognition. We provide evidence of a built-in brake system that sculpts hyperemia, and specifically show that Piezo1 activation triggers a mechano-feedback system that promotes blood flow recovery to baseline. Further, genetic Piezo1 modification led to deficits in complementary memory tasks. Collectively, our findings establish a role for endothelial Piezo1 in cerebral blood flow regulation and a role in its behavioral sequelae.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Michael Ippolito
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Masayo Koide
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Amanda J Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Curtis Plante
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Kathryn A Laprade
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - James M Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Dorothea Ziemens
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Dmitry D Postnov
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, 8200, Denmark
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
3
|
Meglinski I, Dunn A, Durduran T, Postnov D, Zhu D. Dynamic Light Scattering in Biomedical Applications: feature issue introduction. BIOMEDICAL OPTICS EXPRESS 2024; 15:2890-2897. [PMID: 38855661 PMCID: PMC11161354 DOI: 10.1364/boe.525699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 06/11/2024]
Abstract
The feature Issue on "Dynamic Light Scattering in Biomedical Applications" presents a compilation of research breakthroughs and technological advancements that have shaped the field of biophotonics, particularly in the non-invasive exploration of biological tissues. Highlighting the significance of dynamic light scattering (DLS) alongside techniques like laser Doppler flowmetry (LDF), diffusing wave spectroscopy (DWS), and laser speckle contrast imaging (LSCI), this issue underscores the versatile applications of these methods in capturing the intricate dynamics of microcirculatory blood flow across various tissues. Contributions explore developments in fluorescence tomography, the integration of machine learning for data processing, enhancements in microscopy for cancer detection, and novel approaches in optical biophysics, among others. Innovations featured include a high-resolution speckle contrast tomography system for deep blood flow imaging, a rapid estimation technique for real-time tissue perfusion imaging, and the use of convolutional neural networks for efficient blood flow mapping. Additionally, studies delve into the impact of skin strain on spectral reflectance, the sensitivity of cerebral blood flow measurement techniques, and the potential of photobiomodulation for enhancing brain function. This issue not only showcases the latest theoretical and experimental strides in DLS-based imaging but also anticipates the continued evolution of these modalities for groundbreaking applications in disease detection, diagnosis, and monitoring, marking a pivotal contribution to the field of biomedical optics.
Collapse
Affiliation(s)
- Igor Meglinski
- College of Engineering and Physical Science, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Dmitry Postnov
- Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus, Denmark
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| |
Collapse
|
4
|
Yi C, Byun S, Lee Y, Lee SA. Improvements and validation of spatiotemporal speckle correlation model for rolling shutter speckle imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:1253-1267. [PMID: 38404314 PMCID: PMC10890878 DOI: 10.1364/boe.514497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Rolling shutter speckle imaging (RSSI) is a single-shot imaging technique that directly measures the temporal dynamics of the scattering media using a low-cost rolling shutter image sensor and vertically elongated speckles. In this paper, we derive and validate a complete spatiotemporal intensity correlation (STIC) model for RSSI, which describes the row-by-row correlation of the dynamic speckles measured with a rolling shutter in the presence of static scattering. Our new model accounts for the finite exposure time of the detector, which can be longer than the sampling interval in RSSI. We derive a comprehensive model that works for all correlation times of rolling shutter measurements. As a result, we can correctly utilize all data points in RSSI, which improves the measurement accuracy and ranges of speckle decorrelation time and dynamic scattering fraction, as demonstrated by phantom experiments. With simulations and experiments, we provide an understanding of the design parameters of RSSI and the measurement range of the speckle dynamics.
Collapse
Affiliation(s)
- Changyoon Yi
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangjun Byun
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yujin Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seung Ah Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|