1
|
Herrando AI, Fernandez LM, Azevedo J, Vieira P, Domingos H, Galzerano A, Shcheslavskiy V, Heald RJ, Parvaiz A, da Silva PG, Castillo-Martin M, Lagarto JL. Detection and characterization of colorectal cancer by autofluorescence lifetime imaging on surgical specimens. Sci Rep 2024; 14:24575. [PMID: 39426971 PMCID: PMC11490491 DOI: 10.1038/s41598-024-74224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignancies worldwide, driving a quest for comprehensive characterization methods. We report a characterization of the ex vivo autofluorescence lifetime fingerprint of colorectal tissues obtained from 73 patients that underwent surgical resection. We specifically target the autofluorescence characteristics of collagens, reduced nicotine adenine (phosphate) dinucleotide (NAD(P)H), and flavins employing a fiber-based dual excitation (375 nm and 445 nm) optical imaging system. Autofluorescence-derived parameters obtained from normal tissues, adenomatous lesions, and adenocarcinomas were analyzed considering the underlying clinicopathological features. Our results indicate that differences between tissues are primarily driven by collagen and flavins autofluorescence parameters. We also report changes in the autofluorescence parameters associated with NAD(P)H that we tentatively attribute to intratumoral heterogeneity, potentially associated to the presence of distinct metabolic subpopulations. Changes in autofluorescence signatures of malignant tumors were also observed with lymphatic and venous invasion, differentiation grade, and microsatellite instability. Finally, we characterized the impact of radiative treatment in the autofluorescence fingerprints of rectal tissues and observed a generalized increase in the mean lifetime of radiated adenocarcinomas, which is suggestive of altered metabolism and structural remodeling. Overall, our preliminary findings indicate that multiparametric autofluorescence lifetime measurements have the potential to significantly enhance clinical decision-making in CRC, spanning from initial diagnosis to ongoing management. We believe that our results will provide a foundational framework for future investigations to further understand and combat CRC exploiting autofluorescence measurements.
Collapse
Affiliation(s)
- Alberto Ignacio Herrando
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.
- Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.
- NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal.
| | - Laura M Fernandez
- Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - José Azevedo
- Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Pedro Vieira
- Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Hugo Domingos
- Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Antonio Galzerano
- Department of Pathology, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Vladislav Shcheslavskiy
- Becker & Hickl GmbH, Nunsdorfer Ring 7-9, 12277, Berlin, Germany
- Privolzhsky Research Medical University, Minina and Pozharskogo Sq, 10/1, Nizhny Novgorod, Russia, 603005
| | - Richard J Heald
- Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Amjad Parvaiz
- Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Pedro Garcia da Silva
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Mireia Castillo-Martin
- Department of Pathology, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - João L Lagarto
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal
| |
Collapse
|
2
|
Herrando AI, Castillo-Martin M, Galzerano A, Fernández L, Vieira P, Azevedo J, Parvaiz A, Cicchi R, Shcheslavskiy VI, Silva PG, Lagarto JL. Dual excitation spectral autofluorescence lifetime and reflectance imaging for fast macroscopic characterization of tissues. BIOMEDICAL OPTICS EXPRESS 2024; 15:3507-3522. [PMID: 38867800 PMCID: PMC11166421 DOI: 10.1364/boe.505220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 06/14/2024]
Abstract
Advancements in optical imaging techniques have revolutionized the field of biomedical research, allowing for the comprehensive characterization of tissues and their underlying biological processes. Yet, there is still a lack of tools to provide quantitative and objective characterization of tissues that can aid clinical assessment in vivo to enhance diagnostic and therapeutic interventions. Here, we present a clinically viable fiber-based imaging system combining time-resolved spectrofluorimetry and reflectance spectroscopy to achieve fast multiparametric macroscopic characterization of tissues. An essential feature of the setup is its ability to perform dual wavelength excitation in combination with recording time-resolved fluorescence data in several spectral intervals. Initial validation of this bimodal system was carried out in freshly resected human colorectal cancer specimens, where we demonstrated the ability of the system to differentiate normal from malignant tissues based on their autofluorescence and reflectance properties. To further highlight the complementarity of autofluorescence and reflectance measurements and demonstrate viability in a clinically relevant scenario, we also collected in vivo data from the skin of a volunteer. Altogether, integration of these modalities in a single platform can offer multidimensional characterization of tissues, thus facilitating a deeper understanding of biological processes and potentially advancing diagnostic and therapeutic approaches in various medical applications.
Collapse
Affiliation(s)
- Alberto I. Herrando
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | | | - Antonio Galzerano
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Laura Fernández
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Pedro Vieira
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - José Azevedo
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Amjad Parvaiz
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Riccardo Cicchi
- National Institute of Optics (CNR-INO), Largo Enrico Fermi 6, 50125 Florence, Italy
| | - Vladislav I. Shcheslavskiy
- Becker and Hickl GmbH, Nunsdorfer Ring 7-9, 12277 Berlin, Germany
- Privolzhsky Research Medical University, Minina and Pozharskogo Sq, 10/1, 603005 Nizhny Novgorod, Russia
| | - Pedro G. Silva
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - João L. Lagarto
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| |
Collapse
|
3
|
Berkal MA, Nardin C. Pesticide biosensors: trends and progresses. Anal Bioanal Chem 2023; 415:5899-5924. [PMID: 37668672 DOI: 10.1007/s00216-023-04911-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Pesticides, chemical substances extensively employed in agriculture to optimize crop yields, pose potential risks to human and environmental health. Consequently, regulatory frameworks are in place to restrict pesticide residue concentrations in water intended for human consumption. These regulations are implemented to safeguard consumer safety and mitigate any adverse effects on the environment and public health. Although gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS) are highly efficient techniques for pesticide quantification, their use is not suitable for real-time monitoring due to the need for sophisticated laboratory pretreatment of samples prior to analysis. Since they would enable analyte detection with selectivity and sensitivity without sample pretreatment, biosensors appear as a promising alternative. These consist of a bioreceptor allowing for specific recognition of the target and of a detection platform, which translates the biological interaction into a measurable signal. As early detection systems remain urgently needed to promptly alert and act in case of pollution, we review here the biosensors described in the literature for pesticide detection to advance their development for use in the field.
Collapse
Affiliation(s)
| | - Corinne Nardin
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
4
|
Islam MA, Volakis JL. Real-Time Detection and 3D Localization of Coronary Atherosclerosis Using a Microwave Imaging Technique: A Simulation Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:8822. [PMID: 36433417 PMCID: PMC9696319 DOI: 10.3390/s22228822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Obtaining the exact position of accumulated calcium on the inner walls of coronary arteries is critical for successful angioplasty procedures. For the first time to our knowledge, in this work, we present a high accuracy imaging of the inner coronary artery using microwaves for precise calcium identification. Specifically, a cylindrical catheter radiating microwave signals is designed. The catheter has multiple dipole-like antennas placed around it to enable a 360° field-of-view around the catheter. In addition, to resolve image ambiguity, a metallic rod is inserted along the axis of the plastic catheter. The reconstructed images using data obtained from simulations show successful detection and 3D localization of the accumulated calcium on the inner walls of the coronary artery in the presence of blood flow. Considering the space and shape limitations, and the highly lossy biological tissue environment, the presented imaging approach is promising and offers a potential solution for accurate localization of coronary atherosclerosis during angioplasty or other related procedures.
Collapse
Affiliation(s)
- Md Asiful Islam
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - John L. Volakis
- College of Engineering and Computing, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
5
|
Guo K, Wu J, Kong Y, Zhou L, Li W, Fei Y, Ma J, Mi L. Label-free and noninvasive method for assessing the metabolic status in type 2 diabetic rats with myocardium diastolic dysfunction. BIOMEDICAL OPTICS EXPRESS 2021; 12:480-493. [PMID: 33659084 PMCID: PMC7899513 DOI: 10.1364/boe.413347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
This study assesses the metabolic status of rat diabetic cardiomyopathy (DCM) models. Echocardiography is used to detect the diastolic dysfunction in type 2 diabetic rats, and a lower threshold for inducible atrial fibrillation is found in type 2 diabetic rats with diastolic dysfunction compared to the control. Metabolic abnormalities are detected by status changes of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), which is an essential coenzyme in cells or tissues. Fluorescence lifetime imaging microscopy (FLIM) is used to monitor changes in NAD(P)H in both myocardial tissues and blood. FLIM reveals that the protein-bound proportion of NAD(P)H in rat myocardium in the DCM group is smaller than the control group, which indicates the oxidative phosphorylation rate of the DCM group decreased. Similar results are found for blood plasma of DCM rats by the FLIM study. FLIM exhibits high potential for screening DCM as a label-free, sensitive, and noninvasive method.
Collapse
Affiliation(s)
- Kai Guo
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
- These authors contributed equally to this work
| | - Junxin Wu
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
- These authors contributed equally to this work
| | - Yawei Kong
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Li Zhou
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wei Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
- The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Lan Mi
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
6
|
Lagarto JL, Villa F, Tisa S, Zappa F, Shcheslavskiy V, Pavone FS, Cicchi R. Real-time multispectral fluorescence lifetime imaging using Single Photon Avalanche Diode arrays. Sci Rep 2020; 10:8116. [PMID: 32415224 PMCID: PMC7229199 DOI: 10.1038/s41598-020-65218-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Autofluorescence spectroscopy has emerged in recent years as a powerful tool to report label-free contrast between normal and diseased tissues, both in vivo and ex vivo. We report the development of an instrument employing Single Photon Avalanche Diode (SPAD) arrays to realize real-time multispectral autofluorescence lifetime imaging at a macroscopic scale using handheld single-point fibre optic probes, under bright background conditions. At the detection end, the fluorescence signal is passed through a transmission grating and both spectral and temporal information are encoded in the SPAD array. This configuration allows interrogation in the spectral range of interest in real time. Spatial information is provided by an external camera together with a guiding beam that provides a visual reference that is tracked in real-time. Through fast image processing and data analysis, fluorescence lifetime maps are augmented on white light images to provide feedback of the measurements in real-time. We validate and demonstrate the practicality of this technique in the reference fluorophores and in articular cartilage samples mimicking the degradation that occurs in osteoarthritis. Our results demonstrate that SPADs together with fibre probes can offer means to report autofluorescence spectral and lifetime contrast in real-time and thus are suitable candidates for in situ tissue diagnostics.
Collapse
Affiliation(s)
- João L Lagarto
- National Institute of Optics National Research Council (INO-CNR), Largo Enrico Fermi 6, 50125, Florence, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
| | - Federica Villa
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133, Milan, Italy
| | - Simone Tisa
- Micro Photon Device SRL, Via Waltraud Gebert Deeg 3g, I-39100, Bolzano, Italy
| | - Franco Zappa
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133, Milan, Italy
| | - Vladislav Shcheslavskiy
- Becker & Hickl GmbH, Nunsdorfer Ring 7-9, 12277, Berlin, Germany
- Privolzhskiy Medical Research University, 603005, Nizhny Novgorod, Russia
| | - Francesco S Pavone
- National Institute of Optics National Research Council (INO-CNR), Largo Enrico Fermi 6, 50125, Florence, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Riccardo Cicchi
- National Institute of Optics National Research Council (INO-CNR), Largo Enrico Fermi 6, 50125, Florence, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Lagarto JL, Shcheslavskiy V, Pavone FS, Cicchi R. Real-time fiber-based fluorescence lifetime imaging with synchronous external illumination: A new path for clinical translation. JOURNAL OF BIOPHOTONICS 2020; 13:e201960119. [PMID: 31742905 DOI: 10.1002/jbio.201960119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/22/2023]
Abstract
Time-correlated single photon counting is the "gold-standard" method for fluorescence lifetime measurements and has demonstrated potential for clinical deployment. However, the translation of the technology into clinic is hindered by the use of ultrasensitive detectors, which make the fluorescence acquisition impractical with bright lighting conditions such as in clinical settings. We address this limitation by interleaving periodic fluorescence detection with synchronous out-of-phase externally modulated light source, thus guaranteeing specimen illumination and a fluorescence signal free from bright background light upon temporal separation. Fluorescence lifetime maps are generated in real-time from single-point measurements by tracking a reference beam and using the phasor approach. We demonstrate the feasibility and practicality of this technique in a number of biological specimens, including real-time mapping of degraded articular cartilage. This method is compatible and can be integrated with existing clinical microscopic, endoscopic and robotic modalities, thus offering a new pathway towards label-free diagnostics and surgical guidance in a number of clinical applications.
Collapse
Affiliation(s)
- João L Lagarto
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| | | | - Francesco S Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Lagarto JL, Nickdel MB, Kelly DJ, Price A, Nanchahal J, Dunsby C, French P, Itoh Y. Autofluorescence Lifetime Reports Cartilage Damage in Osteoarthritis. Sci Rep 2020; 10:2154. [PMID: 32034262 PMCID: PMC7005742 DOI: 10.1038/s41598-020-59219-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) is the most common arthritis and its hallmark is degradation of articular cartilage by proteolytic enzymes leading to loss of joint function. It is challenging to monitor the status of cartilage in vivo and this study explores the use of autofluorescence lifetime (AFL) measurements to provide a label-free optical readout of cartilage degradation that could enable earlier detection and evaluation of potential therapies. We previously reported that treatment of ex vivo porcine cartilage with proteolytic enzymes resulted in decreased AFL. Here we report changes in AFL of ex vivo mouse knee joints, porcine metacarpophalangeal joints, normal human metatarsophalangeal articular tissue and human OA tibial plateau tissues measured with or without treatment using a compact single-point time resolved spectrofluorometer. Our data show that proteolytically damaged areas in porcine metacarpophalangeal joints present a reduced AFL and that inducing aggrecanases in mouse and human joints also significantly reduces AFL. Further, human cartilage from OA patients presents a significantly lower AFL compared to normal human cartilage. Our data suggest that AFL can detect areas of cartilage erosion and may potentially be utilised as a minimally-invasive diagnostic readout for early stage OA in combination with arthroscopy devices.
Collapse
Affiliation(s)
- João L Lagarto
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Mohammad B Nickdel
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Douglas J Kelly
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Andrew Price
- Botner Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Chris Dunsby
- Department of Physics, Imperial College London, London, SW7 2AZ, UK.,Centre for Pathology, Imperial College London, London, SW7 2AZ, UK
| | - Paul French
- Department of Physics, Imperial College London, London, SW7 2AZ, UK.
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK.
| |
Collapse
|
9
|
Majumder P, Blacker TS, Nolan LS, Duchen MR, Gale JE. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep 2019; 9:18907. [PMID: 31827194 PMCID: PMC6906381 DOI: 10.1038/s41598-019-55329-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
An increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.
Collapse
Affiliation(s)
- Paromita Majumder
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.
| | - Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK. .,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lisa S Nolan
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.,Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
10
|
Lagarto JL, Dyer BT, Peters NS, French PMW, Dunsby C, Lyon AR. In vivo label-free optical monitoring of structural and metabolic remodeling of myocardium following infarction. BIOMEDICAL OPTICS EXPRESS 2019; 10:3506-3521. [PMID: 31360603 PMCID: PMC6640823 DOI: 10.1364/boe.10.003506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 05/14/2023]
Abstract
Cardiac remodeling following myocardial infarction (MI) involves structural and functional alterations in the infarcted and remote viable myocardium that can ultimately lead to heart failure. The underlying mechanisms are not fully understood and, following our previous study of the autofluorescence lifetime and diffuse reflectance signatures of the myocardium in vivo at 16 weeks post MI in rats [Biomed. Opt. Express6(2), 324 (2015)], we here present data obtained at 1, 2 and 4 weeks post myocardial infarction that help follow the temporal progression of these changes. Our results demonstrate that both structural and metabolic changes in the heart can be monitored from the earliest time points following MI using label-free optical readouts, not only in the region of infarction but also in the remote non-infarcted myocardium. Changes in the autofluorescence intensity and lifetime parameters associated with collagen type I autofluorescence were indicative of progressive collagen deposition in tissue that was most pronounced at earlier time points and in the region of infarction. In addition to significant collagen deposition in infarcted and non-infarcted myocardium, we also report changes in the autofluorescence parameters associated with reduced nicotinamide adenine (phosphate) dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD), which we associate with metabolic alterations throughout the heart. Parallel measurements of the diffuse reflectance spectra indicated an increased contribution of reduced cytochrome c. Our findings suggest that combining time-resolved spectrofluorometry and diffuse reflectance spectroscopy could provide a useful means to monitor cardiac function in vivo at the time of surgery.
Collapse
Affiliation(s)
- João L. Lagarto
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
- Authors contributed equally to this work
| | - Benjamin T. Dyer
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom
- Authors contributed equally to this work
| | - Nicholas S. Peters
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom
- Centre for Cardiac Engineering, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
- Centre for Pathology, Imperial College London Du Cane Road, London W12 0NN, United Kingdom
- Authors contributed equally to this work
| | - Alexander R. Lyon
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom
- Authors contributed equally to this work
| |
Collapse
|
11
|
Multispectral Depth-Resolved Fluorescence Lifetime Spectroscopy Using SPAD Array Detectors and Fiber Probes. SENSORS 2019; 19:s19122678. [PMID: 31200569 PMCID: PMC6631026 DOI: 10.3390/s19122678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/29/2023]
Abstract
Single Photon Avalanche Diode (SPAD) arrays are increasingly exploited and have demonstrated potential in biochemical and biomedical research, both for imaging and single-point spectroscopy applications. In this study, we explore the application of SPADs together with fiber-optic-based delivery and collection geometry to realize fast and simultaneous single-point time-, spectral-, and depth-resolved fluorescence measurements at 375 nm excitation light. Spectral information is encoded across the columns of the array through grating-based dispersion, while depth information is encoded across the rows thanks to a linear arrangement of probe collecting fibers. The initial characterization and validation were realized against layered fluorescent agarose-based phantoms. To verify the practicality and feasibility of this approach in biological specimens, we measured the fluorescence signature of formalin-fixed rabbit aorta samples derived from an animal model of atherosclerosis. The initial results demonstrate that this detection configuration can report fluorescence spectral and lifetime contrast originating at different depths within the specimens. We believe that our optical scheme, based on SPAD array detectors and fiber-optic probes, constitute a powerful and versatile approach for the deployment of multidimensional fluorescence spectroscopy in clinical applications where information from deeper tissue layers is important for diagnosis.
Collapse
|
12
|
Lagarto JL, Dyer BT, Talbot CB, Peters NS, French PMW, Lyon AR, Dunsby C. Characterization of NAD(P)H and FAD autofluorescence signatures in a Langendorff isolated-perfused rat heart model. BIOMEDICAL OPTICS EXPRESS 2018; 9:4961-4978. [PMID: 30319914 PMCID: PMC6179415 DOI: 10.1364/boe.9.004961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 05/22/2023]
Abstract
Autofluorescence spectroscopy is a promising label-free approach to characterize biological samples with demonstrated potential to report structural and biochemical alterations in tissues in a number of clinical applications. We report a characterization of the ex vivo autofluorescence fingerprint of cardiac tissue, exploiting a Langendorff-perfused isolated rat heart model to induce physiological insults to the heart, with a view to understanding how metabolic alterations affect the autofluorescence signals. Changes in the autofluorescence intensity and lifetime signatures associated with reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) were characterized during oxygen- or glucose-depletion protocols. Results suggest that both NAD(P)H and FAD autofluorescence intensity and lifetime parameters are sensitive to changes in the metabolic state of the heart owing to oxygen deprivation. We also observed changes in NAD(P)H fluorescence intensity and FAD lifetime parameter on reperfusion of oxygen, which might provide information on reperfusion injury, and permanent tissue damage or changes to the tissue during recovery from oxygen deprivation. We found that changes in the autofluorescence signature following glucose-depletion are, in general, less pronounced, and most clearly visible in NAD(P)H related parameters. Overall, the results reported in this investigation can serve as baseline for future investigations of cardiac tissue involving autofluorescence measurements.
Collapse
Affiliation(s)
- João L Lagarto
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
- Authors contributed equally to this work
| | - Benjamin T Dyer
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
- Authors contributed equally to this work
| | - Clifford B Talbot
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Nicholas S Peters
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Alexander R Lyon
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
- Authors contributed equally to this work
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
- Centre for Pathology, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Authors contributed equally to this work
| |
Collapse
|
13
|
Lagarto JL, Phipps JE, Faller L, Ma D, Unger J, Bec J, Griffey S, Sorger J, Farwell DG, Marcu L. Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:90-99. [PMID: 29883910 DOI: 10.1016/j.jphotobiol.2018.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Affiliation(s)
- João L Lagarto
- University of California, Davis, Department of Biomedical Engineering, 1 Shields Avenue, Davis, CA 95616, United States
| | - Jennifer E Phipps
- University of California, Davis, Department of Biomedical Engineering, 1 Shields Avenue, Davis, CA 95616, United States
| | - Leta Faller
- University of California, Davis, Department of Otolaryngology-Head and Neck Surgery, 2521 Stockton Boulevard, Suite 7200, Sacramento, California 95817, United States
| | - Dinglong Ma
- University of California, Davis, Department of Biomedical Engineering, 1 Shields Avenue, Davis, CA 95616, United States
| | - Jakob Unger
- University of California, Davis, Department of Biomedical Engineering, 1 Shields Avenue, Davis, CA 95616, United States
| | - Julien Bec
- University of California, Davis, Department of Biomedical Engineering, 1 Shields Avenue, Davis, CA 95616, United States
| | - Stephen Griffey
- University of California, Davis, Comparative Pathology Laboratory, 1 Shields Avenue, Davis, CA 95616, United States
| | - Jonathan Sorger
- Intuitive Surgical, 1020 Kifer Road, Sunnyvale, CA 94086-5304, United States
| | - D Gregory Farwell
- University of California, Davis, Department of Otolaryngology-Head and Neck Surgery, 2521 Stockton Boulevard, Suite 7200, Sacramento, California 95817, United States
| | - Laura Marcu
- University of California, Davis, Department of Biomedical Engineering, 1 Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
14
|
Lagarto J, Hares JD, Dunsby C, French PMW. Development of Low-Cost Instrumentation for Single Point Autofluorescence Lifetime Measurements. J Fluoresc 2017; 27:1643-1654. [PMID: 28540652 PMCID: PMC5583312 DOI: 10.1007/s10895-017-2101-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/04/2017] [Indexed: 01/25/2023]
Abstract
Autofluorescence lifetime measurements, which can provide label-free readouts in biological tissues, contrasting e.g. different types and states of tissue matrix components and different cellular metabolites, may have significant clinical potential for diagnosis and to provide surgical guidance. However, the cost of the instrumentation typically used currently presents a barrier to wider implementation. We describe a low-cost single point time-resolved autofluorescence instrument, exploiting modulated laser diodes for excitation and FPGA-based circuitry for detection, together with a custom constant fraction discriminator. Its temporal accuracy is compared against a "gold-standard" instrument incorporating commercial TCSPC circuitry by resolving the fluorescence decays of reference fluorophores presenting single and double exponential decay profiles. To illustrate the potential to read out intrinsic contrast in tissue, we present preliminary measurements of autofluorescence lifetime measurements of biological tissues ex vivo. We believe that the lower cost of this instrument could enhance the potential of autofluorescence lifetime metrology for clinical deployment and commercial development.
Collapse
Affiliation(s)
- João Lagarto
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK.
| | - Jonathan D Hares
- Kentech Instruments Ltd., Howbery Park, Wallingford, OX10 8BD, UK
| | - Christopher Dunsby
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
15
|
Noble E, Kumar S, Görlitz FG, Stain C, Dunsby C, French PMW. In vivo label-free mapping of the effect of a photosystem II inhibiting herbicide in plants using chlorophyll fluorescence lifetime. PLANT METHODS 2017; 13:48. [PMID: 28638436 PMCID: PMC5472976 DOI: 10.1186/s13007-017-0201-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/08/2017] [Indexed: 06/19/2023]
Abstract
BACKGROUND In order to better understand and improve the mode of action of agrochemicals, it is useful to be able to visualize their uptake and distribution in vivo, non-invasively and, ideally, in the field. Here we explore the potential of plant autofluorescence (specifically chlorophyll fluorescence) to provide a readout of herbicide action across the scales utilising multiphoton-excited fluorescence lifetime imaging, wide-field single-photon excited fluorescence lifetime imaging and single point fluorescence lifetime measurements via a fibre-optic probe. RESULTS Our studies indicate that changes in chlorophyll fluorescence lifetime can be utilised as an indirect readout of a photosystem II inhibiting herbicide activity in living plant leaves at three different scales: cellular (~μm), single point (~1 mm2) and macroscopic (~8 × 6 mm2 of a leaf). Multiphoton excited fluorescence lifetime imaging of Triticum aestivum leaves indicated that there is an increase in the spatially averaged chlorophyll fluorescence lifetime of leaves treated with Flagon EC-a photosystem II inhibiting herbicide. The untreated leaf exhibited an average lifetime of 560 ± 30 ps while the leaf imaged 2 h post treatment exhibited an increased lifetime of 2000 ± 440 ps in different fields of view. The results from in vivo wide-field single-photon excited fluorescence lifetime imaging excited at 440 nm indicated an increase in chlorophyll fluorescence lifetime from 521 ps in an untreated leaf to 1000 ps, just 3 min after treating the same leaf with Flagon EC, and to 2150 ps after 27 min. In vivo single point fluorescence lifetime measurements demonstrated a similar increase in chlorophyll fluorescence lifetime. Untreated leaf presented a fluorescence lifetime of 435 ps in the 440 nm excited chlorophyll channel, CH4 (620-710 nm). In the first 5 min after treatment, mean fluorescence lifetime is observed to have increased to 1 ns and then to 1.3 ns after 60 min. For all these in vivo plant autofluorescence lifetime measurements, the plants were not dark-adapted. CONCLUSIONS We demonstrate that the local impact of a photosystem II herbicide on living plant leaves can be conveniently mapped in space and time via changes in autofluorescence lifetime, which we attribute to changes in chlorophyll fluorescence. Using portable fibre-optic probe instrumentation originally designed for label-free biomedical applications, this capability could be deployed outside the laboratory for monitoring the distribution of herbicides in growing plants.
Collapse
Affiliation(s)
- Elizabeth Noble
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
- Department of Chemistry, Imperial College London, London, SW7 2AZ UK
- Institute of Chemical Biology, Imperial College London, London, SW7 2AZ UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
| | - Frederik G. Görlitz
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
| | - Chris Stain
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
- Centre for Pathology, Imperial College London, London, SW7 2AZ UK
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
16
|
Abstract
Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely relies on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well-established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems and outlines areas of potential high impact in the future.
Collapse
Affiliation(s)
- Pinaki Sarder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Dolonchampa Maji
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| |
Collapse
|