1
|
Chang BJ, Manton JD, Sapoznik E, Pohlkamp T, Terrones TS, Welf ES, Murali VS, Roudot P, Hake K, Whitehead L, York AG, Dean KM, Fiolka R. Real-time multi-angle projection imaging of biological dynamics. Nat Methods 2021; 18:829-834. [PMID: 34183831 PMCID: PMC9206531 DOI: 10.1038/s41592-021-01175-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/05/2021] [Indexed: 02/03/2023]
Abstract
We introduce a cost-effective and easily implementable scan unit that converts any camera-based microscope with optical sectioning capability into a multi-angle projection imaging system. Projection imaging reduces data overhead and accelerates imaging by a factor of >100, while also allowing users to readily view biological phenomena of interest from multiple perspectives on the fly. By rapidly interrogating the sample from just two perspectives, our method also enables real-time stereoscopic imaging and three-dimensional particle localization. We demonstrate projection imaging with spinning disk confocal, lattice light-sheet, multidirectional illumination light-sheet and oblique plane microscopes on specimens that range from organelles in single cells to the vasculature of a zebrafish embryo. Furthermore, we leverage our projection method to rapidly image cancer cell morphodynamics and calcium signaling in cultured neurons at rates up to 119 Hz as well as to simultaneously image orthogonal views of a beating embryonic zebrafish heart.
Collapse
Affiliation(s)
- Bo-Jui Chang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Etai Sapoznik
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tamara S Terrones
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vasanth S Murali
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kayley Hake
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew G York
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Schmidt C, Planchette AL, Nguyen D, Giardina G, Neuenschwander Y, Franco MD, Mylonas A, Descloux AC, Pomarico E, Radenovic A, Extermann J. High resolution optical projection tomography platform for multispectral imaging of the mouse gut. BIOMEDICAL OPTICS EXPRESS 2021; 12:3619-3629. [PMID: 34221683 PMCID: PMC8221953 DOI: 10.1364/boe.423284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Optical projection tomography (OPT) is a powerful tool for three-dimensional imaging of mesoscopic biological samples with great use for biomedical phenotyping studies. We present a fluorescent OPT platform that enables direct visualization of biological specimens and processes at a centimeter scale with high spatial resolution, as well as fast data throughput and reconstruction. We demonstrate nearly isotropic sub-28 µm resolution over more than 60 mm3 after reconstruction of a single acquisition. Our setup is optimized for imaging the mouse gut at multiple wavelengths. Thanks to a new sample preparation protocol specifically developed for gut specimens, we can observe the spatial arrangement of the intestinal villi and the vasculature network of a 3-cm long healthy mouse gut. Besides the blood vessel network surrounding the gastrointestinal tract, we observe traces of vasculature at the villi ends close to the lumen. The combination of rapid acquisition and a large field of view with high spatial resolution in 3D mesoscopic imaging holds an invaluable potential for gastrointestinal pathology research.
Collapse
Affiliation(s)
- Cédric Schmidt
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Arielle L. Planchette
- Laboratoire de Biologie à l’Échelle Nanométrique, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - David Nguyen
- Zlatic Lab, Neurobiology, MRC-Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Gabriel Giardina
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Yoan Neuenschwander
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Mathieu Di Franco
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Alessio Mylonas
- Laboratoire de Biologie à l’Échelle Nanométrique, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Adrien C. Descloux
- Laboratoire de Biologie à l’Échelle Nanométrique, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Enrico Pomarico
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| | - Aleksandra Radenovic
- Laboratoire de Biologie à l’Échelle Nanométrique, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jérôme Extermann
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland
| |
Collapse
|
3
|
Three-dimensional bright-field microscopy with isotropic resolution based on multi-view acquisition and image fusion reconstruction. Sci Rep 2020; 10:12771. [PMID: 32728161 PMCID: PMC7392767 DOI: 10.1038/s41598-020-69730-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/30/2020] [Indexed: 11/08/2022] Open
Abstract
Optical Projection Tomography (OPT) is a powerful three-dimensional imaging technique used for the observation of millimeter-scaled biological samples, compatible with bright-field and fluorescence contrast. OPT is affected by spatially variant artifacts caused by the fact that light diffraction is not taken into account by the straight-light propagation models used for reconstruction. These artifacts hinder high-resolution imaging with OPT. In this work we show that, by using a multiview imaging approach, a 3D reconstruction of the bright-field contrast can be obtained without the diffraction artifacts typical of OPT, drastically reducing the amount of acquired data, compared to previously reported approaches. The method, purely based on bright-field contrast of the unstained sample, provides a comprehensive picture of the sample anatomy, as demonstrated in vivo on Arabidopsis thaliana and zebrafish embryos. Furthermore, this bright-field reconstruction can be implemented on practically any multi-view light-sheet fluorescence microscope without complex hardware modifications or calibrations, complementing the fluorescence information with tissue anatomy.
Collapse
|
4
|
Toolbox for In Vivo Imaging of Host-Parasite Interactions at Multiple Scales. Trends Parasitol 2019; 35:193-212. [PMID: 30745251 DOI: 10.1016/j.pt.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology.
Collapse
|
5
|
Mayer J, Robert-Moreno A, Sharpe J, Swoger J. Attenuation artifacts in light sheet fluorescence microscopy corrected by OPTiSPIM. LIGHT, SCIENCE & APPLICATIONS 2018; 7:70. [PMID: 30302241 PMCID: PMC6168557 DOI: 10.1038/s41377-018-0068-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 05/18/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) is rapidly becoming an essential technology for mesoscopic imaging of samples such as embryos and adult mouse organs. However, LSFM can suffer from optical artifacts for which there is no intrinsic solution. The attenuation of light due to absorbing material causes "shadow" artifacts along both the illumination and detection paths. Several approaches have been introduced to reduce this problem, including scanning illumination and multi-view imaging. However, neither of these approaches completely eliminates the problem. If the distribution of the absorbing material is complex, shadows cannot be avoided. We introduce a new approach that relies on multi-modal integration of two very different mesoscopic techniques. Unlike LSFM, optical projection tomography (OPT) can operate in transmission mode to create a voxel map of the 3D distribution of the sample's optical attenuation. Here, we demonstrate a hybrid instrument (OPTiSPIM) that can quantify this attenuation and use the information to correct the shadow artifacts of LSFM.
Collapse
Affiliation(s)
- Jürgen Mayer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandre Robert-Moreno
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Jim Swoger
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Present Address: European Molecular Biology Laboratory (EMBL), Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|