1
|
Albers J, Wagner WL, Fiedler MO, Rothermel A, Wünnemann F, Di Lillo F, Dreossi D, Sodini N, Baratella E, Confalonieri M, Arfelli F, Kalenka A, Lotz J, Biederer J, Wielpütz MO, Kauczor HU, Alves F, Tromba G, Dullin C. High resolution propagation-based lung imaging at clinically relevant X-ray dose levels. Sci Rep 2023; 13:4788. [PMID: 36959233 PMCID: PMC10036329 DOI: 10.1038/s41598-023-30870-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/02/2023] [Indexed: 03/25/2023] Open
Abstract
Absorption-based clinical computed tomography (CT) is the current imaging method of choice in the diagnosis of lung diseases. Many pulmonary diseases are affecting microscopic structures of the lung, such as terminal bronchi, alveolar spaces, sublobular blood vessels or the pulmonary interstitial tissue. As spatial resolution in CT is limited by the clinically acceptable applied X-ray dose, a comprehensive diagnosis of conditions such as interstitial lung disease, idiopathic pulmonary fibrosis or the characterization of small pulmonary nodules is limited and may require additional validation by invasive lung biopsies. Propagation-based imaging (PBI) is a phase sensitive X-ray imaging technique capable of reaching high spatial resolutions at relatively low applied radiation dose levels. In this publication, we present technical refinements of PBI for the characterization of different artificial lung pathologies, mimicking clinically relevant patterns in ventilated fresh porcine lungs in a human-scale chest phantom. The combination of a very large propagation distance of 10.7 m and a photon counting detector with [Formula: see text] pixel size enabled high resolution PBI CT with significantly improved dose efficiency, measured by thermoluminescence detectors. Image quality was directly compared with state-of-the-art clinical CT. PBI with increased propagation distance was found to provide improved image quality at the same or even lower X-ray dose levels than clinical CT. By combining PBI with iodine k-edge subtraction imaging we further demonstrate that, the high quality of the calculated iodine concentration maps might be a potential tool for the analysis of lung perfusion in great detail. Our results indicate PBI to be of great value for accurate diagnosis of lung disease in patients as it allows to depict pathological lesions non-invasively at high resolution in 3D. This will especially benefit patients at high risk of complications from invasive lung biopsies such as in the setting of suspected idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Jonas Albers
- Department for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
- Biological X-ray imaging, European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Hamburg, Germany
| | - Willi L Wagner
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany
| | - Mascha O Fiedler
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Rothermel
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany
| | - Felix Wünnemann
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany
| | | | - Diego Dreossi
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Nicola Sodini
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Elisa Baratella
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Fulvia Arfelli
- Department of Physics, University of Trieste and INFN, Trieste, Italy
| | - Armin Kalenka
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany
- Department of Anaesthesiology and Intensive Care Medicine, District Hospital Bergstrasse, Heppenheim, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Joachim Lotz
- Department for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Jürgen Biederer
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Mark O Wielpütz
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany
| | - Frauke Alves
- Department for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
- Department for Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
- Translational Molecular Imaging, Max-Plank-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | | | - Christian Dullin
- Department for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany.
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University Heidelberg, Heidelberg, Germany.
- Translational Molecular Imaging, Max-Plank-Institute for Multidisciplinary Sciences, Goettingen, Germany.
| |
Collapse
|
2
|
Donato S, Brombal L, Arana Peña LM, Arfelli F, Contillo A, Delogu P, Di Lillo F, Di Trapani V, Fanti V, Longo R, Oliva P, Rigon L, Stori L, Tromba G, Golosio B. Optimization of a customized simultaneous algebraic reconstruction technique algorithm for phase-contrast breast computed tomography. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac65d4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Abstract
Objective. To introduce the optimization of a customized GPU-based simultaneous algebraic reconstruction technique (cSART) in the field of phase-contrast breast computed tomography (bCT). The presented algorithm features a 3D bilateral regularization filter that can be tuned to yield optimal performance for clinical image visualization and tissues segmentation. Approach. Acquisitions of a dedicated test object and a breast specimen were performed at Elettra, the Italian synchrotron radiation (SR) facility (Trieste, Italy) using a large area CdTe single-photon counting detector. Tomographic images were obtained at 5 mGy of mean glandular dose, with a 32 keV monochromatic x-ray beam in the free-space propagation mode. Three independent algorithms parameters were optimized by using contrast-to-noise ratio (CNR), spatial resolution, and noise texture metrics. The results obtained with the cSART algorithm were compared with conventional SART and filtered back projection (FBP) reconstructions. Image segmentation was performed both with gray scale-based and supervised machine-learning approaches. Main results. Compared to conventional FBP reconstructions, results indicate that the proposed algorithm can yield images with a higher CNR (by 35% or more), retaining a high spatial resolution while preserving their textural properties. Alternatively, at the cost of an increased image ‘patchiness’, the cSART can be tuned to achieve a high-quality tissue segmentation, suggesting the possibility of performing an accurate glandularity estimation potentially of use in the realization of realistic 3D breast models starting from low radiation dose images. Significance. The study indicates that dedicated iterative reconstruction techniques could provide significant advantages in phase-contrast bCT imaging. The proposed algorithm offers great flexibility in terms of image reconstruction optimization, either toward diagnostic evaluation or image segmentation.
Collapse
|
3
|
Zhang L, Zhao H, Zhou Z, Jia M, Zhang L, Jiang J, Gao F. Improving spatial resolution with an edge-enhancement model for low-dose propagation-based X-ray phase-contrast computed tomography. OPTICS EXPRESS 2021; 29:37399-37417. [PMID: 34808812 DOI: 10.1364/oe.440664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Propagation-based X-ray phase-contrast computed tomography (PB-PCCT) has been increasingly popular for distinguishing low contrast tissues. Phase retrieval is an important step to quantitatively obtain the phase information before the tomographic reconstructions, while typical phase retrieval methods in PB-PCCT, such as homogenous transport of intensity equation (TIE-Hom), are essentially low-pass filters and thus improve the signal to noise ratio at the expense of the reduced spatial resolution of the reconstructed image. To improve the reconstructed spatial resolution, measured phase contrast projections with high edge enhancement and the phase projections retrieved by TIE-Hom were weighted summed and fed into an iterative tomographic algorithm within the framework of the adaptive steepest descent projections onto convex sets (ASD-POCS), which was employed for suppressing the image noise in low dose reconstructions because of the sparse-view scanning strategy or low exposure time for single phase contrast projection. The merging strategy decreases the accuracy of the linear model of PB-PCCT and would finally lead to the reconstruction failure in iterative reconstructions. Therefore, the additive median root prior is also introduced in the algorithm to partly increase the model accuracy. The reconstructed spatial resolution and noise performance can be flexibly balanced by a pair of antagonistic hyper-parameters. Validations were performed by the established phase-contrast Feldkamp-Davis-Kress, phase-retrieved Feldkamp-Davis-Kress, conventional ASD-POCS and the proposed enhanced ASD-POCS with a numerical phantom dataset and experimental biomaterial dataset. Simulation results show that the proposed algorithm outperforms the conventional ASD-POCS in spatial evaluation assessments such as root mean square error (a ratio of 9.78%), contrast to noise ratio (CNR) (a ratio of 7.46%), and also frequency evaluation assessments such as modulation transfer function (a ratio of 66.48% of MTF50% (50% MTF value)), noise power spectrum (a ratio of 35.25% of f50% (50% value of the Nyquist frequency)) and noise equivalent quanta (1-2 orders of magnitude at high frequencies). Experimental results again confirm the superiority of proposed strategy relative to the conventional one in terms of edge sharpness and CNR (an average increase of 67.35%).
Collapse
|
4
|
Brombal L, Arana Peña LM, Arfelli F, Longo R, Brun F, Contillo A, Di Lillo F, Tromba G, Di Trapani V, Donato S, Menk RH, Rigon L. Motion artifacts assessment and correction using optical tracking in synchrotron radiation breast CT. Med Phys 2021; 48:5343-5355. [PMID: 34252212 PMCID: PMC9291820 DOI: 10.1002/mp.15084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The SYRMA‐3D collaboration is setting up a breast computed tomography (bCT) clinical program at the Elettra synchrotron radiation facility in Trieste, Italy. Unlike the few dedicated scanners available at hospitals, synchrotron radiation bCT requires the patient's rotation, which in turn implies a long scan duration (from tens of seconds to few minutes). At the same time, it allows the achievement of high spatial resolution. These features make synchrotron radiation bCT prone to motion artifacts. This article aims at assessing and compensating for motion artifacts through an optical tracking approach. Methods In this study, patients’ movements due to breathing have been first assessed on seven volunteers and then simulated during the CT scans of a breast phantom and a surgical specimen, by adding a periodic oscillatory motion (constant speed, 1 mm amplitude, 12 cycles/minute). CT scans were carried out at 28 keV with a mean glandular dose of 5 mGy. Motion artifacts were evaluated and a correction algorithm based on the optical tracking of fiducial marks was introduced. A quantitative analysis based on the structural similarity (SSIM) index and the normalized mean square error (nMSE) was performed on the reconstructed CT images. Results CT images reconstructed through the optical tracking procedure were found to be as good as the motionless reference image. Moreover, the analysis of SSIM and nMSE demonstrated that an uncorrected motion of the order of the system's point spread function (around 0.1 mm in the present case) can be tolerated. Conclusions Results suggest that a motion correction procedure based on an optical tracking system would be beneficial in synchrotron radiation bCT.
Collapse
Affiliation(s)
- Luca Brombal
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Lucia Mariel Arana Peña
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Renata Longo
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Francesco Brun
- Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | | | | | | | - Vittorio Di Trapani
- Department of Physical sciences, Earth and environment, University of Siena, Siena, Italy.,Division of Pisa, Istituto Nazionale di Fisica Nucleare, Pisa, Italy
| | - Sandro Donato
- Department of Physics, University of Calabria, Arcavacata di Rende, Cosenza, Italy.,Division of Frascati, Istituto Nazionale di Fisca Nucleare, Frascati, Rome, Italy
| | - Ralf Hendrik Menk
- Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy.,Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.,Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada
| | - Luigi Rigon
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| |
Collapse
|
5
|
Tavakoli Taba S, Baran P, Nesterets YI, Pacile S, Wienbeck S, Dullin C, Pavlov K, Maksimenko A, Lockie D, Mayo SC, Quiney HM, Dreossi D, Arfelli F, Tromba G, Lewis S, Gureyev TE, Brennan PC. Comparison of propagation-based CT using synchrotron radiation and conventional cone-beam CT for breast imaging. Eur Radiol 2020; 30:2740-2750. [DOI: 10.1007/s00330-019-06567-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023]
|
6
|
Xie H, Shan H, Cong W, Liu C, Zhang X, Liu S, Ning R, Wang GE. Deep Efficient End-to-end Reconstruction (DEER) Network for Few-view Breast CT Image Reconstruction. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:196633-196646. [PMID: 33251081 PMCID: PMC7695229 DOI: 10.1109/access.2020.3033795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Breast CT provides image volumes with isotropic resolution in high contrast, enabling detection of small calcification (down to a few hundred microns in size) and subtle density differences. Since breast is sensitive to x-ray radiation, dose reduction of breast CT is an important topic, and for this purpose, few-view scanning is a main approach. In this article, we propose a Deep Efficient End-to-end Reconstruction (DEER) network for few-view breast CT image reconstruction. The major merits of our network include high dose efficiency, excellent image quality, and low model complexity. By the design, the proposed network can learn the reconstruction process with as few as O ( N ) parameters, where N is the side length of an image to be reconstructed, which represents orders of magnitude improvements relative to the state-of-the-art deep-learning-based reconstruction methods that map raw data to tomographic images directly. Also, validated on a cone-beam breast CT dataset prepared by Koning Corporation on a commercial scanner, our method demonstrates a competitive performance over the state-of-the-art reconstruction networks in terms of image quality. The source code of this paper is available at: https://github.com/HuidongXie/DEER.
Collapse
Affiliation(s)
- Huidong Xie
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY USA
| | - Hongming Shan
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY USA
| | - Wenxiang Cong
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY USA
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | | | - Ruola Ning
- Koning Corporation, West Henrietta, NY USA
| | - G E Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY USA
| |
Collapse
|
7
|
Brombal L, Arfelli F, Delogu P, Donato S, Mettivier G, Michielsen K, Oliva P, Taibi A, Sechopoulos I, Longo R, Fedon C. Image quality comparison between a phase-contrast synchrotron radiation breast CT and a clinical breast CT: a phantom based study. Sci Rep 2019; 9:17778. [PMID: 31780707 PMCID: PMC6882794 DOI: 10.1038/s41598-019-54131-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
In this study we compared the image quality of a synchrotron radiation (SR) breast computed tomography (BCT) system with a clinical BCT in terms of contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), noise power spectrum (NPS), spatial resolution and detail visibility. A breast phantom consisting of several slabs of breast-adipose equivalent material with different embedded targets (i.e., masses, fibers and calcifications) was used. Phantom images were acquired using a dedicated BCT system installed at the Radboud University Medical Center (Nijmegen, The Netherlands) and the SR BCT system at the SYRMEP beamline of Elettra SR facility (Trieste, Italy) based on a photon-counting detector. Images with the SR setup were acquired mimicking the clinical BCT conditions (i.e., energy of 30 keV and radiation dose of 6.5 mGy). Images were reconstructed with an isotropic cubic voxel of 273 µm for the clinical BCT, while for the SR setup two phase-retrieval (PhR) kernels (referred to as “smooth” and “sharp”) were alternatively applied to each projection before tomographic reconstruction, with voxel size of 57 × 57 × 50 µm3. The CNR for the clinical BCT system can be up to 2-times higher than SR system, while the SNR can be 3-times lower than SR system, when the smooth PhR is used. The peak frequency of the NPS for the SR BCT is 2 to 4-times higher (0.9 mm−1 and 1.4 mm−1 with smooth and sharp PhR, respectively) than the clinical BCT (0.4 mm−1). The spatial resolution (MTF10%) was estimated to be 1.3 lp/mm for the clinical BCT, and 5.0 lp/mm and 6.7 lp/mm for the SR BCT with the smooth and sharp PhR, respectively. The smallest fiber visible in the SR BCT has a diameter of 0.15 mm, while for the clinical BCT is 0.41 mm. Calcification clusters with diameter of 0.13 mm are visible in the SR BCT, while the smallest diameter for the clinical BCT is 0.29 mm. As expected, the image quality of the SR BCT outperforms the clinical BCT system, providing images with higher spatial resolution and SNR, and with finer granularity. Nevertheless, this study assesses the image quality gap quantitatively, giving indications on the benefits associated with SR BCT and providing a benchmarking basis for its clinical implementation. In addition, SR-based studies can provide a gold-standard in terms of achievable image quality, constituting an upper-limit to the potential clinical development of a given technique.
Collapse
Affiliation(s)
- Luca Brombal
- Department of Physics, University of Trieste, 34127, Trieste, Italy.,INFN Division of Trieste, 34127, Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, 34127, Trieste, Italy.,INFN Division of Trieste, 34127, Trieste, Italy
| | - Pasquale Delogu
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100, Siena, Italy.,INFN Division of Pisa, 56127, Pisa, Italy
| | - Sandro Donato
- Department of Physics, University of Trieste, 34127, Trieste, Italy.,INFN Division of Trieste, 34127, Trieste, Italy
| | - Giovanni Mettivier
- Department of Physics, University of Napoli Federico II, 80126, Fuorigrotta Napoli, Italy.,INFN Division of Napoli, 80126, Fuorigrotta Napoli, Italy
| | - Koen Michielsen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Piernicola Oliva
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy.,INFN Division of Cagliari, 09042, Monserrato Cagliari, Italy
| | - Angelo Taibi
- Department of Physics and Earth Science, University of Ferrara, 44122, Ferrara, Italy.,INFN Division of Ferrara, 44122, Ferrara, Italy
| | - Ioannis Sechopoulos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Dutch Expert Center for Screening (LRCB), 6503 GJ, Nijmegen, The Netherlands
| | - Renata Longo
- Department of Physics, University of Trieste, 34127, Trieste, Italy. .,INFN Division of Trieste, 34127, Trieste, Italy.
| | - Christian Fedon
- INFN Division of Trieste, 34127, Trieste, Italy.,Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Gureyev TE, Nesterets YI, Baran PM, Taba ST, Mayo SC, Thompson D, Arhatari B, Mihocic A, Abbey B, Lockie D, Fox J, Kumar B, Prodanovic Z, Hausermann D, Maksimenko A, Hall C, Peele AG, Dimmock M, Pavlov KM, Cholewa M, Lewis S, Tromba G, Quiney HM, Brennan PC. Propagation-based x-ray phase-contrast tomography of mastectomy samples using synchrotron radiation. Med Phys 2019; 46:5478-5487. [PMID: 31574166 DOI: 10.1002/mp.13842] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/02/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Propagation-based phase-contrast computed tomography (PB-CT) is a method for three-dimensional x-ray imaging that utilizes refraction, as well as absorption, of x rays in the tissues to increase the signal-to-noise ratio (SNR) in the resultant images, in comparison with equivalent conventional absorption-only x-ray tomography (CT). Importantly, the higher SNR is achieved without sacrificing spatial resolution or increasing the radiation dose delivered to the imaged tissues. The present work has been carried out in the context of the current development of a breast CT imaging facility at the Australian Synchrotron. METHODS Seven unfixed complete mastectomy samples with and without breast cancer lesions have been imaged using absorption-only CT and PB-CT techniques under controlled experimental conditions. The radiation doses delivered to the mastectomy samples during the scans were comparable to those approved for mammographic screening. Physical characteristics of the reconstructed images, such as spatial resolution and SNR, have been measured and compared with the results of the radiological quality assessment of the complete absorption CT and PB-CT image stacks. RESULTS Despite the presence of some image artefacts, the PB-CT images have outperformed comparable absorption CT images collected at the same radiation dose, in terms of both the measured objective image characteristics and the radiological image scores. The outcomes of these experiments are shown to be consistent with predictions of the theory of PB-CT imaging and previous reported experimental studies of this imaging modality. CONCLUSIONS The results presented in this paper demonstrate that PB-CT holds a high potential for improving on the quality and diagnostic value of images obtained using existing medical x-ray technologies, such as mammography and digital breast tomosynthesis (DBT). If implemented at suitable synchrotron imaging facilities, PB-CT can be used to complement existing imaging modalities, leading to more accurate breast cancer diagnosis.
Collapse
Affiliation(s)
- T E Gureyev
- The University of Melbourne, Parkville, 3010, Australia.,The University of Sydney, Lidcombe, 2141, Australia.,Monash University, Clayton, 3800, Australia.,University of New England, Armidale, 2351, Australia
| | - Ya I Nesterets
- University of New England, Armidale, 2351, Australia.,Commonwealth Scientific and Industrial Research Organisation, Clayton, 3168, Australia
| | - P M Baran
- The University of Melbourne, Parkville, 3010, Australia
| | - S T Taba
- The University of Sydney, Lidcombe, 2141, Australia
| | - S C Mayo
- Commonwealth Scientific and Industrial Research Organisation, Clayton, 3168, Australia
| | - D Thompson
- University of New England, Armidale, 2351, Australia.,Commonwealth Scientific and Industrial Research Organisation, Clayton, 3168, Australia
| | - B Arhatari
- The University of Melbourne, Parkville, 3010, Australia.,La Trobe University, Bundoora, 3086, Australia
| | - A Mihocic
- La Trobe University, Bundoora, 3086, Australia
| | - B Abbey
- La Trobe University, Bundoora, 3086, Australia
| | - D Lockie
- Maroondah BreastScreen, Ringwood East, 3135, Australia
| | - J Fox
- Monash University, Clayton, 3800, Australia
| | - B Kumar
- Monash University, Clayton, 3800, Australia
| | | | - D Hausermann
- Australian Synchrotron, ANSTO, Clayton, 3168, Australia
| | - A Maksimenko
- Australian Synchrotron, ANSTO, Clayton, 3168, Australia
| | - C Hall
- Australian Synchrotron, ANSTO, Clayton, 3168, Australia
| | - A G Peele
- Australian Synchrotron, ANSTO, Clayton, 3168, Australia
| | - M Dimmock
- Monash University, Clayton, 3800, Australia
| | - K M Pavlov
- Monash University, Clayton, 3800, Australia.,University of New England, Armidale, 2351, Australia.,University of Canterbury, Christchurch, 8041, New Zealand
| | - M Cholewa
- University of Rzeszow, 35-310, Rzeszow, Poland
| | - S Lewis
- The University of Sydney, Lidcombe, 2141, Australia
| | - G Tromba
- Elettra Sincrotrone, 34149, Basovizza, Trieste, Italy
| | - H M Quiney
- The University of Melbourne, Parkville, 3010, Australia
| | - P C Brennan
- The University of Sydney, Lidcombe, 2141, Australia
| |
Collapse
|
9
|
Pacilè S, Dullin C, Baran P, Tonutti M, Perske C, Fischer U, Albers J, Arfelli F, Dreossi D, Pavlov K, Maksimenko A, Mayo SC, Nesterets YI, Taba ST, Lewis S, Brennan PC, Gureyev TE, Tromba G, Wienbeck S. Free propagation phase-contrast breast CT provides higher image quality than cone-beam breast-CT at low radiation doses: a feasibility study on human mastectomies. Sci Rep 2019; 9:13762. [PMID: 31551475 PMCID: PMC6760215 DOI: 10.1038/s41598-019-50075-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/22/2019] [Indexed: 12/09/2022] Open
Abstract
In this study we demonstrate the first direct comparison between synchrotron x-ray propagation-based CT (PB-CT) and cone-beam breast-CT (CB-CT) on human mastectomy specimens (N = 12) including different benign and malignant lesions. The image quality and diagnostic power of the obtained data sets were compared and judged by two independent expert radiologists. Two cases are presented in detail in this paper including a comparison with the corresponding histological evaluation. Results indicate that with PB-CT it is possible to increase the level of contrast-to-noise ratio (CNR) keeping the same level of dose used for the CB-CT or achieve the same level of CNR reached by CB-CT at a lower level of dose. In other words, PB-CT can achieve a higher diagnostic potential compared to the commercial breast-CT system while also delivering a considerably lower mean glandular dose. Therefore, we believe that PB-CT technique, if translated to a clinical setting, could have a significant impact in improving breast cancer diagnosis.
Collapse
Affiliation(s)
- S Pacilè
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy. .,Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - C Dullin
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Plank-Institute for Experimental Medicine, Goettingen, Germany
| | - P Baran
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia
| | - M Tonutti
- Department of Radiology, Academic Hospital of Trieste, Trieste, Italy
| | - C Perske
- Institute for Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - U Fischer
- Diagnostic Breast Center Goettingen, Goettingen, Germany
| | - J Albers
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - F Arfelli
- Department of Physics, University of Trieste, Trieste, Italy
| | - D Dreossi
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy
| | - K Pavlov
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.,School of Science and Technology, University of New England, Armidale, Australia.,School of Physics and Astronomy, Monash University, Clayton, Australia
| | | | - S C Mayo
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia
| | - Y I Nesterets
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia.,School of Science and Technology, University of New England, Armidale, Australia
| | - S Tavakoli Taba
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - S Lewis
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - P C Brennan
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - T E Gureyev
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia.,School of Science and Technology, University of New England, Armidale, Australia.,School of Physics and Astronomy, Monash University, Clayton, Australia.,The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - G Tromba
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy
| | - S Wienbeck
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
10
|
Advanced 3D Imaging of Uterine Leiomyoma's Morphology by Propagation-based Phase-Contrast Microtomography. Sci Rep 2019; 9:10580. [PMID: 31332223 PMCID: PMC6646365 DOI: 10.1038/s41598-019-47048-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Uterine leiomyoma is the most common benign smooth muscle tumor in women pelvis, originating from the myometrium. It is caused by a disorder of fibrosis, with a large production and disruption of extracellular matrix (ECM). Medical treatments are still very limited and no preventative therapies have been developed. We supposed that synchrotron-based phase-contrast microtomography (PhC-microCT) may be an appropriate tool to assess the 3D morphology of uterine leiomyoma, without the use of any contrast agent. We used this technique to perform the imaging and the quantitative morphometric analysis of healthy myometrium and pathologic leiomyomas. The quantitative morphometric analysis of collagen bundles was coupled to the Roschger approach. This method, previously only used to evaluate mineralized bone density distribution, was applied here to study the fibrosis mass density distribution in healthy and pathologic biopsies from two patients. This protocol was shown to be powerful in studying uterine leiomyomas, detecting also small signs of the ECM alteration. This is of paramount importance not only for the follow-up of the present study, i.e. the investigation of different compounds and their possible therapeutic benefits, but also because it offers new methodologic possibilities for future studies of the ECM in soft tissues of different body districts.
Collapse
|
11
|
Longo R, Arfelli F, Bonazza D, Bottigli U, Brombal L, Contillo A, Cova MA, Delogu P, Di Lillo F, Di Trapani V, Donato S, Dreossi D, Fanti V, Fedon C, Golosio B, Mettivier G, Oliva P, Pacilè S, Sarno A, Rigon L, Russo P, Taibi A, Tonutti M, Zanconati F, Tromba G. Advancements towards the implementation of clinical phase-contrast breast computed tomography at Elettra. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1343-1353. [PMID: 31274463 DOI: 10.1107/s1600577519005502] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Breast computed tomography (BCT) is an emerging application of X-ray tomography in radiological practice. A few clinical prototypes are under evaluation in hospitals and new systems are under development aiming at improving spatial and contrast resolution and reducing delivered dose. At the same time, synchrotron-radiation phase-contrast mammography has been demonstrated to offer substantial advantages when compared with conventional mammography. At Elettra, the Italian synchrotron radiation facility, a clinical program of phase-contrast BCT based on the free-space propagation approach is under development. In this paper, full-volume breast samples imaged with a beam energy of 32 keV delivering a mean glandular dose of 5 mGy are presented. The whole acquisition setup mimics a clinical study in order to evaluate its feasibility in terms of acquisition time and image quality. Acquisitions are performed using a high-resolution CdTe photon-counting detector and the projection data are processed via a phase-retrieval algorithm. Tomographic reconstructions are compared with conventional mammographic images acquired prior to surgery and with histologic examinations. Results indicate that BCT with monochromatic beam and free-space propagation phase-contrast imaging provide relevant three-dimensional insights of breast morphology at clinically acceptable doses and scan times.
Collapse
Affiliation(s)
- Renata Longo
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Deborah Bonazza
- Department of Medical Science, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | - Ubaldo Bottigli
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Luca Brombal
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Adriano Contillo
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy
| | - Maria A Cova
- Department of Medical Science, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | - Pasquale Delogu
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Francesca Di Lillo
- Department of Physics `E. Pancini', University of Napoli `Federico II', 80126 Napoli, Italy
| | - Vittorio Di Trapani
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Sandro Donato
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste SCpA, 34149 Trieste, Italy
| | - Viviana Fanti
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | | | - Bruno Golosio
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Giovanni Mettivier
- Department of Physics `E. Pancini', University of Napoli `Federico II', 80126 Napoli, Italy
| | | | - Serena Pacilè
- Elettra-Sincrotrone Trieste SCpA, 34149 Trieste, Italy
| | - Antonio Sarno
- Department of Physics `E. Pancini', University of Napoli `Federico II', 80126 Napoli, Italy
| | - Luigi Rigon
- Department of Physics, University of Trieste, 34127 Trieste, Italy
| | - Paolo Russo
- Department of Physics `E. Pancini', University of Napoli `Federico II', 80126 Napoli, Italy
| | - Angelo Taibi
- Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy
| | - Maura Tonutti
- ASUITS, Trieste University Hospital, Department of Radiology, 34100 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical Science, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | | |
Collapse
|
12
|
Hall C, Lewis R. Synchrotron radiation biomedical imaging and radiotherapy: from the UK to the Antipodes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180240. [PMID: 31030651 DOI: 10.1098/rsta.2018.0240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Although the general public might think of 'X-rays' as they are applied to imaging (radiography) and for the treatment of disease (radiotherapy), the use of synchrotron radiation (SR) X-ray beams in these areas of science was a minor activity 50 years ago. The largest gains in science from SR were seen to be in those areas where signals were weakest in laboratory instruments, such as X-ray diffraction and spectroscopy. As the qualities of SR X-rays were explored and more areas of science adopted SR-based methods, this situation changed. About 30 years ago, the clinical advantages of using SR X-ray beams for radiography, radiotherapy and clinical diagnostics started to be investigated. In the UK, a multi-disciplinary group, consisting of clinicians, medical physicists and other scientists working mainly with the Synchrotron Radiation Source (SRS) in Cheshire, started to investigate techniques for diagnosis and potentially a cure for certain cancers. This preliminary work influenced the design of new facilities being constructed around the world, in particular the Imaging and Medical Beam Line on the Australian Synchrotron in Melbourne. Two authors moved from the UK to Australia to participate in this exciting venture. The following is a personal view of some of the highlights of the early-year SRS work, following through to the current activities on the new facility in Australia. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.
Collapse
Affiliation(s)
- Christopher Hall
- 1 ANSTO Australian Synchrotron , Clayton, Victoria 3168 , Australia
- 3 Department of Medical Imaging and Radiation Sciences, Monash University , Clayton, Victoria 3600 , Australia
| | - Robert Lewis
- 2 Scott Automation , Tullamarine, Victoria 3043 , Australia
- 3 Department of Medical Imaging and Radiation Sciences, Monash University , Clayton, Victoria 3600 , Australia
- 4 Department of Medical Imaging, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
13
|
Tavakoli Taba S, Baran P, Lewis S, Heard R, Pacile S, Nesterets YI, Mayo SC, Dullin C, Dreossi D, Arfelli F, Thompson D, McCormack M, Alakhras M, Brun F, Pinamonti M, Nickson C, Hall C, Zanconati F, Lockie D, Quiney HM, Tromba G, Gureyev TE, Brennan PC. Toward Improving Breast Cancer Imaging: Radiological Assessment of Propagation-Based Phase-Contrast CT Technology. Acad Radiol 2019; 26:e79-e89. [PMID: 30149975 DOI: 10.1016/j.acra.2018.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES This study employs clinical/radiological evaluation in establishing the optimum imaging conditions for breast cancer imaging using the X-ray propagation-based phase-contrast tomography. MATERIALS AND METHODS Two series of experiments were conducted and in total 161 synchrotron-based computed tomography (CT) reconstructions of one breast mastectomy specimen were produced at different imaging conditions. Imaging factors include sample-to-detector distance, X-ray energy, CT reconstruction method, phase retrieval algorithm applied to the CT projection images and maximum intensity projection. Observers including breast radiologists and medical imaging experts compared the quality of the reconstructed images with reference images approximating the conventional (absorption) CT. Various radiological image quality attributes in a visual grading analysis design were used for the radiological assessments. RESULTS The results show that the application of the longest achievable sample-to-detector distance (9.31 m), the lowest employed X-ray energy (32 keV), the full phase retrieval, and the maximum intensity projection can significantly improve the radiological quality of the image. Several combinations of imaging variables resulted in images with very high-quality scores. CONCLUSION The results of the present study will support future experimental and clinical attempts to further optimize this innovative approach to breast cancer imaging.
Collapse
Affiliation(s)
- Seyedamir Tavakoli Taba
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, The University of Sydney, Sydney 2141, Australia.
| | - Patrycja Baran
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia
| | - Sarah Lewis
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, The University of Sydney, Sydney 2141, Australia
| | - Robert Heard
- Health Systems and Global Populations Research Group, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Serena Pacile
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy; Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Yakov I Nesterets
- Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia; School of Science and Technology, University of New England, Armidale, Australia
| | - Sherry C Mayo
- Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Christian Dullin
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy; Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany; Max-Plank-Institute for Experimental Medicine, Goettingen, Germany
| | - Diego Dreossi
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, and INFN, Trieste, Italy
| | - Darren Thompson
- Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia; School of Science and Technology, University of New England, Armidale, Australia
| | | | - Maram Alakhras
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, The University of Sydney, Sydney 2141, Australia
| | - Francesco Brun
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy; Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | | | - Carolyn Nickson
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Chris Hall
- Australian Synchrotron, Clayton, Australia
| | | | | | - Harry M Quiney
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia
| | | | - Timur E Gureyev
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, The University of Sydney, Sydney 2141, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia; Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia; School of Science and Technology, University of New England, Armidale, Australia; School of Physics and Astronomy, Monash University, Melbourne, Australia
| | - Patrick C Brennan
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, The University of Sydney, Sydney 2141, Australia
| |
Collapse
|
14
|
Donato S, Pacile’ S, Brombal L, Tromba G, Longo R. Phase-Contrast Breast-CT: Optimization of Experimental Parameters and Reconstruction Algorithms. IFMBE PROCEEDINGS 2019. [DOI: 10.1007/978-981-10-9035-6_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Pacilè S, Baran P, Dullin C, Dimmock M, Lockie D, Missbach-Guntner J, Quiney H, McCormack M, Mayo S, Thompson D, Nesterets Y, Hall C, Pavlov K, Prodanovic Z, Tonutti M, Accardo A, Fox J, Tavakoli Taba S, Lewis S, Brennan P, Hausermann D, Tromba G, Gureyev T. Advantages of breast cancer visualization and characterization using synchrotron radiation phase-contrast tomography. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1460-1466. [PMID: 30179186 DOI: 10.1107/s1600577518010172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to highlight the advantages that propagation-based phase-contrast computed tomography (PB-CT) with synchrotron radiation can provide in breast cancer diagnostics. For the first time, a fresh and intact mastectomy sample from a 60 year old patient was scanned on the IMBL beamline at the Australian Synchrotron in PB-CT mode and reconstructed. The clinical picture was described and characterized by an experienced breast radiologist, who underlined the advantages of providing diagnosis on a PB-CT volume rather than conventional two-dimensional modalities. Subsequently, the image quality was assessed by 11 breast radiologists and medical imaging experts using a radiological scoring system. The results indicate that, with the radiation dose delivered to the sample being equal, the accuracy of a diagnosis made on PB-CT images is significantly higher than one using conventional techniques.
Collapse
Affiliation(s)
- Serena Pacilè
- Elettra Sincrotrone Trieste, Basovizza, Trieste 34149, Italy
| | - Patrycja Baran
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Australia
| | | | - Matthew Dimmock
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Darren Lockie
- Maroondah BreastScreen, Ringwood East 3135, Australia
| | - Jeannine Missbach-Guntner
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Harry Quiney
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Australia
| | | | - Sheridan Mayo
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia
| | - Darren Thompson
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia
| | - Yakov Nesterets
- School of Science and Technology, University of New England, Armidale, Australia
| | - Chris Hall
- Australian Synchrotron, Clayton, Australia
| | - Konstantin Pavlov
- School of Science and Technology, University of New England, Armidale, Australia
| | | | - Maura Tonutti
- Department of Radiology, Academic Hospital of Trieste, Trieste, Italy
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Jane Fox
- Monash Health, Clayton, Australia
| | - Seyedamir Tavakoli Taba
- Medical Image Optimisation and Perception Group, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Sarah Lewis
- Medical Image Optimisation and Perception Group, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Patrick Brennan
- Medical Image Optimisation and Perception Group, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | | | - Giuliana Tromba
- Elettra Sincrotrone Trieste, Basovizza, Trieste 34149, Italy
| | - Tim Gureyev
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
X-Ray Phase-Contrast Technology in Breast Imaging: Principles, Options, and Clinical Application. AJR Am J Roentgenol 2018; 211:133-145. [DOI: 10.2214/ajr.17.19179] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Fedon C, Rigon L, Arfelli F, Dreossi D, Quai E, Tonutti M, Tromba G, Cova MA, Longo R. Dose and diagnostic performance comparison between phase-contrast mammography with synchrotron radiation and digital mammography: a clinical study report. J Med Imaging (Bellingham) 2018; 5:013503. [PMID: 29430473 DOI: 10.1117/1.jmi.5.1.013503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Two dosimetric quantities [mean glandular dose (MGD) and entrance surface air kerma (ESAK)] and the diagnostic performance of phase-contrast mammography with synchrotron radiation (MSR) are compared to conventional digital mammography (DM). Seventy-one patients (age range, 41 to 82 years) underwent MSR after a DM examination if questionable or suspicious breast abnormalities were not clarified by ultrasonography. The MGD and the ESAK delivered in both examinations were evaluated and compared. Two on-site radiologists rated the images in consensus according to the Breast Imaging Reporting and Data System assessment categories, which were then correlated with the final diagnoses by means of statistical generalized linear models (GLMs). Receiver operating characteristic curves were also used to assess the diagnostic performance by comparing the area under the curve (AUC). An important MGD and ESAK reduction was observed in MSR due to the monoenergetic beam. In particular, an average 43% reduction was observed for the MGD and a reduction of more than 50% for the ESAK. GLM showed higher diagnostic accuracy, especially in terms of specificity, for MSR, confirmed by AUC analysis ([Formula: see text]). The study design implied that the population was characterized by a high prevalence of disease and that the radiologists, who read the DM images before referring the patient to MSR, could have been influenced in their assessments. Within these limitations, the use of synchrotron radiation with the phase-contrast technique applied to mammography showed an important dose reduction and a higher diagnostic accuracy compared with DM. These results could further encourage research on the translation of x-ray phase-contrast imaging into the clinics.
Collapse
Affiliation(s)
- Christian Fedon
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy.,Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Luigi Rigon
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy.,University of Trieste, Department of Physics, Trieste, Italy
| | - Fulvia Arfelli
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy.,University of Trieste, Department of Physics, Trieste, Italy
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Elisa Quai
- University of Trieste, Department of Physics, Trieste, Italy
| | - Maura Tonutti
- Azienda Sanitaria Universitaria Integrata di Trieste, Department of Radiology, Trieste, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Maria Assunta Cova
- Azienda Sanitaria Universitaria Integrata di Trieste, Department of Radiology, Trieste, Italy.,University of Trieste, Department of Medical, Surgical and Health Sciences, Trieste, Italy
| | - Renata Longo
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy.,University of Trieste, Department of Physics, Trieste, Italy
| |
Collapse
|
18
|
Pinkert MA, Salkowski LR, Keely PJ, Hall TJ, Block WF, Eliceiri KW. Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 2018; 5:010901. [PMID: 29392158 PMCID: PMC5777512 DOI: 10.1117/1.jmi.5.1.010901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide and ranks second in terms of overall cancer deaths. One of the difficulties associated with treating breast cancer is that it is a heterogeneous disease with variations in benign and pathologic tissue composition, which contributes to disease development, progression, and treatment response. Many of these phenotypes are uncharacterized and their presence is difficult to detect, in part due to the sparsity of methods to correlate information between the cellular microscale and the whole-breast macroscale. Quantitative multiscale imaging of the breast is an emerging field concerned with the development of imaging technology that can characterize anatomic, functional, and molecular information across different resolutions and fields of view. It involves a diverse collection of imaging modalities, which touch large sections of the breast imaging research community. Prospective studies have shown promising results, but there are several challenges, ranging from basic physics and engineering to data processing and quantification, that must be met to bring the field to maturity. This paper presents some of the challenges that investigators face, reviews currently used multiscale imaging methods for preclinical imaging, and discusses the potential of these methods for clinical breast imaging.
Collapse
Affiliation(s)
- Michael A. Pinkert
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Lonie R. Salkowski
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
| | - Patricia J. Keely
- University of Wisconsin–Madison, Department of Cell and Regenerative Biology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Timothy J. Hall
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Walter F. Block
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
19
|
Sarno A, Golosio B, Russo P, Arfelli F, Bellazzini R, Brez A, Brun F, Delogu P, Di Lillo F, Dreossi D, Fedon C, Longo R, Mettivier G, Oliva P, Rigon L, Spandre G, Tromba G. A Framework for Iterative Reconstruction in Phase-Contrast Computed Tomography Dedicated to the Breast. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/trpms.2017.2749059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Baran P, Pacile S, Nesterets YI, Mayo SC, Dullin C, Dreossi D, Arfelli F, Thompson D, Lockie D, McCormack M, Taba ST, Brun F, Pinamonti M, Nickson C, Hall C, Dimmock M, Zanconati F, Cholewa M, Quiney H, Brennan PC, Tromba G, Gureyev TE. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging. Phys Med Biol 2017; 62:2315-2332. [DOI: 10.1088/1361-6560/aa5d3d] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Brun F, Massimi L, Fratini M, Dreossi D, Billé F, Accardo A, Pugliese R, Cedola A. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows. ACTA ACUST UNITED AC 2017; 3:4. [PMID: 28261542 PMCID: PMC5313567 DOI: 10.1186/s40679-016-0036-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022]
Abstract
When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.
Collapse
Affiliation(s)
- Francesco Brun
- National Research Council-Institute of Nanotechnology (CNR-Nanotec), c/o University La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.,Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 6/1, 34127 Trieste, Italy.,Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste Italy
| | - Lorenzo Massimi
- National Research Council-Institute of Nanotechnology (CNR-Nanotec), c/o University La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Michela Fratini
- National Research Council-Institute of Nanotechnology (CNR-Nanotec), c/o University La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.,Fondazione Santa Lucia, Via Ardeatina, 306, 00179 Roma, Italy
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste Italy
| | - Fulvio Billé
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste Italy
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 6/1, 34127 Trieste, Italy
| | - Roberto Pugliese
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste Italy
| | - Alessia Cedola
- National Research Council-Institute of Nanotechnology (CNR-Nanotec), c/o University La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
22
|
Sarno A, Mettivier G, Golosio B, Oliva P, Spandre G, Di Lillo F, Fedon C, Longo R, Russo P. Imaging performance of phase-contrast breast computed tomography with synchrotron radiation and a CdTe photon-counting detector. Phys Med 2016; 32:681-90. [DOI: 10.1016/j.ejmp.2016.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/25/2022] Open
|
23
|
Izadifar Z, Honaramooz A, Wiebe S, Belev G, Chen X, Chapman D. Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments. Biomaterials 2016; 82:151-67. [DOI: 10.1016/j.biomaterials.2015.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 02/01/2023]
|
24
|
Longo R, Arfelli F, Bellazzini R, Bottigli U, Brez A, Brun F, Brunetti A, Delogu P, Di Lillo F, Dreossi D, Fanti V, Fedon C, Golosio B, Lanconelli N, Mettivier G, Minuti M, Oliva P, Pinchera M, Rigon L, Russo P, Sarno A, Spandre G, Tromba G, Zanconati F. Towards breast tomography with synchrotron radiation at Elettra: first images. Phys Med Biol 2016; 61:1634-49. [PMID: 26836274 DOI: 10.1088/0031-9155/61/4/1634] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)(3) CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR.
Collapse
|
25
|
Nesterets YI, Gureyev TE, Mayo SC, Stevenson AW, Thompson D, Brown JMC, Kitchen MJ, Pavlov KM, Lockie D, Brun F, Tromba G. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1509-1523. [PMID: 26524316 DOI: 10.1107/s160057751501766x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.
Collapse
Affiliation(s)
- Yakov I Nesterets
- Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Timur E Gureyev
- Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Sheridan C Mayo
- Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Andrew W Stevenson
- Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Darren Thompson
- Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeremy M C Brown
- School of Physics and Astronomy, Monash University, Melbourne, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Australia
| | - Konstantin M Pavlov
- School of Science and Technology, University of New England, Armidale, Australia
| | | | - Francesco Brun
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Giuliana Tromba
- Elettra - Sincrotrone Trieste SCpA, Basovizza (Trieste), Italy
| |
Collapse
|