1
|
Zhou Y, Lin G, Yu X, Cao Y, Cheng H, Shi C, Jiang J, Gao H, Lu F, Shen M. Deep learning segmentation of the tear fluid reservoir under the sclera lens in optical coherence tomography images. BIOMEDICAL OPTICS EXPRESS 2023; 14:1848-1861. [PMID: 37206122 PMCID: PMC10191653 DOI: 10.1364/boe.480247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 05/21/2023]
Abstract
The tear fluid reservoir (TFR) under the sclera lens is a unique characteristic providing optical neutralization of any aberrations from corneal irregularities. Anterior segment optical coherence tomography (AS-OCT) has become an important imaging modality for sclera lens fitting and visual rehabilitation therapy in both optometry and ophthalmology. Herein, we aimed to investigate whether deep learning can be used to segment the TFR from healthy and keratoconus eyes, with irregular corneal surfaces, in OCT images. Using AS-OCT, a dataset of 31850 images from 52 healthy and 46 keratoconus eyes, during sclera lens wear, was obtained and labeled with our previously developed algorithm of semi-automatic segmentation. A custom-improved U-shape network architecture with a full-range multi-scale feature-enhanced module (FMFE-Unet) was designed and trained. A hybrid loss function was designed to focus training on the TFR, to tackle the class imbalance problem. The experiments on our database showed an IoU, precision, specificity, and recall of 0.9426, 0.9678, 0.9965, and 0.9731, respectively. Furthermore, FMFE-Unet was found to outperform the other two state-of-the-art methods and ablation models, suggesting its strength in segmenting the TFR under the sclera lens depicted on OCT images. The application of deep learning for TFR segmentation in OCT images provides a powerful tool to assess changes in the dynamic tear film under the sclera lens, improving the efficiency and accuracy of lens fitting, and thus supporting the promotion of sclera lenses in clinical practice.
Collapse
Affiliation(s)
- Yuheng Zhou
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guangqing Lin
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiangle Yu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang Cao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongling Cheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ce Shi
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jun Jiang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hebei Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Fan Lu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Meixiao Shen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
2
|
Konstas AG, Schmetterer L, Katsanos A, Hutnik CML, Holló G, Quaranta L, Teus MA, Uusitalo H, Pfeiffer N, Katz LJ. Dorzolamide/Timolol Fixed Combination: Learning from the Past and Looking Toward the Future. Adv Ther 2021; 38:24-51. [PMID: 33108623 PMCID: PMC7854404 DOI: 10.1007/s12325-020-01525-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
The key clinical attributes of preserved dorzolamide/timolol fixed combination (DTFC) and the emerging potential of preservative-free (PF) DTFC are reviewed with published evidence and clinical experience. The indications and role of DTFC in current glaucoma management are critically discussed. Preserved DTFC became the first intraocular pressure (IOP)-lowering fixed combination (FC) approved by the US Food and Drug Administration (FDA) and remains one of most commonly used medications worldwide. The pharmacological properties of DTFC reflect those of its two time-tested constituents, i.e., the carbonic anhydrase inhibitor dorzolamide and the non-selective beta-blocker timolol. In regulatory studies DTFC lowers IOP on average by 9 mmHg (32.7%) at peak and by 7.7 mmHg (27%) at trough. In trials DTFC shows equivalence to unfixed concomitant therapy, but in real-life practice it may prove superior owing to enhanced convenience, elimination of the washout effect from the second drop, improved tolerability, and better adherence. PF DTFC became the first PF FC approved, first in unit-dose pipettes, and more recently in a multidose format. Cumulative evidence has confirmed that PF DTFC is at least equivalent in efficacy to preserved DTFC and provides a tangible clinical benefit to patients with glaucoma suffering from ocular surface disease by improving tolerability and adherence. Finally, we identify areas that warrant further investigation with preserved and PF DTFC
Collapse
|
3
|
Kim TH, Le D, Son T, Yao X. Vascular morphology and blood flow signatures for differential artery-vein analysis in optical coherence tomography of the retina. BIOMEDICAL OPTICS EXPRESS 2021; 12:367-379. [PMID: 33520388 PMCID: PMC7818960 DOI: 10.1364/boe.413149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 05/09/2023]
Abstract
Differential artery-vein (AV) analysis is essential for retinal study, disease detection, and treatment assessment. This study is to characterize vascular reflectance profiles and blood flow patterns of retinal artery and vein systems in optical coherence tomography (OCT) and OCT angiography (OCTA), and establish them as robust signatures for objective AV classification. A custom designed OCT was employed for three-dimensional (3D) imaging of mouse retina, and corresponding OCTA was reconstructed. Radially resliced OCT B-scans revealed two, i.e. top and bottom, hyperreflective wall boundaries in retinal arteries, while these wall boundaries were absent in OCT of retinal veins. Additional OCTA analysis consistently displayed a layered speckle distribution in the vein, which may indicate the venous laminar flow. These OCT and OCTA differences offer unique signatures for objective AV classification in OCT and OCTA.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David Le
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Courtie E, Veenith T, Logan A, Denniston AK, Blanch RJ. Retinal blood flow in critical illness and systemic disease: a review. Ann Intensive Care 2020; 10:152. [PMID: 33184724 PMCID: PMC7661622 DOI: 10.1186/s13613-020-00768-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Assessment and maintenance of end-organ perfusion are key to resuscitation in critical illness, although there are limited direct methods or proxy measures to assess cerebral perfusion. Novel non-invasive methods of monitoring microcirculation in critically ill patients offer the potential for real-time updates to improve patient outcomes. MAIN BODY Parallel mechanisms autoregulate retinal and cerebral microcirculation to maintain blood flow to meet metabolic demands across a range of perfusion pressures. Cerebral blood flow (CBF) is reduced and autoregulation impaired in sepsis, but current methods to image CBF do not reproducibly assess the microcirculation. Peripheral microcirculatory blood flow may be imaged in sublingual and conjunctival mucosa and is impaired in sepsis. Retinal microcirculation can be directly imaged by optical coherence tomography angiography (OCTA) during perfusion-deficit states such as sepsis, and other systemic haemodynamic disturbances such as acute coronary syndrome, and systemic inflammatory conditions such as inflammatory bowel disease. CONCLUSION Monitoring microcirculatory flow offers the potential to enhance monitoring in the care of critically ill patients, and imaging retinal blood flow during critical illness offers a potential biomarker for cerebral microcirculatory perfusion.
Collapse
Affiliation(s)
- E Courtie
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - T Veenith
- Critical Care Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - A Logan
- Axolotl Consulting Ltd, Droitwich, WR9 0JS, Worcestershire, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | - A K Denniston
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Centre for Rare Diseases, Institute of Translational Medicine, Birmingham Health Partners, Birmingham, UK
| | - R J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
| |
Collapse
|
5
|
Richter D, Fard AM, Straub J, Wei W, Zhang Q, Wang RK. Relative retinal flow velocity detection using optical coherence tomography angiography imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:6710-6720. [PMID: 33282519 PMCID: PMC7687964 DOI: 10.1364/boe.408481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 05/25/2023]
Abstract
Optical coherence tomography angiography (OCTA) imaging is a valuable tool for the visualization of retinal vasculature at an unprecedented level of details. However, due to relatively long time-interval between repeated scans in the conventional OCTA scanning protocol, the OCTA flow signal suffers from low dynamic range and loss of velocity-intensity correlation. The ability to distinguish fast and slow flow in the retina may provide a powerful tool for the assessment of early-stage retinal diseases such as vein occlusion. Here, we report a method to detect relative flow velocity in human retina using a 67.5 kHz spectral-domain OCTA device. By adapting the selection of A-scan time-intervals within a single OCTA acquisition and combining the resulting OCTA images, we expand the detectable velocity range. After a quantitative validation of this method performing microchannel flow experiments with varying flow velocities, we demonstrate this approach on human eyes using CIRRUS HD-OCT 5000 with AngioPlex (ZEISS, Dublin, CA) through a prototype scanning pattern.
Collapse
Affiliation(s)
- Dmitry Richter
- Carl Zeiss Meditec, Inc., Dublin, CA 94568, USA
- Current Address: Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ali M Fard
- Carl Zeiss Meditec, Inc., Dublin, CA 94568, USA
| | | | - Wei Wei
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Desissaire S, Schwarzhans F, Salas M, Wartak A, Fischer G, Vass C, Pircher M, Hitzenberger CK. Analysis of longitudinal sections of retinal vessels using Doppler OCT. BIOMEDICAL OPTICS EXPRESS 2020; 11:1772-1789. [PMID: 32341847 PMCID: PMC7173918 DOI: 10.1364/boe.385938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 05/12/2023]
Abstract
We present a new method for imaging retinal vessels that provides both structural and hemodynamic information. Our technique is based on a single beam OCT system with an integrated retinal tracker that enables recording of arbitrary scan patterns. We record longitudinal sections along the traces of retinal vessels. The tracker function enables the acquisition of multiple longitudinal sections along the same trace to provide high-quality averaged OCT scans as well as temporal changes of flow dynamics. The vessel walls are clearly identified as narrow, bright lines from which the vessel diameter can be retrieved as a function of position along the vessel. Furthermore, the Doppler angle can be obtained at each position along the vessel trace, enabling measurement of absolute blood flow by Doppler OCT analysis. The method is demonstrated in flow phantoms and in-vivo on retinal vessel bifurcations in healthy volunteers. In 7 of 9 imaged bifurcations, measured in- and outflow deviate by less than 11%, demonstrating the consistency of the method.
Collapse
Affiliation(s)
- Sylvia Desissaire
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, 1090, Austria
| | - Florian Schwarzhans
- Institute of Medical Information Management, Medical University of Vienna, Vienna, 1090, Austria
| | - Matthias Salas
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, 1090, Austria
| | - Andreas Wartak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, 1090, Austria
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Georg Fischer
- Institute of Medical Information Management, Medical University of Vienna, Vienna, 1090, Austria
| | - Clemens Vass
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, 1090, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, 1090, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
7
|
Gong C, Shen M, Zheng X, Han C, Zhou Y, Xie C, Jin X. Precise delineation and tumor localization based on novel image registration strategy between optical coherence tomography and computed tomography in the radiotherapy of intraocular cancer. Phys Med Biol 2019; 64:125009. [PMID: 30844768 DOI: 10.1088/1361-6560/ab0ddf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiation-associated toxicities due to sophisticated ocular anatomy and shape variability of organs at risk (OARs) are major concerns during external beam radiation therapy (EBRT) of patients with intraocular cancer. A novel two-step image registration strategy between optical coherence tomography (OCT) and computed tomography (CT) images was proposed and validated to precisely localize the target in the EBRT of patients with intraocular cancer. Specifically, multiple features from OCT and CT images were extracted automatically, then spatial transformation based on thin-plate spline function was performed iteratively to achieve feature alignment between the CT and OCT images. Finally, an exclusive OR (XOR) algorithm was applied for precise 3D registration using a 3D-mesh model generated from OCT and CT volumes. The accuracy of the proposed novel registration strategy was validated and tested in a schematic-eye phantom with an artificially introduced tumor and in ten patients with confirmed primary and/or secondary intraocular cancer. There was an average registration error and computational time of 0.21 ± 0.05° and 259 ± 5 s, together with an average Dice similarity coefficient and Hausdorff distance of 88.4 ± 0.65 and 0.89 ± 0.09, respectively. The preliminary experimental results demonstrated that the proposed novel strategy to overcome current limitations on eye modeling and to localize precisely the tumor target during EBRT of intraocular cancer is promising.
Collapse
Affiliation(s)
- Changfei Gong
- Department of Radiation and Medical Oncology, Wenzhou Medical University 1st Affiliated Hospital, Wenzhou 325000, People's Republic of China. The authors contributed equally to this study
| | | | | | | | | | | | | |
Collapse
|
8
|
Elbendary AM, Abouelkheir HY. Bimodal imaging of proliferative diabetic retinopathy vascular features using swept source optical coherence tomography angiography. Int J Ophthalmol 2018; 11:1528-1533. [PMID: 30225229 DOI: 10.18240/ijo.2018.09.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To categorize neovessels morphology and to detect response to anti-angiogenic therapy by using structural and angiographic modes of swept source optical coherence tomography (SS-OCT). METHODS Thirty-two eyes with neovessels at disc (NVD) and neovessels elsewhere (NVE) - as diagnosed by fluorescein angiography- were included. Cross sectional OCT images of disc and macular regions were registered to enface OCT angiography (OCTA), B-scan blood flow over lay and density maps. Three eyes received anti-angiogenic treatment. RESULTS Pin point registration of cross-sectional OCT and OCTA images differentiated active NVD with vascular elements from fibrous or equivalent fibrovascular elements. En face images delineated NVE as vascular tufts or area of filling while cross-sectional images differentiated NVE from microvascular intraretinal abnormality (IRMA). All cases were associated with enlargement of foveal avascular zone and or areas of capillary non perfusion. Regressed NVD appeared as ghost vessel or pruned vascular loops after injection. CONCLUSION Structural and angiographic modes of SS-OCT can detect, characterize and categorize the pattern of wide spectrum of neovessels based on blood flow data and density maps. It is potentially useful to detect ischemic changes in the vascular bed and regression of NVD after therapeutic regimens providing substitute for invasive techniques.
Collapse
Affiliation(s)
- Amal M Elbendary
- Mansoura Ophthalmic Center, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
9
|
Lee PH, Chan CC, Huang SL, Chen A, Chen HH. Extracting Blood Vessels From Full-Field OCT Data of Human Skin by Short-Time RPCA. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1899-1909. [PMID: 29993883 DOI: 10.1109/tmi.2018.2834386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent advances in optical coherence tomography (OCT) lead to the development of OCT angiography to provide additional helpful information for diagnosis of diseases like basal cell carcinoma. In this paper, we investigate how to extract blood vessels of human skin from full-field OCT (FF-OCT) data using the robust principal component analysis (RPCA) technique. Specifically, we propose a short-time RPCA method that divides the FF-OCT data into segments and decomposes each segment into a low-rank structure representing the relatively static tissues of human skin and a sparse matrix representing the blood vessels. The method mitigates the problem associated with the slow-varying background and is free of the detection error that RPCA may have when dealing with FF-OCT data. Both short-time RPCA and RPCA methods can extract blood vessels from FF-OCT data with heavy speckle noise, but the former takes only half the computation time of the latter. We evaluate the performance of the proposed method by comparing the extracted blood vessels with the ground truth vessels labeled by a dermatologist and show that the proposed method works equally well for FF-OCT volumes of different quality. The average F-measure improvements over the correlation-mapping OCT method, the modified amplitude-decorrelation OCT angiography method, and the RPCA method, respectively, are 0.1835, 0.1032, and 0.0458.
Collapse
|
10
|
Li Q, Li L, Fan S, Dai C, Chai X, Zhou C. Retinal pulse wave velocity measurement using spectral-domain optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11:e201700163. [PMID: 29024538 DOI: 10.1002/jbio.201700163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
The human eyes provide a natural window for noninvasive measurement of the pulse wave velocity (PWV) of small arteries. By measuring the retinal PWV, the stiffness of small arteries can be assessed, which may better detect early vascular diseases. Therefore, retinal PWV measurement has attracted increasing attention. In this study, a jump-scanning method was proposed for noninvasive measurement of retinal PWV using spectral-domain optical coherence tomography (SD-OCT). The jump-scanning method uses the phase-resolved Doppler OCT to obtain the pulse shapes. To realize PWV measurement, the jump-scanning method extracts the transit time of the pulse wave from an original OCT scanning site to another through a transient jump. The measured retinal arterial PWV of a young human subject with normal blood pressure was in the order of 20 to 30 mm/s, which was consistent with previous studies. As a comparison, PWV of 50 mm/s was measured for a young human subject with prehypertension, which was in accordance with the finding of strong association between retinal PWV and blood pressure. In summary, it is believed the proposed jump-scanning method could benefit the research and diagnosis of vascular diseases through the window of human eyes.
Collapse
Affiliation(s)
- Qian Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shanhui Fan
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Cuixia Dai
- College of Science, Shanghai Institute of Technology, Shanghai, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanqing Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Shi R, Feng W, Zhang C, Zhang Z, Zhu D. FSOCA-induced switchable footpad skin optical clearing window for blood flow and cell imaging in vivo. JOURNAL OF BIOPHOTONICS 2017; 10:1647-1656. [PMID: 28516571 DOI: 10.1002/jbio.201700052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 05/28/2023]
Abstract
The mouse footpad for its feature of hairlessness provides an available window for imaging vascular and cellular structure and function in vivo. Unfortunately, the strong scattering of its skin limits the penetration of light and reduces the imaging contrast and depth. Herein, an innovative footpad skin optical clearing agent (FSOCA) was developed to make the footpad skin transparent quickly by topical application. The results demonstrate that FSOCA treatment not only allowed the cutaneous blood vessels and blood flow distribution to be monitored by laser speckle contrast imaging technique with higher contrast, but also permitted the fluorescent cells to be imaged by laser scanning confocal microscopy with higher fluorescence signal intensity and larger imaging depth. In addition, the physiological saline-treatment could make the footpad skin recover to the initial turbid status, and reclearing would not induce any adverse effects on the distributions and morphologies of blood vessels and cells, which demonstrated a safe and switchable window for biomedical imaging. This switchable footpad skin optical clearing window will be significant for studying blood flow dynamics and cellular immune function in vivo in some vascular and immunological diseases. Picture: Repeated cell imaging in vivo before (a) and after (b) FSOCA treatment. (c) Merged images of 4 h (cyan border) or 72 h (magenta border) over 0 h. (d) Zoom of ROI in 4 h (yellow rectangle) or 72 h (red rectangle).
Collapse
Affiliation(s)
- Rui Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| | - Wei Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| | - Chao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| |
Collapse
|
12
|
Tan B, Hosseinaee Z, Bizheva K. Dense concentric circle scanning protocol for measuring pulsatile retinal blood flow in rats with Doppler optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-4. [PMID: 29110446 DOI: 10.1117/1.jbo.22.11.110501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/16/2017] [Indexed: 05/22/2023]
Abstract
The variability in the spatial orientation of retinal blood vessels near the optic nerve head (ONH) results in imprecision of the measured Doppler angle and therefore the pulsatile blood flow (BF), when those parameters are evaluated using Doppler OCT imaging protocols based on dual-concentric circular scans. Here, we utilized a dense concentric circle scanning protocol and evaluated its precision for measuring pulsatile retinal BF in rats for different numbers of the circular scans. An spectral domain optical coherence tomography (SD-OCT) system operating in the 1060-nm spectral range with image acquisition rate of 47,000 A-scans/s was used to acquire concentric circular scans centered at the rat's ONH, with diameters ranging from 0.8 to 1.0 mm. A custom, automatic blood vessel segmentation algorithm was used to track the spatial orientation of the retinal blood vessels in three dimensions, evaluate the spatially dependent Doppler angle and calculate more accurately the axial BF for each major retinal blood vessel. Metrics such as retinal BF, pulsatility index, and resistance index were evaluated for each and all of the major retinal blood vessels. The performance of the proposed dense concentric circle scanning protocols was compared with that of the dual-circle scanning protocol. Results showed a 3.8±2.2 deg difference in the Doppler angle calculation between the two approaches, which resulted in ∼7% difference in the calculated retinal BF.
Collapse
Affiliation(s)
- Bingyao Tan
- University of Waterloo, Department of Physics and Astronomy, Waterloo, Ontario, Canada
| | - Zohreh Hosseinaee
- University of Waterloo, Department of System Design Engineering, Waterloo, Ontario, Canada
| | - Kostadinka Bizheva
- University of Waterloo, Department of Physics and Astronomy, Waterloo, Ontario, Canada
- University of Waterloo, Department of System Design Engineering, Waterloo, Ontario, Canada
- University of Waterloo, School of Optometry, Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Weatherbee A, Popov I, Vitkin A. Accurate viscosity measurements of flowing aqueous glucose solutions with suspended scatterers using a dynamic light scattering approach with optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 28861954 DOI: 10.1117/1.jbo.22.8.087003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
The viscosity of turbid colloidal glucose solutions has been accurately determined from spectral domain optical coherence tomography (OCT) M-mode measurements and our recently developed OCT dynamic light scattering model. Results for various glucose concentrations, flow speeds, and flow angles are reported. The relative "combined standard uncertainty" uc(η) on the viscosity measurements was ±1% for the no-flow case and ±5% for the flow cases, a significant improvement in measurement robustness over previously published reports. The available literature data for the viscosity of pure water and our measurements differ by 1% (stagnant case) and 1.5% (flow cases), demonstrating good accuracy; similar agreement is seen across the measured glucose concentration range when compared to interpolated literature values. The developed technique may contribute toward eventual noninvasive glucose measurements in medicine.
Collapse
Affiliation(s)
- Andrew Weatherbee
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Ivan Popov
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Alex Vitkin
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
- University of Toronto, Department of Radiation Oncology, Toronto, Ontario, Canada
- University Health Network, Ontario Cancer Institute, Division of Biophysics and Bioimaging, Toronto,, Canada
| |
Collapse
|
14
|
Madore WJ, De Montigny E, Deschênes A, Benboujja F, Leduc M, Mes-Masson AM, Provencher DM, Rahimi K, Boudoux C, Godbout N. Morphologic three-dimensional scanning of fallopian tubes to assist ovarian cancer diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76012. [PMID: 28727868 DOI: 10.1117/1.jbo.22.7.076012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/29/2017] [Indexed: 05/11/2023]
Abstract
The majority of high-grade serous ovarian cancers is now believed to originate in the fallopian tubes. Therefore, current practices include the pathological examination of excised fallopian tubes. Detection of tumors in the fallopian tubes using current clinical approaches remains difficult but is of critical importance to achieve accurate staging and diagnosis. Here, we present an intraoperative imaging system for the detection of human fallopian tube lesions. The system is based on optical coherence tomography (OCT) to access subepithelial tissue architecture. To demonstrate that OCT could identify lesions, we analyzed 180 OCT volumes taken from five different ovarian lesions and from healthy fallopian tubes, and compared them to standard pathological review. We demonstrated that qualitative features could be matched to pathological conditions. We then determined the feasibility of intraluminal imaging of intact human fallopian tubes by building a dedicated endoscopic single-fiber OCT probe to access the mucosal layer inside freshly excised specimens from five patients undergoing prophylactic surgeries. The probe insertion into the lumen acquired images over the entire length of the tubes without damaging the mucosa, providing the first OCT images of intact human fallopian tubes.
Collapse
Affiliation(s)
- Wendy-Julie Madore
- École Polytechnique Montréal, Centre d'Optique, Photonique et Lasers (COPL), Montreal, CanadabCentre de recherche du Centre hospitalier de l'Université (CRCHUM), Cancer and Imaging and Engineering Departments, Montreal, CanadacInstitut du cancer de Montréal, Montreal, Canada
| | - Etienne De Montigny
- École Polytechnique Montréal, Centre d'Optique, Photonique et Lasers (COPL), Montreal, CanadabCentre de recherche du Centre hospitalier de l'Université (CRCHUM), Cancer and Imaging and Engineering Departments, Montreal, Canada
| | - Andréanne Deschênes
- École Polytechnique Montréal, Centre d'Optique, Photonique et Lasers (COPL), Montreal, Canada
| | - Fouzi Benboujja
- École Polytechnique Montréal, Centre d'Optique, Photonique et Lasers (COPL), Montreal, Canada
| | - Mikaël Leduc
- École Polytechnique Montréal, Centre d'Optique, Photonique et Lasers (COPL), Montreal, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université (CRCHUM), Cancer and Imaging and Engineering Departments, Montreal, CanadacInstitut du cancer de Montréal, Montreal, CanadadUniversité de Montréal, Department of Medicine, Montreal, Canada
| | - Diane M Provencher
- Centre de recherche du Centre hospitalier de l'Université (CRCHUM), Cancer and Imaging and Engineering Departments, Montreal, CanadacInstitut du cancer de Montréal, Montreal, CanadaeUniversité de Montréal, Division of Gynecologic Oncology, Montreal, Canada
| | - Kurosh Rahimi
- Centre de recherche du Centre hospitalier de l'Université (CRCHUM), Cancer and Imaging and Engineering Departments, Montreal, CanadacInstitut du cancer de Montréal, Montreal, Canada
| | - Caroline Boudoux
- École Polytechnique Montréal, Centre d'Optique, Photonique et Lasers (COPL), Montreal, Canada
| | - Nicolas Godbout
- École Polytechnique Montréal, Centre d'Optique, Photonique et Lasers (COPL), Montreal, Canada
| |
Collapse
|
15
|
Gao W. Quantitative depth-resolved microcirculation imaging with optical coherence tomography angiography (Part Ι): Blood flow velocity imaging. Microcirculation 2017; 25:e12375. [PMID: 28419622 DOI: 10.1111/micc.12375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
The research goal of the microvascular network imaging with OCT angiography is to achieve depth-resolved blood flow and vessel imaging in vivo in the clinical management of patents. In this review, we review the main phenomena that have been explored in OCT to image the blood flow velocity vector and the vessels of the microcirculation within living tissues. Parameters that limit the accurate measurements of blood flow velocity are then considered. Finally, initial clinical diagnosis applications and future developments of OCT flow images are discussed.
Collapse
Affiliation(s)
- Wanrong Gao
- Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.,MIIT Key Laboratory of Advanced soIid Laser, Nanjing University of science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Vaze A, Gillies M. Salient features and management options of macular telangiectasia type 2: a review and update. EXPERT REVIEW OF OPHTHALMOLOGY 2016. [DOI: 10.1080/17469899.2016.1251311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Wylęgała A, Teper S, Dobrowolski D, Wylęgała E. Optical coherence angiography: A review. Medicine (Baltimore) 2016; 95:e4907. [PMID: 27741104 PMCID: PMC5072931 DOI: 10.1097/md.0000000000004907] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/16/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Retinal vascular diseases are one of the most common causes of blindness in the developed world. Optical Coherence Tomography Angiography (OCT-A) is a new noninvasive method that uses several algorithms to detect blood movement. This enables the creation of high-resolution vascular images with contrast depicting motionless tissue. METHODS This review presents the results of articles relevant to age-related macular degeneration (AMD), diabetic retinopathy (DR), and OCT-A. The OCT-A technique can successfully be used in the diagnosis of neovascularization, retinal vein occlusion (RVO) and retinal artery occlusion (RAO), vessel abnormalities and even anterior segment neovascularization. OCT-A can also be applied to compute data such as vessel density, and flow index in both superficial and deep plexuses. RESULTS Many studies have compared fluorescein angiography with OCT-A. Other studies have reported differences in vascular density in AMD patients and have compared them with people having healthy eyes. Although OCT-A offers rapid picture acquisition, high repeatability and resolution, it also has many drawbacks. The most common are: motion artifacts, projections from overlying vessels and limited field of view.An interesting new application is the possibility to assess changes during antivascular endothelial growth factor (anti-VEGF) therapy. Another function of OCT-A is the possible application in the study of choriocapillaries in many fields of ocular pathology. CONCLUSION OCT-A is a new promising method that allows the visualization of the retinal vascular network and the counting of blood flow parameters. This technique provides reliable images useful in clinical routines.
Collapse
Affiliation(s)
- Adam Wylęgała
- Departament of Ophthalmology, Santa Barbara Hospital, Sosnowiec
| | - Sławomir Teper
- Ophthalmology Clinic, Railway Hospital Katowice, II School of Medicine with the Division of Dentistry in Zabrze, Silesian Medical University, Katowice, Poland
| | - Dariusz Dobrowolski
- Departament of Ophthalmology, Santa Barbara Hospital, Sosnowiec
- Ophthalmology Clinic, Railway Hospital Katowice, II School of Medicine with the Division of Dentistry in Zabrze, Silesian Medical University, Katowice, Poland
| | - Edward Wylęgała
- Ophthalmology Clinic, Railway Hospital Katowice, II School of Medicine with the Division of Dentistry in Zabrze, Silesian Medical University, Katowice, Poland
| |
Collapse
|