1
|
Sander MY, Zhu X. Infrared neuromodulation-a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066701. [PMID: 38701769 DOI: 10.1088/1361-6633/ad4729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.
Collapse
Affiliation(s)
- Michelle Y Sander
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| | - Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| |
Collapse
|
2
|
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024; 18:1360870. [PMID: 38572073 PMCID: PMC10987880 DOI: 10.3389/fncel.2024.1360870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.
Collapse
Affiliation(s)
- Paul R. Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James M. Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
3
|
Xiao T, Wu K, Wang P, Ding Y, Yang X, Chang C, Yang Y. Sensory input-dependent gain modulation of the optokinetic nystagmus by mid-infrared stimulation in pigeons. eLife 2023; 12:78729. [PMID: 36853228 PMCID: PMC9977280 DOI: 10.7554/elife.78729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Neuromodulation serves as a cornerstone for brain sciences and clinical applications. Recent reports suggest that mid-infrared stimulation (MIRS) causes non-thermal modulation of brain functions. Current understanding of its mechanism hampers the routine application of MIRS. Here, we examine how MIRS influences the sensorimotor transformation in awaking-behaving pigeons, from neuronal signals to behavior. We applied MIRS and electrical stimulation (ES) to the pretectal nucleus lentiformis mesencephali (nLM), an essential retinorecipient structure in the pretectum, and examined their influences on the optokinetic nystagmus, a visually guided eye movement. We found MIRS altered eye movements by modulating a specific gain depending on the strength of visual inputs, in a manner different than the effect of ES. Simultaneous extracellular recordings and stimulation showed that MIRS could either excite and inhibit the neuronal activity in the same pretectal neuron depending on its ongoing sensory responsiveness levels in awake-behaving animals. Computational simulations suggest that MIRS modulates the resonance of a carbonyl group of the potassium channel, critical to the action potential generation, altering neuronal responses to sensory inputs and as a consequence, guiding behavior. Our findings suggest that MIRS could be a promising approach toward modulating neuronal functions for brain research and treating neurological diseases.
Collapse
Affiliation(s)
- Tong Xiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Peiliang Wang
- University of Chinese Academy of SciencesBeijingChina
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- Key Laboratory of Electromagnetic Radiation and Sensing Technology, Aerospace Information Research Institute, Chinese Academy of sciencesBeijingChina
| | - Yali Ding
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- School of Physics, Peking UniversityBeijingChina
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefeiChina
| |
Collapse
|
4
|
Zhu X, Lin JW, Sander MY. Bidirectional modulation of evoked synaptic transmission by pulsed infrared light. Sci Rep 2022; 12:14196. [PMID: 35987765 PMCID: PMC9392733 DOI: 10.1038/s41598-022-18139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Infrared (IR) neuromodulation (INM) has been demonstrated as a novel modulation modality of neuronal excitability. However, the effects of pulsed IR light on synaptic transmission have not been investigated systematically. In this report, the IR light (2 μm) is used to directly modulate evoked synaptic transmission at the crayfish opener neuromuscular junction. The extracellularly recorded terminal action potentials (tAPs) and evoked excitatory postsynaptic currents (EPSCs) modulated by localized IR light illumination (500 ms, 3–13 mW) aimed at the synapses are analyzed. The impact of a single IR light pulse on the presynaptic Ca2+ influx is monitored with Ca2+ indicators. The EPSC amplitude is enhanced, and its rising phase is accelerated under relatively low IR light power levels and localized temperature rises. Increasing the IR light power reversibly suppresses and eventually blocks the EPSCs. Meanwhile, the synaptic delay, tAP amplitude, and presynaptic Ca2+ influx decrease monotonously with higher IR light power. It is demonstrated for the first time that IR light illumination has bidirectional effects on evoked synaptic transmission. These results highlight the efficacy and flexibility of using pulsed IR light to directly control synaptic transmission and advance our understanding of INM of neural networks.
Collapse
|
5
|
孔 繁, 李 新, 焦 若, 孙 长. [Study on the temperature characteristics of fast capacitance in patch clamp experiments]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:695-702. [PMID: 34459169 PMCID: PMC9927523 DOI: 10.7507/1001-5515.202007054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/22/2021] [Indexed: 11/03/2022]
Abstract
Patch clamp is a technique that can measure weak current in the level of picoampere (pA). It has been widely used for cellular electrophysiological recording in fundamental medical researches, such as membrane potential and ion channel currents recording, etc. In order to obtain accurate measurement results, both the resistance and capacitance of the pipette are required to be compensated. Capacitance compensations are composed of slow and fast capacitance compensation. The slow compensation is determined by the lipid bilayer of cell membrane, and its magnitude usually ranges from a few picofarads (pF) to a few microfarads (μF), depending on the cell size. The fast capacitance is formed by the distributed capacitance of the glass pipette, wires and solution, mostly ranging in a few picofarads. After the pipette sucks the cells in the solution, the positions of the glass pipette and wire have been determined, and only taking once compensation for slow and fast capacitance will meet the recording requirements. However, when the study needs to deal with the temperature characteristics, it is still necessary to make a recognition on the temperature characteristic of the capacitance. We found that the time constant of fast capacitance discharge changed with increasing temperature of bath solution when we studied the photothermal effect on cell membrane by patch clamp. Based on this phenomenon, we proposed an equivalent circuit to calculate the temperature-dependent parameters. Experimental results showed that the fast capacitance increased in a positive rate of 0.04 pF/℃, while the pipette resistance decreased. The fine data analysis demonstrated that the temperature rises of bath solution determined the kinetics of the fast capacitance mainly by changing the inner solution resistance of the glass pipette. This result will provide a good reference for the fine temperature characteristic study related to cellular electrophysiology based on patch clamp technique.
Collapse
Affiliation(s)
- 繁艺 孔
- 大连理工大学 光电工程与仪器科学学院 生物医学光学实验室(辽宁大连 116000)Biomedical Optics Laboratory, School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116000, P.R.China
| | - 新宇 李
- 大连理工大学 光电工程与仪器科学学院 生物医学光学实验室(辽宁大连 116000)Biomedical Optics Laboratory, School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116000, P.R.China
| | - 若男 焦
- 大连理工大学 光电工程与仪器科学学院 生物医学光学实验室(辽宁大连 116000)Biomedical Optics Laboratory, School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116000, P.R.China
| | - 长森 孙
- 大连理工大学 光电工程与仪器科学学院 生物医学光学实验室(辽宁大连 116000)Biomedical Optics Laboratory, School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116000, P.R.China
| |
Collapse
|
6
|
Brown WGA, Needham K, Begeng JM, Thompson AC, Nayagam BA, Kameneva T, Stoddart PR. Response of primary auditory neurons to stimulation with infrared light in vitro. J Neural Eng 2021; 18:046003. [PMID: 33724234 DOI: 10.1088/1741-2552/abe7b8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Infrared light can be used to modulate the activity of neuronal cells through thermally-evoked capacitive currents and thermosensitive ion channel modulation. The infrared power threshold for action potentials has previously been found to be far lower in the in vivo cochlea when compared with other neuronal targets, implicating spiral ganglion neurons (SGNs) as a potential target for infrared auditory prostheses. However, conflicting experimental evidence suggests that this low threshold may arise from an intermediary mechanism other than direct SGN stimulation, potentially involving residual hair cell activity. APPROACH Patch-clamp recordings from cultured SGNs were used to explicitly quantify the capacitive and ion channel currents in an environment devoid of hair cells. Neurons were irradiated by a 1870 nm laser with pulse durations of 0.2-5.0 ms and powers up to 1.5 W. A Hodgkin-Huxley-type model was established by first characterising the voltage dependent currents, and then incorporating laser-evoked currents separated into temperature-dependent and temperature-gradient-dependent components. This model was found to accurately simulate neuronal responses and allowed the results to be extrapolated to stimulation parameter spaces not accessible during this study. MAIN RESULTS The previously-reported low in vivo SGN stimulation threshold was not observed, and only subthreshold depolarisation was achieved, even at high light exposures. Extrapolating these results with our Hodgkin-Huxley-type model predicts an action potential threshold which does not deviate significantly from other neuronal types. SIGNIFICANCE This suggests that the low-threshold response that is commonly reported in vivo may arise from an alternative mechanism, and calls into question the potential usefulness of the effect for auditory prostheses. The step-wise approach to modelling optically-evoked currents described here may prove useful for analysing a wider range of cell types where capacitive currents and conductance modulation are dominant.
Collapse
Affiliation(s)
- William G A Brown
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn VIC 3122, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Throckmorton G, Cayce J, Ricks Z, Adams WR, Jansen ED, Mahadevan-Jansen A. Identifying optimal parameters for infrared neural stimulation in the peripheral nervous system. NEUROPHOTONICS 2021; 8:015012. [PMID: 33816649 PMCID: PMC8010905 DOI: 10.1117/1.nph.8.1.015012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/17/2021] [Indexed: 05/19/2023]
Abstract
Significance: Infrared neural stimulation (INS) utilizes pulsed infrared light to selectively elicit neural activity without exogenous compounds. Despite its versatility in a broad range of biomedical applications, no comprehensive comparison of factors pertaining to the efficacy and safety of INS such as wavelength, radiant exposure, and optical spot size exists in the literature. Aim: Here, we evaluate these parameters using three of the wavelengths commonly used for INS, 1450 nm, 1875 nm, and 2120 nm. Approach: In an in vivo rat sciatic nerve preparation, the stimulation threshold and transition rate to 100% activation probability were used to compare the effects of each parameter. Results: The pulsed diode lasers at 1450 nm and 1875 nm had a consistently higher ( ∼ 1.0 J / cm 2 ) stimulation threshold than that of the Ho:YAG laser at 2120 nm ( ∼ 0.7 J / cm 2 ). In addition, the Ho:YAG produced a faster transition rate to 100% activation probability compared to the diode lasers. Our data suggest that the superior performance of the Ho:YAG is a result of the high-intensity microsecond spike at the onset of the pulse. Acute histological evaluation of diode irradiated nerves revealed a safe range of radiant exposures for stimulation. Conclusion: Together, our results identify measures to improve the safety, efficacy, and accessibility of INS technology for research and clinical applications.
Collapse
Affiliation(s)
- Graham Throckmorton
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Jonathan Cayce
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Zane Ricks
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Wilson R. Adams
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Eric Duco Jansen
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
| |
Collapse
|
8
|
A Review of Different Stimulation Methods for Functional Reconstruction and Comparison of Respiratory Function after Cervical Spinal Cord Injury. Appl Bionics Biomech 2020; 2020:8882430. [PMID: 33014127 PMCID: PMC7519444 DOI: 10.1155/2020/8882430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/30/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022] Open
Abstract
Background Spinal cord injury (SCI) is a common severe trauma in clinic, hundreds of thousands of people suffer from which every year in the world. In terms of injury location, cervical spinal cord injury (CSCI) has the greatest impact. After cervical spinal cord injury, the lack of innervated muscles is not enough to provide ventilation and other activities to complete the respiratory function. In addition to the decline of respiratory capacity, respiratory complications also have a serious impact on the life of patients. The most commonly used assisted breathing and cough equipment is the ventilator, but in recent years, the functional electrical stimulation method is being used gradually and widely. Methods About hundred related academic papers are cited for data analysis. They all have the following characteristics: (1) basic conditions of patients were reported, (2) patients had received nerve or muscle stimulation and the basic parameters, and (3) the results were evaluated based on some indicators. Results The papers mentioned above are classified as four kinds of stimulation methods: muscle electric/magnetic stimulation, spinal dural electric stimulation, intraspinal microstimulation, and infrared light stimulation. This paper describes the stimulation principle and application experiment. Finally, this paper will compare the indexes and effects of typical stimulation methods, as well as the two auxiliary methods: training and operation. Conclusions Although there is limited evidence for the treatment of respiratory failure by nerve or muscle stimulation after cervical spinal cord injury, the two techniques seem to be safe and effective. At the same time, light stimulation is gradually applied to clinical medicine with its strong advantages and becomes the development trend of nerve stimulation in the future.
Collapse
|
9
|
Xia QL, Wang MQ, Jiang B, Hu N, Wu XY, Hou WS, Nyberg T. Infrared Laser Pulses Excite Action Potentials in Primary Cortex Neurons In Vitro .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5184-5187. [PMID: 31947026 DOI: 10.1109/embc.2019.8856712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Infrared neural modulation (INM) has been well studied in the peripheral nervous system (PNS) for potential clinical applications. However, limited research has been conducted on the central nervous systems (CNS). In this study, we aimed at investigating the feasibility of using pulsed infrared (IR) laser with a wavelength of 1940 nm to excite network activity of cultivated rat cortex neurons.We cultured rat cortex neurons, forming neural networks with spontaneous neural activity, on glass multi-electrode arrays (MEAs). Laser at a power of 600 mW and a pulse rate of 10 Hz were used to stimulate the neural networks using the optics of an inverted microscope. Pulse durations were varied from 200 μs to 1 ms. The spike rate was calculated to evaluate the change of the neural network activity during the IR stimuli and the corresponding frequency components of neural response were calculated to examine whether recorded spikes were evoked by the IR pulse or not. A temperature model was adapted from a previous study to estimate the temperature rise during laser pulsing.We observed that the IR irradiation with a pulse duration of 800 μs and 1 ms could excite neuronal action potentials. The temperature rose 18.5 and 23.9 °C, for pulse durations of 800 μs and 1 ms, respectively. Thus, in addition to previously shown inhibition of IR irradiation with a wavelength of 1550 nm, we demonstrate an optical method that can modulate neural network activity in vitro. The preliminary results from this paper also suggested that MEA recording technology coupled with a laser and microscope systems can be exploited as a new approach for future studies to understand mechanisms and characterize laser parameters of INM for CNS neurons.
Collapse
|
10
|
Jiang B, Hou W, Xia N, Peng F, Wang X, Chen C, Zhou Y, Zheng X, Wu X. Inhibitory effect of 980-nm laser on neural activity of the rat's cochlear nucleus. NEUROPHOTONICS 2019; 6:035009. [PMID: 31482103 PMCID: PMC6710856 DOI: 10.1117/1.nph.6.3.035009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Near-infrared radiation (NIR) has been described as one of the highest-resolution tools for neuromodulation. However, the poor tissue penetration depth of NIR has limited its further application on some of the deeper layer neurons in vivo. A 980-nm short-wavelength NIR (SW-NIR) with high penetration depth was employed, and its inhibitory effect on neurons was investigated in vivo. In experiments, SW-NIR was implemented on the rat's cochlear nucleus (CN), the auditory pathway was activated by pure-tones through the rat's external auditory canal, and the neural responses were recorded in the inferior colliculus by a multichannel electrode array. Neural firing rate (FR) and the first spike latency (FSL) were analyzed to evaluate the optically induced neural inhibition. Meanwhile, a two-layered finite element, consisting of a fluid layer and a gray matter layer, was established to model the optically induced temperature changes in CN; different stimulation paradigms were used to compare the inhibitory efficiency of SW-NIR. Results showed that SW-NIR could reversibly inhibit acoustically induced CN neural activities: with the increase of laser radiant exposures energy, neural FR decreased significantly and FSL lengthened steadily. Significant inhibition occurred when the optical pulse stimulated prior to the acoustic stimulus. Results indicated that the inhibition relies on the establishment time of the temperature field. Moreover, our preliminary results suggest that short-wavelength infrared could regulate the activities of neurons beyond the neural tissues laser irradiated through neural networks and conduction in vivo. These findings may provide a method for accurate neuromodulation in vivo.
Collapse
Affiliation(s)
- Bin Jiang
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
| | - Wensheng Hou
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
- Chongqing University, Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, China
| | - Nan Xia
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Qingdao University, Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao, Shandong, China
| | - Fei Peng
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
| | - Xing Wang
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
| | - Chunye Chen
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
| | - Yi Zhou
- Chinese Army Medical University, Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xiaolin Zheng
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
- Chongqing University, Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, China
| | - Xiaoying Wu
- Chongqing University, Ministry of Education, Key Laboratory of Biorheological Science and Technology, Chongqing, China
- Chongqing University, Chongqing Collaborative Innovation Center for Brain Science, China
- Chongqing University, Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, China
| |
Collapse
|
11
|
Wang M, Xia Q, Peng F, Jiang B, Chen L, Wu X, Zheng X, Wang X, Tian T, Hou W. Prolonged post-stimulation response induced by 980-nm infrared neural stimulation in the rat primary motor cortex. Lasers Med Sci 2019; 35:365-372. [PMID: 31222480 DOI: 10.1007/s10103-019-02826-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/31/2019] [Indexed: 11/25/2022]
Abstract
The post-stimulation response of neural activities plays an important role to evaluate the effectiveness and safety of neural modulation techniques. Previous studies have established the capability of infrared neural modulation (INM) on neural firing regulation in the central nervous system (CNS); however, the dynamic neural activity after the laser offset has not been well characterized yet. We applied 980-nm infrared diode laser light to irradiate the primary motor cortex of rats, and tungsten electrode was inserted to record the single-unit activity of neurons at the depth of 800-1000 μm (layer V of primary motor cortex). The neural activities were assessed through the change of neural firing rate and firing pattern pre- and post-stimulation with various radiant exposures. The results showed that the 980-nm laser could modulate the firing properties of neurons in the deep layer of the cortex. More neurons with post-stimulation response (78% vs. 83%) were observed at higher stimulation intensity (0.803 J/cm2 vs. 1.071 J/cm2, respectively). The change of firing rate also increased with radiant exposures increasing, and the response lasted up to 4.5 s at 1.071 J/cm2, which was significantly longer than the theoretical thermal relaxation time. Moreover, the increasing Fano factors indicated the irregularity firing pattern of post-stimulation response. Our results confirmed that neural activity maintained a prolonged post-stimulation response after INM, which may provide necessary measurable data for optimization of INM applications in CNS.
Collapse
Affiliation(s)
- Manqing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Qingling Xia
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Fei Peng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Bin Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Lin Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing 400044, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing 400044, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing 400044, China
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China
| | - Tian Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, China.
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing 400044, China.
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
12
|
Moreau D, Lefort C, Pas J, Bardet SM, Leveque P, O'Connor RP. Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C. JOURNAL OF BIOPHOTONICS 2018; 11:e201700020. [PMID: 28700117 DOI: 10.1002/jbio.201700020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 05/18/2023]
Abstract
The influence of infrared laser pulses on intracellular Ca2+ signaling was investigated in neural cell lines with fluorescent live cell imaging. The probe Fluo-4 was used to measure Ca2+ in HT22 mouse hippocampal neurons and nonelectrically excitable U87 human glioblastoma cells exposed to 50 to 500 ms infrared pulses at 1470 nm. Fluorescence recordings of Fluo-4 demonstrated that infrared stimulation induced an instantaneous intracellular Ca2+ transient with similar dose-response characteristics in hippocampal neurons and glioblastoma cells (half-maximal effective energy density EC50 of around 58 J.cm-2 ). For both type of cells, the source of the infrared-induced Ca2+ transients was found to originate from intracellular stores and to be mediated by phospholipase C and IP3 -induced Ca2+ release from the endoplasmic reticulum. The activation of phosphoinositide signaling by IR light is a new mechanism of interaction relevant to infrared neural stimulation that will also be widely applicable to nonexcitable cell types. The prospect of infrared optostimulation of the PLC/IP3 cell signaling cascade has many potential applications including the development of optoceutical therapeutics.
Collapse
Affiliation(s)
- David Moreau
- CNRS, XLIM, University of Limoges, UMR 7252, Limoges, France
| | - Claire Lefort
- CNRS, XLIM, University of Limoges, UMR 7252, Limoges, France
| | - Jolien Pas
- Bioelectronics Department, École Nationale Supérieure des Mines de Saint-Étienne, Centre Microélectronique de Provence - Georges Charpak Campus, 880 route de Mimet, 13541 Gardanne, France
| | - Sylvia M Bardet
- CNRS, XLIM, University of Limoges, UMR 7252, Limoges, France
| | | | - Rodney P O'Connor
- Bioelectronics Department, École Nationale Supérieure des Mines de Saint-Étienne, Centre Microélectronique de Provence - Georges Charpak Campus, 880 route de Mimet, 13541 Gardanne, France
| |
Collapse
|
13
|
Paris L, Marc I, Charlot B, Dumas M, Valmier J, Bardin F. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons. BIOMEDICAL OPTICS EXPRESS 2017; 8:4568-4578. [PMID: 29082085 PMCID: PMC5654800 DOI: 10.1364/boe.8.004568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 05/27/2023]
Abstract
This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved.
Collapse
Affiliation(s)
- Lambert Paris
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France
| | | | - Benoit Charlot
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
| | | | - Jean Valmier
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France
| | - Fabrice Bardin
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
- MIPA, Université de Nîmes, Place Gabriel Péri, 30000, Nîmes, France
| |
Collapse
|