1
|
Imanishi H, Nishimura T, Shimojo Y, Awazu K. Deep learning based depth map estimation of protoporphyrin IX in turbid media using dual wavelength excitation fluorescence. BIOMEDICAL OPTICS EXPRESS 2023; 14:5254-5266. [PMID: 37854564 PMCID: PMC10581804 DOI: 10.1364/boe.500022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
This study presents a depth map estimation of fluorescent objects in turbid media, such as biological tissue based on fluorescence observation by two-wavelength excitation and deep learning-based processing. A U-Net-based convolutional neural network is adapted for fluorophore depth maps from the ratiometric information of the two-wavelength excitation fluorescence. The proposed method offers depth map estimation from wide-field fluorescence images with rapid processing. The feasibility of the proposed method was demonstrated experimentally by estimating the depth map of protoporphyrin IX, a recognized cancer biomarker, at different depths within an optical phantom.
Collapse
Affiliation(s)
- Hinano Imanishi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Takahiro Nishimura
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Yu Shimojo
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka 545-8585, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi 5-3-1, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Ye D, Luan J, Pang H, Yang Y, Nazeri A, Rubin JB, Chen H. Characterization of focused ultrasound-mediated brainstem delivery of intranasally administered agents. J Control Release 2020; 328:276-285. [PMID: 32871204 PMCID: PMC7749082 DOI: 10.1016/j.jconrel.2020.08.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Focused ultrasound-mediated intranasal (FUSIN) delivery is a recently proposed technique that bypasses the blood-brain barrier to achieve noninvasive and localized brain drug delivery. The goal of this study was to characterize FUSIN drug delivery outcome in mice with regard to its dependency on several critical experimental factors, including the time interval between IN administration and FUS sonication (Tlag1), the FUS pressure, and the time for sacrificing the mice post-FUS (Tlag2). Wild-type mice were treated by FUSIN delivery of near-infrared fluorescent dye-labeled bovine serum albumin (800CW-BSA, used as a model agent). 800CW-BSA was intranasally administered to the mice in vivo, followed by intravenous injection of microbubbles and FUS sonication at the brainstem. Fluorescence imaging of ex vivo mouse brain slices was used to quantify the delivery outcomes of 800CW-BSA. Major organs, along with the nasal tissue and trigeminal nerve, were harvested to assess the biodistribution of 800CW-BSA. The delivery outcome of 800CW-BSA was the highest at the brainstem when Tlag1 was 0.5 h, which was on average 24.5-fold, 5.4-fold, and 21.6-fold higher than those of the IN only, Tlag1 = 1.5 h, and Tlag1 = 4.0 h, respectively. The FUSIN delivery outcome at the lowest pressure level, 0.43 MPa, was on average 1.8-fold and 3.7-fold higher than those at 0.56 MPa and 0.70 MPa, respectively. The mean concentration of 800CW-BSA in the brainstem after FUSIN delivery decreased from 0.5 h to 4.0 h post-FUS. The accumulation of 800CW-BSA was low in the heart, lung, spleen, kidneys, and liver, but high in the stomach and intestines. This study revealed the unique characteristics of FUSIN as a noninvasive, efficient, and localized brain drug delivery technique.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Hannah Pang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO., 63110, USA
| | - Joshua B Rubin
- Departments of Pediatrics and Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA..
| |
Collapse
|
3
|
Wirth DJ, Sibai M, Wilson BC, Roberts DW, Paulsen K. First experience with spatial frequency domain imaging and red-light excitation of protoporphyrin IX fluorescence during tumor resection. BIOMEDICAL OPTICS EXPRESS 2020; 11:4306-4315. [PMID: 32923044 PMCID: PMC7449712 DOI: 10.1364/boe.397507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 05/13/2023]
Abstract
Fluorescence-guided surgery (FGS) enhances intraoperative visualization of tumors to maximize safe resection, and quantitative fluorescence imaging (qFI) of protoporphyrin IX (PpIX) has provided additional information for guidance during intracranial tumor surgery. Previous developments in fluorescence quantification have demonstrated that the depth of fluorescence signals can be estimated given known optical properties in a lab setting, and now with the work described here that these optical properties can be determined in vivo in human brain tissue in the operating room (OR) during tumor resection procedures. More specifically, we report the first depth estimation of subsurface tumor intraoperatively, achieved with the combination of spatial frequency domain imaging (SFDI) for optical property measurement and red-light excitation of PpIX. We modified a commercial surgical microscope (Zeiss) with a digital light processing module (DLI Austin, TX) to modulate light from a xenon arc lamp to illuminate the field. White-light excitation and a liquid crystal tunable filter (LCTF Verispec) were used to measure diffuse reflectance at discrete wavelengths of 670 nm and 710 nm on a sCMOS camera. An illumination-side filter wheel allowed excitation of PpIX fluorescence at 405 nm and 635 nm, and the LCTF measured fluorescence emissions at 670 nm and 710 nm. Data acquisition and processing generated wide-field images of the depth of PpIX fluorescence within 1 minute in the OR. The ability of the clinical microscope to perform optical property mapping with SFDI and convert these wide-field estimates into images of the depth of fluorescence was tested in tissue simulating phantoms and in vivo during a craniotomy for brain tumor resection. Results indicate that wide-field optical property estimates with SFDI can be combined with depth sensing algorithms to produce maps of the depth of PpIX when exposed to red-light in the OR.
Collapse
Affiliation(s)
- Dennis J. Wirth
- Department of Surgery, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Mira Sibai
- Princess Margaret Cancer Center/University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Dept. of Medical Biophysics, University of Toronto, Faculty of Medicine, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Center/University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Dept. of Medical Biophysics, University of Toronto, Faculty of Medicine, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - David W. Roberts
- Department of Surgery, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
- Dartmouth College, Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Keith Paulsen
- Dartmouth College, Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Mela C, Liu Y. Comprehensive characterization method for a fluorescence imaging system. APPLIED OPTICS 2019; 58:8237-8246. [PMID: 31674496 DOI: 10.1364/ao.58.008237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Fluorescence imaging systems are regularly characterized by their ability to distinguish varying concentrations of fluorophores in a solution or tissue phantom. However, there is inadequate standardization in the field for fluorescence characterization. In this study, we characterize a fluorescence imaging system developed for pathogen detection, regarding its ability to detect a near-infrared dye. During this process, we vary a number of key factors involved in fluorescence imaging, such as the excitation intensity, background level, working distance, volume of fluorescent solution, and type of container used to hold the fluorescent solution. We then analyze the results, with statistical rigor, to determine which factors result in significant changes in fluorescence detection. Notably, we found that using different types of containers to hold the dye solution can have a significant impact on fluorescence detection, while the effects of working distance and excitation intensity can vary. Based on our findings, greater standardization, or at least more thorough reporting of the experimental setup, is recommended to researchers when publishing characterization results of new imaging systems.
Collapse
|
5
|
Wei L, Roberts DW, Sanai N, Liu JTC. Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol 2018; 141:495-505. [PMID: 30554344 DOI: 10.1007/s11060-018-03077-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/10/2018] [Indexed: 01/27/2023]
Abstract
INTRODUCTION 5-ALA-based fluorescence-guided surgery has been shown to be a safe and effective method to improve intraoperative visualization and resection of malignant gliomas. However, it remains ineffective in guiding the resection of lower-grade, non-enhancing, and deep-seated tumors, mainly because these tumors do not produce detectable fluorescence with conventional visualization technologies, namely, wide-field (WF) surgical microscopy. METHODS We describe some of the main factors that limit the sensitivity and accuracy of conventional WF surgical microscopy, and then provide a survey of commercial and research prototypes being developed to address these challenges, along with their principles, advantages and disadvantages, as well as the current status of clinical translation for each technology. We also provide a neurosurgical perspective on how these visualization technologies might best be implemented for guiding glioma surgeries in the future. RESULTS Detection of PpIX expression in low-grade gliomas and at the infiltrative margins of all gliomas has been achieved with high-sensitivity probe-based visualization techniques. Deep-tissue PpIX imaging of up to 5 mm has also been achieved using red-light illumination techniques. Spectroscopic approaches have enabled more accurate quantification of PpIX expression. CONCLUSION Advancements in visualization technologies have extended the sensitivity and accuracy of conventional WF surgical microscopy. These technologies will continue to be refined to further improve the extent of resection in glioma patients using 5-ALA-induced fluorescence.
Collapse
Affiliation(s)
- Linpeng Wei
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - David W Roberts
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Nader Sanai
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
6
|
Wirth D, Sibai M, Olson J, Wilson BC, Roberts DW, Paulsen K. Feasibility of using spatial frequency-domain imaging intraoperatively during tumor resection. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-6. [PMID: 30378351 PMCID: PMC6995878 DOI: 10.1117/1.jbo.24.7.071608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/09/2018] [Indexed: 05/06/2023]
Abstract
Mapping the optical absorption and scattering properties of tissues using spatial frequency-domain imaging (SFDI) enhances quantitative fluorescence imaging of protoporphyrin IX (PpIX) in gliomas in the preclinical setting. The feasibility of using SFDI in the operating room was investigated here. A benchtop SFDI system was modified to mount directly to a commercial operating microscope. A digital light processing module imposed a selectable spatial light pattern from a broad-band xenon arc lamp to illuminate the surgical field. White light excitation and a liquid crystal-tunable filter allowed the diffuse reflectance images to be recorded at discrete wavelengths from 450 to 720 nm on a sCMOS camera. The performance was first tested in tissue-simulating phantoms, and data were then acquired intraoperatively during brain tumor resection surgery. The optical absorption and transport scattering coefficients could be estimated with average errors of 3.2% and 4.5% for the benchtop and clinical systems, respectively, with spatial resolution of better than 0.7 mm. These findings suggest that SFDI can be implemented in a clinically relevant configuration to achieve accurate mapping of the optical properties in the surgical field that can then be applied to achieve quantitative imaging of the fluorophore.
Collapse
Affiliation(s)
- Dennis Wirth
- Dartmouth Hitchcock Medical Center, Department of Surgery, Lebanon, New Hampshire, United States
- Address all correspondence to: Dennis Wirth, E-mail:
| | - Mira Sibai
- University Health Network, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Toronto, Ontario, Canada
| | - Jonathan Olson
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Brian C. Wilson
- University Health Network, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Toronto, Ontario, Canada
| | - David W. Roberts
- Dartmouth Hitchcock Medical Center, Department of Surgery, Lebanon, New Hampshire, United States
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Keith Paulsen
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| |
Collapse
|
7
|
Li C, Torres VC, Tichauer KM. Noninvasive detection of cancer spread to lymph nodes: A review of molecular imaging principles and protocols. J Surg Oncol 2018; 118:301-314. [PMID: 30196532 DOI: 10.1002/jso.25124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
Identification of cancer spread to tumor-draining lymph nodes offers critical information for guiding treatment in many cancer types. Current clinical methods of nodal staging are invasive and can have substantial negative side effects. Molecular imaging protocols have long been proposed as a less invasive means of nodal staging, having the potential to enable highly sensitive and specific evaluations. This review article summarizes the current status and future perspectives for molecular targeted nodal staging.
Collapse
Affiliation(s)
- Chengyue Li
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Veronica C Torres
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
8
|
Fan Y, Sun Y, Chang W, Zhang X, Tang J, Zhang L, Liao H. Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden. Am J Cancer Res 2018; 8:4072-4085. [PMID: 30128037 PMCID: PMC6096384 DOI: 10.7150/thno.25357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022] Open
Abstract
Brain tumor delineation and treatment are the main concerns of neurosurgeons in neurosurgical operations. Bridging the gap between imaging/diagnosis and treatment will provide great convenience for neurosurgeons. Here, we developed an optical theranostics platform that helps to delineate the boundary and quantitatively analyze glioblastoma multiforms (GBMs) with bioluminescence imaging (BLI) to guide laser ablation, and we imaged the GBM cells with two-photon microscopy (TPM) to visualize the laser ablation zone in vivo. Methods: Laser ablation, using the method of coupled ablated path planning with the guidance of BLI, was implemented in vivo for mouse brain tumors. The mapping relationship between semi-quantitative BLI and the laser ablation path was built through the quantitative tumor burden. The mapping was reflected through coupled ablated path planning. The BLI quantitatively and qualitatively evaluated treatment using laser ablation with the appropriate laser parameters and laser-tissue parameters. These parameters were measured after treatment. Furthermore, histopathological analysis of the brain tissue was conducted to compare the TPM images before and after laser ablation and to evaluate the results of in vivo laser ablation. The local recurrences were measured with three separate cohorts. The weights of all of the mice were measured during the experiment. Results: Our in vivo BLI data show that the tumor cell numbers were significantly attenuated after treatment with the optical theranostics platform, and the delineation of GBM margins had clear views to guide the laser resection; the fluorescence intensity in vivo of GBMs quantitatively analyzed the rapid progression of GBMs. The laser-tissue parameters under guidance of multimodality imaging ranged between 1.0 mm and 0.1 mm. The accuracy of the laser ablation reached a submillimeter level, and the resection ratio reached more than 99% under the guidance of BLI. The histopathological sections were compared to TPM images, and the results demonstrated that these images highly coincided. The weight index and local recurrence results demonstrated that the therapeutic effect of the optical theranostics platform was significant. Conclusion: We propose an optical multimodality imaging-guided laser ablation theranostics platform for the treatment of GBMs in an intravital mouse model. The experimental results demonstrated that the integration of multimodality imaging can precisely guide laser ablation for the treatment of GBMs. This preclinical research provides a possibility for the precision treatment of GBMs. The study also provides some theoretical support for clinical research.
Collapse
|
9
|
Honda N, Ishii K, Kajimoto Y, Kuroiwa T, Awazu K. Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 30006993 DOI: 10.1117/1.jbo.23.7.075006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/22/2018] [Indexed: 05/18/2023]
Abstract
The optical properties of human brain tumor tissues, including glioblastoma, meningioma, oligodendroglioma, and metastasis, that were classified into "strong," "vague," and "unobservable" fluorescence by a neurosurgeon were measured and compared. The optical properties of the tissues were measured with a double integrating sphere and the inverse Monte Carlo technique from 350 to 1000 nm. Using reasons of ex-vivo measurement, the optical properties at around 420 nm were potentially affected by the hemoglobin content in tissues. Significant differences were not observed between the optical properties of the glioblastoma regions with "strong" and "unobservable" fluorescence. Sections of human brain tumor tissue with "strong" and "unobservable" fluorescence were stained with hematoxylin and eosin. The cell densities [mean ± standard deviation (S.D.)] in regions with "strong" and "unobservable" fluorescence were 31 ± 9 × 102 per mm2 and 12 ± 4 × 102 per mm2, respectively, which is a statistically significant difference. The higher fluorescence intensity is associated with higher cell density. The difference in cell density modified the scattering coefficient yet it does not lead to significant differences in the reduced scattering coefficient and thus does not affect the propagation of the diffuse fluorescent light. Hence, the false negatives, which mean a brain tumor only shows "unobservable" fluorescence and is hence classified incorrectly as nontumor, in using 5-ALA for detection of human glioblastoma do not result from the differences in optical properties of human brain glioblastoma tissues. Our results suggest that the primary cause of false negatives may be a lack of PpIX or a low accumulation of PpIX.
Collapse
|