1
|
Chohan DP, Biswas S, Wankhede M, Menon P, K A, Basha S, Rodrigues J, Mukunda DC, Mahato KK. Assessing Breast Cancer through Tumor Microenvironment Mapping of Collagen and Other Biomolecule Spectral Fingerprints─A Review. ACS Sens 2024; 9:4364-4379. [PMID: 39175278 PMCID: PMC11443534 DOI: 10.1021/acssensors.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Breast cancer is a major challenge in the field of oncology, with around 2.3 million cases and around 670,000 deaths globally based on the GLOBOCAN 2022 data. Despite having advanced technologies, breast cancer remains the major type of cancer among women. This review highlights various collagen signatures and the role of different collagen types in breast tumor development, progression, and metastasis, along with the use of photoacoustic spectroscopy to offer insights into future cancer diagnostic applications without the need for surgery or other invasive techniques. Through mapping of the tumor microenvironment and spotlighting key components and their absorption wavelengths, we emphasize the need for extensive preclinical and clinical investigations.
Collapse
Affiliation(s)
- Diya Pratish Chohan
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Shimul Biswas
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Mrunmayee Wankhede
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Poornima Menon
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Ameera K
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Shaik Basha
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Jackson Rodrigues
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | | | - Krishna Kishore Mahato
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
2
|
He H, Wang H, You H, Dong X, Shi J, Dong J. 30-100 kHz, 2 ns passively Q-switched laser for fast and efficient photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300437. [PMID: 38450961 DOI: 10.1002/jbio.202300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/10/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Actively Q-switched (AQS) fiber laser and solid-state laser (SSL) are widely used for photoacoustic microscopy (PAM). In contrast, passively Q-switched (PQS) SSL not only maintains most of the merits of AQS lasers, but also exhibits unique advantages, including the pulse width (PW), pulse repetition rate (PRR) tunability, wavelength, compactness, and cost. These advantages all benefit the PAM. However, there are few reports demonstrating the performance of PQS-SSL on PA imaging. Here, we demonstrate a compact PQS-SSL for fast and efficient PA imaging. The laser uniquely maintains a constant PW (~2 ns) and pulse energy (~3 μJ) during the PRR variation (30-100 kHz), which is valuable for preserving a stabilized imaging performance at different scanning rates. The PA imaging performance is compared by a resolution target and showcased by whole-body scanning of an embryonic zebrafish in vivo. The performance indicates that PQS-SSL is a promising candidate for PAM.
Collapse
Affiliation(s)
- Hongsen He
- Laboratory of Laser and Applied Photonics (LLAP), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen, China
| | - Hanjie Wang
- Laboratory of Laser and Applied Photonics (LLAP), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, China
| | - Huiyue You
- Laboratory of Laser and Applied Photonics (LLAP), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, China
| | - Xin Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jiawei Shi
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jun Dong
- Laboratory of Laser and Applied Photonics (LLAP), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Hirasawa T, Tachi K, Ishikawa T, Miyashita M, Ito K, Ishihara M. Photoacoustic microscopy for real-time monitoring of near-infrared optical absorbers inside biological tissue. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11527. [PMID: 38464883 PMCID: PMC10924425 DOI: 10.1117/1.jbo.29.s1.s11527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Significance We developed a high-speed optical-resolution photoacoustic microscopy (OR-PAM) system using a high-repetition-rate supercontinuum (SC) light source and a two-axes Galvano scanner. The OR-PAM system enabled real-time imaging of optical absorbers inside biological tissues with excellent excitation wavelength tunability. Aim In the near-infrared (NIR) wavelength range, high-speed OR-PAM faces limitations due to the lack of wavelength-tunable light sources. Our study aimed to enable high-speed OR-PAM imaging of various optical absorbers, including NIR contrast agents, and validate the performance of high-speed OR-PAM in the detection of circulating tumor cells (CTCs). Approach A high-repetition nanosecond pulsed SC light source was used for OR-PAM. The excitation wavelength was adjusted by bandpass filtering of broadband light pulses produced by an SC light source. Phantom and in vivo experiments were performed to detect tumor cells stained with an NIR contrast agent within flowing blood samples. Results The newly developed high-speed OR-PAM successfully detected stained cells both in the phantom and in vivo. The phantom experiment confirmed the correlation between the tumor cell detection rate and tumor cell concentration in the blood sample. Conclusions The high-speed OR-PAM effectively detected stained tumor cells. Combining high-speed OR-PAM with molecular probes that stain tumor cells in vivo enables in vivo CTC detection.
Collapse
Affiliation(s)
- Takeshi Hirasawa
- National Defense Medical College, Department of Medical Engineering, Tokorozawa, Japan
| | - Kazuyoshi Tachi
- National Defense Medical College, Department of Medical Engineering, Tokorozawa, Japan
- National Defense Medical College, Department of Urology, Tokorozawa, Japan
| | - Tomohiro Ishikawa
- National Defense Medical College, Department of Medical Engineering, Tokorozawa, Japan
| | - Manami Miyashita
- National Defense Medical College, Department of Medical Engineering, Tokorozawa, Japan
| | - Keiichi Ito
- National Defense Medical College, Department of Urology, Tokorozawa, Japan
| | - Miya Ishihara
- National Defense Medical College, Department of Medical Engineering, Tokorozawa, Japan
| |
Collapse
|
4
|
Wan Y, Qi X, Hofmann J, Scheibinger R, Jia G, Gui F, Plentz J, Wen J, Schmidt MA. Optical heating-induced spectral tuning of supercontinuum generation in liquid core fibers using multiwall carbon nanotubes. OPTICS EXPRESS 2023; 31:30911-30920. [PMID: 37710623 DOI: 10.1364/oe.496199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
In this work, we demonstrate the optical heating modulation of soliton-based supercontinuum generation through the employment of multi-walled carbon nanotubes (MW-CNTs) acting as fast and efficient heat generators. By utilizing highly dispersion-sensitive liquid-core fibers in combination with MW-CNTs coated to the outer wall of the fiber, spectral tuning of dispersive waves with response times below one second via exploiting the strong thermo-optic response of the core liquid was achieved. Local illumination of the MW-CNTs coated fiber at selected points allowed modulation of the waveguide dispersion, thus controlling the soliton fission process. Experimentally, a spectral shift of the two dispersive waves towards the region of anomalous dispersion was observed at increasing temperatures. The presented tuning concept shows great potential in the context of nonlinear photonics, as complex and dynamically reconfigurable dispersion profiles can be generated by using structured light fields. This allows investigating nonlinear frequency conversion processes under unconventional conditions, and realizing nonlinear light sources that are reconfigurable quickly.
Collapse
|
5
|
Hybrid confocal fluorescence and photoacoustic microscopy for the label-free investigation of melanin accumulation in fish scales. Sci Rep 2022; 12:7173. [PMID: 35504968 PMCID: PMC9065085 DOI: 10.1038/s41598-022-11262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Lower vertebrates, including fish, can rapidly alter skin lightness through changes in melanin concentration and melanosomes’ mobility according to various factors, which include background color, light intensity, ambient temperature, social context, husbandry practices and acute or chronic stressful stimuli. Within this framework, the determination of skin chromaticity parameters in fish species is estimated either in specific areas using colorimeters or at the whole animal level using image processing and analysis software. Nevertheless, the accurate quantification of melanin content or melanophore coverage in fish skin is quite challenging as a result of the laborious chemical analysis and the typical application of simple optical imaging methods, requiring also to euthanize the fish in order to obtain large skin samples for relevant investigations. Here we present the application of a novel hybrid confocal fluorescence and photoacoustic microscopy prototype for the label-free imaging and quantification of melanin in fish scales samples with high spatial resolution, sensitivity and detection specificity. The hybrid images are automatically processed through optimized algorithms, aiming at the accurate and rapid extraction of various melanin accumulation indices in large datasets (i.e., total melanin content, melanophores’ area, density and coverage) corresponding to different fish species and groups. Furthermore, convolutional neural network-based algorithms have been trained using the recorded data towards the classification of different scales’ samples with high accuracy. In this context, we demonstrate that the proposed methodology may increase substantially the precision, as well as, simplify and expedite the relevant procedures for the quantification of melanin content in marine organisms.
Collapse
|
6
|
Mikkonen T, Eslami Z, Genty G, Toivonen J. Supercontinuum intensity noise coupling in Fourier transform photoacoustic spectroscopy. OPTICS LETTERS 2022; 47:1713-1716. [PMID: 35363715 DOI: 10.1364/ol.454461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
We investigate the noise transfer mechanism from the light source intensity fluctuations to the acoustic signal in Fourier transform photoacoustic spectroscopy (FT-PAS). This noise coupling is expected to be reduced in FT-PAS compared with conventional Fourier transform spectroscopy, as only the specific spectral components that are absorbed by the probed sample contribute to the noise level. We employ an incoherent supercontinuum (SC) light source in our experiments and observe a linear relation between the sample gas concentration and the detected noise level, which significantly reduces the influence of the SC noise on the detection limit. Based on our experimental results, we derive a model for the noise level, which establishes the foundation for practical sensitive implementation of FT-PAS.
Collapse
|
7
|
Zorin I, Gattinger P, Ebner A, Brandstetter M. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources. OPTICS EXPRESS 2022; 30:5222-5254. [PMID: 35209491 DOI: 10.1364/oe.447269] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Supercontinuum sources are all-fiber pulsed laser-driven systems that provide high power spectral densities within ultra-broadband spectral ranges. The tailored process of generating broadband, bright, and spectrally flat supercontinua-through a complex interplay of linear and non-linear processes-has been recently pushed further towards longer wavelengths and has evolved enough to enter the field of mid-infrared (mid-IR) spectroscopy. In this work, we review the current state and perspectives of this technology that offers laser-like emission properties and instantaneous broadband spectral coverage comparable to thermal emitters. We aim to go beyond a literature review. Thus, we first discuss the basic principles of supercontinuum sources and then provide an experimental part focusing on the quantification and analysis of intrinsic emission properties such as typical power spectral densities, brightness levels, spectral stability, and beam quality (to the best of the authors' knowledge, the M2 factor for a mid-IR supercontinuum source is characterized for the first time). On this basis, we identify key competitive advantages of these alternative emitters for mid-IR spectroscopy over state-of-the-art technologies such as thermal sources or quantum cascade lasers. The specific features of supercontinuum radiation open up prospects of improving well-established techniques in mid-IR spectroscopy and trigger developments of novel analytical methods and instrumentation. The review concludes with a structured summary of recent advances and applications in various routine mid-IR spectroscopy scenarios that have benefited from the use of supercontinuum sources.
Collapse
|
8
|
Jin Y, Yin Y, Li C, Liu H, Shi J. Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy. SENSORS 2022; 22:s22031155. [PMID: 35161900 PMCID: PMC8839463 DOI: 10.3390/s22031155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
For certain diseases, the continuous long-term monitoring of the physiological condition is crucial. Therefore, non-invasive monitoring methods have attracted widespread attention in health care. This review aims to discuss the non-invasive monitoring technologies for human health based on photoacoustic spectroscopy. First, the theoretical basis of photoacoustic spectroscopy and related devices are reported. Furthermore, this article introduces the monitoring methods for blood glucose, blood oxygen, lipid, and tumors, including differential continuous-wave photoacoustic spectroscopy, microscopic photoacoustic spectroscopy, mid-infrared photoacoustic detection, wavelength-modulated differential photoacoustic spectroscopy, and others. Finally, we present the limitations and prospects of photoacoustic spectroscopy.
Collapse
Affiliation(s)
- Yongyong Jin
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China;
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Yonggang Yin
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Chiye Li
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China;
- Correspondence: (H.L.); (J.S.)
| | - Junhui Shi
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
- Correspondence: (H.L.); (J.S.)
| |
Collapse
|
9
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Tachi K, Hirasawa T, Okawa S, Horiguchi A, Ito K, Ishihara M. Chromatic-aberration-free multispectral optical-resolution photoacoustic microscopy using reflective optics and a supercontinuum light source. APPLIED OPTICS 2021; 60:9651-9658. [PMID: 34807146 DOI: 10.1364/ao.434817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
A supercontinuum (SC) light source enables multispectral photoacoustic imaging at excitation wavelengths in the visible-to-near-infrared range. However, for such a broad optical wavelength range, chromatic aberration is non-negligible. We developed a multispectral optical-resolution photoacoustic microscopy (MS-OR-PAM) setup with a nanosecond pulsed SC light source and a reflective objective lens to avoid chromatic aberration. Chromatic aberrations generated by reflective and conventional objective lenses were compared, and the images acquired using the reflective objective were not affected by chromatic aberration. Hence, MS-OR-PAM with the reflective objective was used to distinguish red blood cells from melanoma cells via spectral subtraction processing.
Collapse
|
11
|
Jin L, Liang Y. Fiber laser technologies for photoacoustic microscopy. Vis Comput Ind Biomed Art 2021; 4:11. [PMID: 33928461 PMCID: PMC8085136 DOI: 10.1186/s42492-021-00076-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/05/2021] [Indexed: 12/04/2022] Open
Abstract
Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing, medical care, and industrial applications, including laser welding, cleaning, and manufacturing. A fiber laser can output laser pulses with high energy, a high repetition rate, a controllable wavelength, low noise, and good beam quality, making it applicable in photoacoustic imaging. Herein, recent developments in fiber-laser-based photoacoustic microscopy (PAM) are reviewed. Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser, a stimulated Raman scattering-based laser source, or a fiber-based supercontinuum source for photoacoustic excitation. PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift. Because of their small size and high flexibility, compact head-mounted, wearable, or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.
Collapse
Affiliation(s)
- Long Jin
- Guangdong Provincial Key Laboratory of Fiber Optic Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Fiber Optic Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
12
|
Huang C, Zhu J, Aruna Gandhi MS, Li Q. Effects of two weak continuous-wave triggers on picosecond pulse pumped supercontinuum generation. APPLIED OPTICS 2020; 59:8560-8567. [PMID: 33104534 DOI: 10.1364/ao.400792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The promising advancement of supercontinuum generation in optical fibers has initiated significant interest in recent research studies and several continuing applications. We numerically corroborate the effects of picosecond pulse pumped supercontinuum (SC) by using two weak continuous-wave (CW) triggers with 1% pump intensity. Compared with SC with one CW trigger, adding two CW triggers (1% pump power), both near the modulation instability peaks, can achieve wider spectra for a picosecond pulse pumped SC. Furthermore, good coherence properties may be achieved in the wavelength range from 1300-2000 nm when one CW trigger is near the pump center wavelength and the other CW trigger is distant from the pump. In our simulations, putting two CW triggers on the same side (concerning the pump wavelength) or putting them on different sides have similar effects on SC spectral and temporal coherence properties. Therefore, by engineering the wavelengths of two CW triggers to offer better bandwidth or coherence, we envision that the proposed technique could play a significant role in the generation of SC.
Collapse
|
13
|
Genier E, Ghosh AN, Bobba S, Bowen P, Moselund PM, Bang O, Dudley JM, Sylvestre T. Cross-phase modulation instability in PM ANDi fiber-based supercontinuum generation. OPTICS LETTERS 2020; 45:3545-3548. [PMID: 32630894 DOI: 10.1364/ol.397106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate broadband supercontinuum generation in an all-normal dispersion polarization-maintaining photonic crystal fiber and report the observation of a cross-phase modulation instability sideband generated outside of the supercontinuum bandwidth. We demonstrate that this sideband is polarized on the slow axis and can be suppressed by pumping on the fiber's fast axis. We theoretically confirm and model this nonlinear process using phase-matching conditions and numerical simulations, obtaining good agreement with the measured data.
Collapse
|
14
|
Friedlein JT, Baumann E, Briggman KA, Colacion GM, Giorgetta FR, Goldfain AM, Herman DI, Hoenig EV, Hwang J, Newbury NR, Perez EF, Yung CS, Coddington I, Cossel KC. Dual-comb photoacoustic spectroscopy. Nat Commun 2020; 11:3152. [PMID: 32561738 PMCID: PMC7305174 DOI: 10.1038/s41467-020-16917-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Spectrally resolved photoacoustic imaging is promising for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds and causes errors if the sample changes in time between images acquired at different wavelengths. We demonstrate a solution to this problem by using dual-comb spectroscopy for photoacoustic measurements. This approach enables a photoacoustic measurement at thousands of wavelengths simultaneously. In this technique, two optical-frequency combs are interfered on a sample and the resulting pressure wave is measured with an ultrasound transducer. This acoustic signal is processed in the frequency-domain to obtain an optical absorption spectrum. For a proof-of-concept demonstration, we measure photoacoustic signals from polymer films. The absorption spectra obtained from these measurements agree with those measured using a spectrophotometer. Improving the signal-to-noise ratio of the dual-comb photoacoustic spectrometer could enable high-speed spectrally resolved photoacoustic imaging.
Collapse
Affiliation(s)
- Jacob T Friedlein
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Esther Baumann
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Kimberly A Briggman
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Gabriel M Colacion
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- Optical Science and Engineering, University of New Mexico, 1313 Goddard, SE, Albuquerque, NM, 87106, USA
| | - Fabrizio R Giorgetta
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Aaron M Goldfain
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Daniel I Herman
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Eli V Hoenig
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, ERC 387, Chicago, IL, 60637, USA
| | - Jeeseong Hwang
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Nathan R Newbury
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Edgar F Perez
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, 8279 Paint Branch Drive, College Park, MD, 20742-3511, USA
| | - Christopher S Yung
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Ian Coddington
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA
| | - Kevin C Cossel
- National Institute of Standards and Technology, Applied Physics Division, 325 Broadway, Boulder, CO, 80305, USA.
| |
Collapse
|
15
|
Dasa MK, Nteroli G, Bowen P, Messa G, Feng Y, Petersen CR, Koutsikou S, Bondu M, Moselund PM, Podoleanu A, Bradu A, Markos C, Bang O. All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region. PHOTOACOUSTICS 2020; 18:100163. [PMID: 32042589 PMCID: PMC6997905 DOI: 10.1016/j.pacs.2020.100163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 05/06/2023]
Abstract
Among the numerous endogenous biological molecules, information on lipids is highly coveted for understanding both aspects of developmental biology and research in fatal chronic diseases. Due to the pronounced absorption features of lipids in the extended near-infrared region (1650-1850 nm), visualisation and identification of lipids become possible using multi-spectral photoacoustic (optoacoustic) microscopy. However, the spectroscopic studies in this spectral region require lasers that can produce high pulse energies over a broad spectral bandwidth to efficiently excite strong photoacoustic signals. The most well-known laser sources capable of satisfying the multi-spectral photoacoustic microscopy requirements (tunability and pulse energy) are tunable nanosecond optical parametric oscillators. However, these lasers have an inherently large footprint, thus preventing their use in compact microscopy systems. Besides, they exhibit low-repetition rates. Here, we demonstrate a compact all-fibre, high pulse energy supercontinuum laser that covers a spectral range from 1440 to 1870 nm with a 7 ns pulse duration and total energy of 18.3 μJ at a repetition rate of 100 kHz. Using the developed high-pulse energy source, we perform multi-spectral photoacoustic microscopy imaging of lipids, both ex vivo on adipose tissue and in vivo to study the development of Xenopus laevis tadpoles, using six different excitation bands over the first overtone transition of C-H vibration bonds (1650-1850 nm).
Collapse
Affiliation(s)
- Manoj K. Dasa
- DTU Fotonik, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gianni Nteroli
- Applied Optics Group, University of Kent, Canterbury, UK
| | - Patrick Bowen
- NKT Photonics A/S, Blokken 84, 3460 Birkerød, Denmark
| | - Giulia Messa
- Medway School of Pharmacy, University of Kent, Chatham, UK
| | - Yuyang Feng
- COPAC A/S, Diplomvej 381, 2800 Kongens Lyngby, Denmark
| | - Christian R. Petersen
- DTU Fotonik, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- NORBLIS IVS, Virumgade 35D, 2830 Virum, Denmark
| | | | - Magalie Bondu
- NKT Photonics A/S, Blokken 84, 3460 Birkerød, Denmark
| | | | | | - Adrian Bradu
- Applied Optics Group, University of Kent, Canterbury, UK
| | - Christos Markos
- DTU Fotonik, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- NORBLIS IVS, Virumgade 35D, 2830 Virum, Denmark
| | - Ole Bang
- DTU Fotonik, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- NORBLIS IVS, Virumgade 35D, 2830 Virum, Denmark
- NKT Photonics A/S, Blokken 84, 3460 Birkerød, Denmark
| |
Collapse
|
16
|
Kwarkye K, Jensen M, Engelsholm RD, Dasa MK, Jain D, Bowen P, Moselund PM, Petersen CR, Bang O. In-amplifier and cascaded mid-infrared supercontinuum sources with low noise through gain-induced soliton spectral alignment. Sci Rep 2020; 10:8230. [PMID: 32427972 PMCID: PMC7237674 DOI: 10.1038/s41598-020-65150-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
The pulse-to-pulse relative intensity noise (RIN) of near-infrared (near-IR) in-amplifier supercontinuum (SC) sources and mid-IR cascaded SC sources was experimentally and numerically investigated and shown to have significantly lowered noise due to the fundamental effect of gain-induced soliton-spectral alignment. The mid-IR SC source is based on a near-IR in-amplifier SC pumping a cascade of thulium-doped and ZBLAN fibers. We demonstrate that the active thulium-doped fiber not only extend the spectrum, but also to significantly reduce the RIN by up to 22% in the long wavelength region above 2 μm. Using numerical simulations, we demonstrate that the noise reduction is the result of an interplay between absorption-emission processes and nonlinear soliton dynamics leading to the soliton-spectral alignment. In the same way we show that the RIN of the near-IR in-amplifier SC source is already significantly reduced because the spectral broadening takes place in an active fiber that also introduces soliton-spectral alignment. We further show that the low noise properties are transferred to the subsequent fluoride SC, which has a RIN lower than 10% (5%) in a broad region from 1.1-3.6 μm (1.4-3.0 μm). The demonstrated low noise significantly improves the applicability of these broadband sources for mid-IR imaging and spectroscopy.
Collapse
Affiliation(s)
- Kyei Kwarkye
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Mikkel Jensen
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | | | - Manoj K Dasa
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Deepak Jain
- School of Physics, Sydney Nano Institute, University of Sydney, Sydney, 2006, NSW, Australia
| | - Patrick Bowen
- NKT Photonics A/S, Blokken 84, 3460, Birkerød, Denmark
| | | | - Christian R Petersen
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- NORBLIS IVS, Virumgade 35D, 2830, Virum, Denmark
| | - Ole Bang
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- NKT Photonics A/S, Blokken 84, 3460, Birkerød, Denmark
- NORBLIS IVS, Virumgade 35D, 2830, Virum, Denmark
| |
Collapse
|
17
|
Hoang VT, Kasztelanic R, Stępniewski G, Xuan KD, Long VC, Trippenbach M, Klimczak M, Buczyński R, Pniewski J. Femtosecond supercontinuum generation around 1560 nm in hollow-core photonic crystal fibers filled with carbon tetrachloride. APPLIED OPTICS 2020; 59:3720-3725. [PMID: 32400498 DOI: 10.1364/ao.385003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
We investigated experimentally supercontinuum generation in hollow-core photonic crystal fibers with cores infiltrated with carbon tetrachloride. As a pump source, we used a standard fiber-based femtosecond laser with a central wavelength at 1560 nm and a pulse duration of 90 fs. The first investigated fiber has a zero-dispersion wavelength at 1740 nm and generates a supercontinuum in the wavelength range from 1350 to 1900 nm. The second fiber has a zero-dispersion wavelength at 1440 nm, and the observed supercontinuum spectrum ranges from 1000 to 1900 nm. We numerically analyzed coherence of simulated supercontinuum pulses and noted that the observed supercontinuum spectra had a potential for high coherence. While the dynamics of supercontinuum generation in each of the investigated cases was revealed to be in agreement with the established state of the art in nonlinear fiber optics, our results are the first demonstration of such dynamics, to the best of our knowledge, leading up to octave spanning supercontinuum spectra in liquid-filled hollow-core silica fibers under pumping with a small-footprint femtosecond laser.
Collapse
|
18
|
Habib MS, Markos C, Antonio-Lopez JE, Amezcua-Correa R. Multioctave supercontinuum from visible to mid-infrared and bend effects on ultrafast nonlinear dynamics in gas-filled hollow-core fiber. APPLIED OPTICS 2019; 58:D7-D11. [PMID: 31044814 DOI: 10.1364/ao.58.0000d7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Broadband supercontinuum generation is numerically investigated in a Xe-filled nested hollow-core antiresonant (HC-AR) fiber pumped at 3 μm with pulses of 100 fs duration and 15 μJ energy. For a 25 cm long fiber, under 7 bar pressure, the supercontinuum spectrum spans multiple octaves from 400 nm to 5000 nm. Furthermore, the influence of bending on ultrafast nonlinear pulse propagation dynamics is investigated for two types of HC-AR fibers (nested and non-nested capillaries). Our results predict similar nonlinear dynamics for both fiber types and a significant reduction of the spectral broadening under tight bending conditions.
Collapse
|
19
|
Li C, Shi J, Gong X, Kong C, Luo Z, Song L, Wong KKY. 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging. OPTICS LETTERS 2018; 43:5849-5852. [PMID: 30499958 DOI: 10.1364/ol.43.005849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Recently demonstrated bond-selective photoacoustic (PA) imaging has revealed the importance of 1.7 μm laser sources. In this Letter, we demonstrate a gain-switched thulium-doped fiber laser with continuous tuning from 1690 to 1765 nm by using an electrically driven acousto-optical tunable filter. Micro-joule laser pulses with a shot-to-shot intensity variation of 1.6% and a pulse duration of 150 ns are obtained. The laser source is then harnessed to implement a PA microscopy system, of which the lateral resolution is estimated to be 15.6 μm by scanning the edge of a black tape. The PA spectra of butter, rapeseed oil, and adipose tissue are measured, and they show a consistent absorption peak of around 1720 nm. Photoacoustic microscopy imaging of the adipose tissue demonstrates a high optical absorption contrast of lipids and the superiority of the laser for spectroscopic PA detection.
Collapse
|