1
|
Song H, Hang H, Li K, Rossi EA, Zhang J. LONGITUDINAL ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY REVEALS REGIONAL VARIATION IN CONE AND ROD PHOTORECEPTOR LOSS IN STARGARDT DISEASE. Retina 2024; 44:1403-1412. [PMID: 38484106 PMCID: PMC11269039 DOI: 10.1097/iae.0000000000004104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE To investigate the temporal sequence of changes in the photoreceptor cell mosaic in patients with Stargardt disease type 1, using adaptive optics scanning laser ophthalmoscopy. METHODS Two brothers with genetically confirmed Stargardt disease type 1 underwent comprehensive eye exams, spectral-domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy imaging 3 times over the course of 28 months. Confocal images of the cones and rods were obtained from the central fovea to 10° inferiorly. Photoreceptors were counted in sampling windows at 100- µ m intervals of 200 µ m × 200 µ m for cones and 50 µ m × 50 µ m for rods, using custom cell marking software with manual correction. Photoreceptor density and spacing were measured and compared across imaging sessions using one-way analysis of variance. RESULTS Adaptive optics scanning laser ophthalmoscopy revealed the younger brother had a 30% decline in foveal cone density after 8 months, followed by complete loss of foveal cones at 28 months; the older brother had no detectable foveal cones at baseline. In the peripheral macula, cone and rod spacings were greater than normal in both patients. The ratio of the cone spacing to rod spacing was greater than normal across all eccentricities, with a greater divergence closer to the foveal center. CONCLUSION Cone cell loss may be an early pathogenetic step in Stargardt disease. Adaptive optics scanning laser ophthalmoscopy provides the capability to track individual photoreceptor changes longitudinally in Stargardt disease.
Collapse
Affiliation(s)
- Hongxin Song
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and visual Sciences, National Engineering Research Center for Ophthalmology. Beijing, China
| | - Hui Hang
- Department of Ophthalmology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital. Nanjing, China
| | - Kaiwen Li
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, China
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Zhang
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, China
| |
Collapse
|
2
|
Gupta AK, Haas-Neill S, Talukder M. The safety of oral antifungals for the treatment of onychomycosis. Expert Opin Drug Saf 2023; 22:1169-1178. [PMID: 37925672 DOI: 10.1080/14740338.2023.2280137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Oral antifungals are used for the treatment of moderate-severe onychomycosis. Terbinafine and itraconazole are approved for onychomycosis treatment in North America; additionally, fluconazole is indicated for onychomycosis in Europe. Other oral antifungals such as ketoconazole and griseofulvin are no longer used for the treatment of onychomycosis due to safety concerns and relatively lower efficacy. SEARCH STRATEGY On 7 March 2023, we conducted a comprehensive search in PubMed and Google Scholar, while also manually examining selected article bibliographies and package inserts. AREAS COVERED Terbinafine, itraconazole, and fluconazole have several interactions with cytochrome-p450, and either alone, or when co-administered with other drugs these interactions can facilitate a multitude of adverse events. This article identifies possible hepatic, renal, cutaneous, cardiovascular, neurological, hemopoietic, and obstetric adverse events. We have also compared the rates of hepatotoxicity, clinically apparent liver injury, and alanine transaminase elevations between oral antifungals, and recommendations for hepatic monitoring. EXPERT OPINION We recommend laboratory testing of liver function tests prior to the administration of any oral antifungals, especially when clinically indicated. In the event of a first treatment failure, the diagnosis of onychomycosis must be confirmed, and consideration given to antifungal susceptibility testing. Antifungal stewardship will help reduce the incidence of antifungal resistance.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc, London, ON, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Mesbah Talukder
- Mediprobe Research Inc, London, ON, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:387-428. [PMID: 36698659 PMCID: PMC9841996 DOI: 10.1364/boe.472274] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 05/02/2023]
Abstract
Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Contributed equally
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
- Contributed equally
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
- Contributed equally
| |
Collapse
|
4
|
Baraas RC, Pedersen HR, Knoblauch K, Gilson SJ. Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35113142 PMCID: PMC8819292 DOI: 10.1167/iovs.63.2.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the association between foveal shape and cone and retinal pigment epithelium (RPE) cell topographies in healthy humans. Methods Multimodal adaptive scanning light ophthalmoscopy and optical coherence tomography (OCT) were used to acquire images of foveal cones, RPE cells, and retinal layers in eyes of 23 healthy participants with normal foveas. Distributions of cone and RPE cell densities were fitted with nonlinear mixed-effects models. A linear mixed-effects model was used to examine the relationship between cone and RPE inter-cell distances and foveal shape as obtained from the OCT scans of retinal thickness. Results The best-fit model to the cone densities was a power function with a nasal–temporal asymmetry. There was a significant linear relationship among cone and RPE cell spacing, foveal shape, and foveal cell topography. The model predictions of the central 10° show that the contributions of both the cones and RPE cells are necessary to account for foveal shape. Conclusions The results indicate that there is a strong relationship between cone and RPE cell spacing and the shape of the human adolescent and adult fovea. This finding adds to the existing evidence of the critical role that the RPE serves in fetal foveal development and through adolescence, possibly via the imposition of constraints on the number and distribution of foveal cones.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Lyon, France
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
5
|
Hasegawa T, Oishi A, Ikeda HO, Numa S, Miyata M, Otsuka Y, Oishi M, Tsujikawa A. Detection Sensitivity of Retinitis Pigmentosa Progression Using Static Perimetry and Optical Coherence Tomography. Transl Vis Sci Technol 2021; 10:31. [PMID: 34323953 PMCID: PMC8322706 DOI: 10.1167/tvst.10.8.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare the detection sensitivities of the progression of retinitis pigmentosa (RP) by automated perimetry to obtain the mean deviation (MD) and total point score and by optical coherence tomography (OCT) to determine the residual ellipsoid zone (EZ) length and thickness of retinal layers. Methods Twenty-two eyes of 22 patients with RP who underwent annual automated perimetry (Humphrey Field Analyzer 10-2) and OCT examinations during the same period more than four times were included. Disease progression was evaluated using linear regression analysis with the least-squares method. The disease progression speed and interinspection fluctuations for the different examinations were compared using standardized values. The progression detection ability factor, defined as the average of the least squares divided by the square of annual change, was used to compare the sensitivities of the examinations for detecting the progression of RP. Results EZ length showed a high correlation with MD (R = 0.87; P = 1.12E-07) at baseline. Disease progression was detected more frequently using EZ length (12/22 eyes) than using MD (3/22 eyes; P = 0.004) or central retinal thickness (1/11 eyes; P = 0.012). Linear regression using standardized values showed that the EZ length had the fastest annual change, with the smallest least absolute values. EZ length was more sensitive for detecting RP progression than MD, total point score, visual acuity, or central retinal thickness. Conclusions EZ measurement was sensitive for detecting RP progression, and the results of this study indicate that EZ length is appropriate for end points in clinical trials. Translational Relevance The study provides a basis for conducting future clinical trials.
Collapse
Affiliation(s)
- Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Ophthalmology and Visual Sciences, Nagasaki University, Nagasaki, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shogo Numa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Miyata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Otsuka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maho Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Zhang F, Kurokawa K, Bernucci MT, Jung HW, Lassoued A, Crowell JA, Neitz J, Neitz M, Miller DT. Revealing How Color Vision Phenotype and Genotype Manifest in Individual Cone Cells. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 33544131 PMCID: PMC7873503 DOI: 10.1167/iovs.62.2.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose Psychophysical and genetic testing provide substantial information about color vision phenotype and genotype. However, neither reveals how color vision phenotypes and genotypes manifest themselves in individual cones, where color vision and its anomalies are thought to originate. Here, we use adaptive-optics phase-sensitive optical coherence tomography (AO-PSOCT) to investigate these relationships. Methods We used AO-PSOCT to measure cone function—optical response to light stimulation—in each of 16 human subjects with different phenotypes and genotypes of color vision (five color-normal, three deuteranopic, two protanopic, and six deuteranomalous trichromatic subjects). We classified three spectral types of cones (S, M, and L), and we measured cone structure—namely cone density, cone mosaic arrangement, and spatial arrangement of cone types. Results For the different phenotypes, our cone function results show that (1) color normals possess S, M, and L cones; (2) deuteranopes are missing M cones but are normal otherwise; (3) protanopes are missing L cones but are normal otherwise; and (4) deuteranomalous trichromats are missing M cones but contain evidence of at least two subtypes of L cones. Cone function was consistent with the subjects’ genotype in which only the first two M and L genes in the gene array are expressed and was correlated with the estimated spectral separation between photopigments, including in the deuteranomalous trichromats. The L/M cone ratio was highly variable in the color normals. No association was found between cone density and the genotypes and phenotypes investigated, and the cone mosaic arrangement was altered in the dichromats. Conclusions AO-PSOCT is a novel method for assessing color vision phenotype and genotype in single cone cells.
Collapse
Affiliation(s)
- Furu Zhang
- School of Optometry, Indiana University, Bloomington, Indiana, United States.,Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Kazuhiro Kurokawa
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Marcel T Bernucci
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Hae Won Jung
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - James A Crowell
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Donald T Miller
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
7
|
Sampson DM, Roshandel D, Chew AL, Wang Y, Stevenson PG, Cooper MN, Ong E, Wong L, La J, Alonso-Caneiro D, Chelva E, Khan JC, Sampson DD, Chen FK. Retinal Differential Light Sensitivity Variation Across the Macula in Healthy Subjects: Importance of Cone Separation and Loci Eccentricity. Transl Vis Sci Technol 2021; 10:16. [PMID: 34111262 PMCID: PMC8114004 DOI: 10.1167/tvst.10.6.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Microperimetry measures differential light sensitivity (DLS) at specific retinal locations. The aim of this study is to examine the variation in DLS across the macula and the contribution to this variation of cone distribution metrics and retinal eccentricity. Methods Forty healthy eyes of 40 subjects were examined by microperimetry (MAIA) and adaptive optics imaging (rtx1). Retinal DLS was measured using the grid patterns: foveal (2°–3°), macular (3°–7°), and meridional (2°–8° on horizontal and vertical meridians). Cone density (CD), distribution regularity, and intercone distance (ICD) were calculated at the respective test loci coordinates. Linear mixed-effects regression was used to examine the association between cone distribution metrics and loci eccentricity, and retinal DLS. Results An eccentricity-dependent reduction in DLS was observed on all MAIA grids, which was greatest at the foveal-parafoveal junction (2°–3°) (−0.58 dB per degree, 95% confidence interval [CI]; −0.91 to −0.24 dB, P < 0.01). Retinal DLS across the meridional grid changed significantly with each 1000 cells/deg2 change in CD (0.85 dB, 95% CI; 0.10 to 1.61 dB, P = 0.03), but not with each arcmin change in ICD (1.36 dB, 95% CI; −2.93 to 0.20 dB, P = 0.09). Conclusions We demonstrate significant variation in DLS across the macula. Topographical change in cone separation is an important determinant of the variation in DLS at the foveal-parafoveal junction. We caution the extrapolation of changes in DLS measurements to cone distribution because the relationship between these variables is complex. Translational Relevance Cone density is an independent determinant of DLS in the foveal-parafoveal junction in healthy eyes.
Collapse
Affiliation(s)
- Danuta M Sampson
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia.,Surrey Biophotonics, Centre for Vision, Speech and Signal Processing and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Avenell L Chew
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yufei Wang
- Computer Science Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul G Stevenson
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew N Cooper
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Elaine Ong
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Lawrence Wong
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jonathan La
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - David Alonso-Caneiro
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia.,Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Queensland, Australia
| | - Enid Chelva
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jane C Khan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David D Sampson
- Surrey Biophotonics, School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Cone mosaic characteristics in red-green colour deficiency: a comparative study. Can J Ophthalmol 2020; 55:232-238. [DOI: 10.1016/j.jcjo.2019.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 12/21/2022]
|
9
|
Neitz M, Krekling ED, Hagen LA, Pedersen HR, Rowlan J, Barborek R, Neitz J, Crain A, Baraas RC. Tritan color vision deficiency may be associated with an OPN1SW splicing defect and haploinsufficiency. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:A26-A34. [PMID: 32400513 PMCID: PMC7254067 DOI: 10.1364/josaa.381919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Here we present evidence implicating disrupted RNA splicing as a potential cause of inherited tritan color vision. Initially we tested 51 subjects for color vision deficiencies. One made significant tritan errors; the others were classified as normal trichromats. The putative tritan subject was the only one of the 51 subjects found to be heterozygous for an OPN1SW gene mutation that disrupts RNA splicing in an in vitro assay. In order to gather further support for the role of the splicing mutation in tritan color vision, the putative tritan subject's mother and sister were examined. They also made tritan errors and had the same OPN1SW gene mutation.
Collapse
Affiliation(s)
- Maureen Neitz
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Elise D. Krekling
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A. Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R. Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Jessica Rowlan
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Rachel Barborek
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Jay Neitz
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Adam Crain
- University of Washington, Department of Ophthalmology, 750 Republican Street, Seattle,WA, USA 98109
| | - Rigmor C. Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
10
|
Baraas RC, Pedersen HR, Hagen LA. Single-cone imaging in inherited and acquired colour vision deficiencies. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zheng Y, Sun C, Dai W, Zeng F, Xue Q, Wang D, Zhao W, Huang L. High precision wavefront correction using an influence function optimization method based on a hybrid adaptive optics system. OPTICS EXPRESS 2019; 27:34937-34951. [PMID: 31878672 DOI: 10.1364/oe.27.034937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
A hybrid adaptive optics (AO) system with an influence function (IF) optimization method is presented for high precision wavefront correction of a traditional Shack-Hartmann AO system. The hybrid AO system consists of a Shack-Hartmann wavefront sensor (SHWFS) and a deflectometry system (DS) to measure the wavefront of the laser beam and the IF of the deformable mirror, respectively. An IF optimization method is used to generate a hybrid IF (H-IF) through a position-calibration algorithm and a resolution-conversion algorithm by use of the original IFs measured by the SHWFS (S-IF) and the DS (D-IF). Configuration of the hybrid AO system is introduced. Principles and calculation results of the IF optimization method are presented. Comparison of the wavefront correction ability between the H-IF and the original IF is carried out in simulation. Closed-loop performance of the hybrid AO system using the H-IF is investigated in experiment. Simulation and experiment results show that for a traditional Shack-Hartmann AO system, the H-IF has better correction ability than the original S-IF and the IF optimization method could help improve closed-loop performance without sacrificing the simplicity of the system structure and the rapidity of the closed-loop correction.
Collapse
|
12
|
Gill JS, Moosajee M, Dubis AM. Cellular imaging of inherited retinal diseases using adaptive optics. Eye (Lond) 2019; 33:1683-1698. [PMID: 31164730 PMCID: PMC7002587 DOI: 10.1038/s41433-019-0474-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Adaptive optics (AO) is an insightful tool that has been increasingly applied to existing imaging systems for viewing the retina at a cellular level. By correcting for individual optical aberrations, AO offers an improvement in transverse resolution from 10-15 μm to ~2 μm, enabling assessment of individual retinal cell types. One of the settings in which its utility has been recognised is that of the inherited retinal diseases (IRDs), the genetic and clinical heterogeneity of which warrants better cellular characterisation. In this review, we provide a summary of the basic principles of AO, its integration into multiple retinal imaging modalities and its clinical applications, focusing primarily on IRDs. Furthermore, we present a comprehensive summary of AO-based cellular findings in IRDs according to their associated disease-causing genes.
Collapse
Affiliation(s)
- Jasdeep S Gill
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, 162 City Road, London, EC1V 9PD, UK
- Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK
| | - Adam M Dubis
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, 162 City Road, London, EC1V 9PD, UK.
| |
Collapse
|
13
|
Early detection of cone photoreceptor cell loss in retinitis pigmentosa using adaptive optics scanning laser ophthalmoscopy. Graefes Arch Clin Exp Ophthalmol 2019; 257:1169-1181. [DOI: 10.1007/s00417-019-04307-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/18/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022] Open
|
14
|
Pedersen HR, Neitz M, Gilson SJ, Landsend ECS, Utheim ØA, Utheim TP, Baraas RC. The Cone Photoreceptor Mosaic in Aniridia: Within-Family Phenotype-Genotype Discordance. Ophthalmol Retina 2019; 3:523-534. [PMID: 31174676 DOI: 10.1016/j.oret.2019.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Investigate in vivo cone photoreceptor structure in familial aniridia caused by deletion in the PAX6 gene to elucidate the complexity of between-individual variation in retinal phenotype. DESIGN Descriptive case-control study. PARTICIPANTS Eight persons with congenital aniridia (40-66 yrs) from 1 family and 33 normal control participants (14-69 yrs), including 7 unaffected family members (14-53 yrs). METHODS DNA was isolated from saliva samples and used in polymerase chain reaction analysis to amplify and sequence exons and intron or exon junctions of the PAX6 gene. High-resolution retinal images were acquired with OCT and adaptive optics scanning light ophthalmoscopy. Cone density (CD; in cones per square millimeter) and mosaic regularity were estimated along nasal-temporal meridians within the central 0° to 5° eccentricity. Horizontal spectral-domain OCT line scans were segmented to analyze the severity of foveal hypoplasia (FH) and to measure retinal layer thicknesses. MAIN OUTCOMES AND MEASURES Within-family variability in macular retinal layer thicknesses, cone photoreceptor density, and mosaic regularity in aniridia compared with normal control participants. RESULTS DNA sequencing revealed a known PAX6 mutation (IV2-2delA). Those with aniridia showed variable iris phenotype ranging from almost normal appearance to no iris. Four participants with aniridia demonstrated FH grade 2, 2 demonstrated grade 3 FH, and 1 demonstrated grade 4 FH. Visual acuity ranged from 0.20 to 0.86 logarithm of the minimum angle of resolution. Adaptive optics scanning light ophthalmoscopy images were acquired from 5 family members with aniridia. Foveal CD varied between 19 899 and 55 128 cones/mm2 with overlap between the foveal hypoplasia grades. Cone density was 3 standard deviations (SDs) or more less than the normal mean within 0.5°, 2 SDs less than the normal mean at 0.5° to 4°, and more than 1 SD less than the normal mean at 5° retinal eccentricity. CONCLUSIONS The results showed considerable variability in foveal development within a family carrying the same PAX6 mutation. This, together with the structural and functional variability within each grade of foveal hypoplasia, underlines the importance of advancing knowledge about retinal cellular phenotype in aniridia.
Collapse
Affiliation(s)
- Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | | | | | - Tor Paaske Utheim
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.
| |
Collapse
|
15
|
Liu J, Jung H, Dubra A, Tam J. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting. Invest Ophthalmol Vis Sci 2017; 58:4477-4489. [PMID: 28873173 PMCID: PMC5586244 DOI: 10.1167/iovs.16-21003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Methods Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. Results There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). Conclusions MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.
Collapse
Affiliation(s)
- Jianfei Liu
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - HaeWon Jung
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
| | - Johnny Tam
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
16
|
Tanna P, Kasilian M, Strauss R, Tee J, Kalitzeos A, Tarima S, Visotcky A, Dubra A, Carroll J, Michaelides M. Reliability and Repeatability of Cone Density Measurements in Patients With Stargardt Disease and RPGR-Associated Retinopathy. Invest Ophthalmol Vis Sci 2017; 58:3608-3615. [PMID: 28738413 PMCID: PMC5525557 DOI: 10.1167/iovs.17-21904] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose To assess reliability and repeatability of cone density measurements by using confocal and (nonconfocal) split-detector adaptive optics scanning light ophthalmoscopy (AOSLO) imaging. It will be determined whether cone density values are significantly different between modalities in Stargardt disease (STGD) and retinitis pigmentosa GTPase regulator (RPGR)–associated retinopathy. Methods Twelve patients with STGD (aged 9–52 years) and eight with RPGR-associated retinopathy (aged 11–31 years) were imaged using both confocal and split-detector AOSLO simultaneously. Four graders manually identified cone locations in each image that were used to calculate local densities. Each imaging modality was evaluated independently. The data set consisted of 1584 assessments of 99 STGD images (each image in two modalities and four graders who graded each image twice) and 928 RPGR assessments of 58 images (each image in two modalities and four graders who graded each image twice). Results For STGD assessments the reliability for confocal and split-detector AOSLO was 67.9% and 95.9%, respectively, and the repeatability was 71.2% and 97.3%, respectively. The differences in the measured cone density values between modalities were statistically significant for one grader. For RPGR assessments the reliability for confocal and split-detector AOSLO was 22.1% and 88.5%, respectively, and repeatability was 63.2% and 94.5%, respectively. The differences in cone density between modalities were statistically significant for all graders. Conclusions Split-detector AOSLO greatly improved the reliability and repeatability of cone density measurements in both disorders and will be valuable for natural history studies and clinical trials using AOSLO. However, it appears that these indices may be disease dependent, implying the need for similar investigations in other conditions.
Collapse
Affiliation(s)
- Preena Tanna
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom
| | - Melissa Kasilian
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom
| | - Rupert Strauss
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom 3Department of Ophthalmology, Medical University Graz and Johannes Kepler University, Linz, Austria 4Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - James Tee
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alexis Visotcky
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alfredo Dubra
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 8Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 9Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
17
|
Cooper RF, Wilk MA, Tarima S, Carroll J. Evaluating Descriptive Metrics of the Human Cone Mosaic. Invest Ophthalmol Vis Sci 2017; 57:2992-3001. [PMID: 27273598 PMCID: PMC4898203 DOI: 10.1167/iovs.16-19072] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate how metrics used to describe the cone mosaic change in response to simulated photoreceptor undersampling (i.e., cell loss or misidentification). METHODS Using an adaptive optics ophthalmoscope, we acquired images of the cone mosaic from the center of fixation to 10° along the temporal, superior, inferior, and nasal meridians in 20 healthy subjects. Regions of interest (n = 1780) were extracted at regular intervals along each meridian. Cone mosaic geometry was assessed using a variety of metrics - density, density recovery profile distance (DRPD), nearest neighbor distance (NND), intercell distance (ICD), farthest neighbor distance (FND), percentage of six-sided Voronoi cells, nearest neighbor regularity (NNR), number of neighbors regularity (NoNR), and Voronoi cell area regularity (VCAR). The "performance" of each metric was evaluated by determining the level of simulated loss necessary to obtain 80% statistical power. RESULTS Of the metrics assessed, NND and DRPD were the least sensitive to undersampling, classifying mosaics that lost 50% of their coordinates as indistinguishable from normal. The NoNR was the most sensitive, detecting a significant deviation from normal with only a 10% cell loss. CONCLUSIONS The robustness of cone spacing metrics makes them unsuitable for reliably detecting small deviations from normal or for tracking small changes in the mosaic over time. In contrast, regularity metrics are more sensitive to diffuse loss and, therefore, better suited for detecting such changes, provided the fraction of misidentified cells is minimal. Combining metrics with a variety of sensitivities may provide a more complete picture of the integrity of the photoreceptor mosaic.
Collapse
Affiliation(s)
- Robert F Cooper
- Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States
| | - Melissa A Wilk
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sergey Tarima
- Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph Carroll
- Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States 2Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 4Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, U
| |
Collapse
|
18
|
Lammer J, Prager SG, Cheney MC, Ahmed A, Radwan SH, Burns SA, Silva PS, Sun JK. Cone Photoreceptor Irregularity on Adaptive Optics Scanning Laser Ophthalmoscopy Correlates With Severity of Diabetic Retinopathy and Macular Edema. Invest Ophthalmol Vis Sci 2017; 57:6624-6632. [PMID: 27926754 PMCID: PMC5152564 DOI: 10.1167/iovs.16-19537] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether cone density, spacing, or regularity in eyes with and without diabetes (DM) as assessed by high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO) correlates with presence of diabetes, diabetic retinopathy (DR) severity, or presence of diabetic macular edema (DME). Methods Participants with type 1 or 2 DM and healthy controls underwent AOSLO imaging of four macular regions. Cone assessment was performed by independent graders for cone density, packing factor (PF), nearest neighbor distance (NND), and Voronoi tile area (VTA). Regularity indices (mean/SD) of NND (RI-NND) and VTA (RI-VTA) were calculated. Results Fifty-three eyes (53 subjects) were assessed. Mean ± SD age was 44 ± 12 years; 81% had DM (duration: 22 ± 13 years; glycated hemoglobin [HbA1c]: 8.0 ± 1.7%; DM type 1: 72%). No significant relationship was found between DM, HbA1c, or DR severity and cone density or spacing parameters. However, decreased regularity of cone arrangement in the macular quadrants was correlated with presence of DM (RI-NND: P = 0.04; RI-VTA: P = 0.04), increasing DR severity (RI-NND: P = 0.04), and presence of DME (RI-VTA: P = 0.04). Eyes with DME were associated with decreased density (P = 0.04), PF (P = 0.03), and RI-VTA (0.04). Conclusions Although absolute cone density and spacing don't appear to change substantially in DM, decreased regularity of the cone arrangement is consistently associated with the presence of DM, increasing DR severity, and DME. Future AOSLO evaluation of cone regularity is warranted to determine whether these changes are correlated with, or predict, anatomic or functional deficits in patients with DM.
Collapse
Affiliation(s)
- Jan Lammer
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States 2Department of Ophthalmology, Medical University Vienna, Vienna, Austria
| | - Sonja G Prager
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States 2Department of Ophthalmology, Medical University Vienna, Vienna, Austria
| | - Michael C Cheney
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States
| | - Amel Ahmed
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States 3Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Salma H Radwan
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States 4Department of Ophthalmology, Cairo University, Cairo, Egypt
| | - Stephen A Burns
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Paolo S Silva
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States 6Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jennifer K Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States 6Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Litts KM, Cooper RF, Duncan JL, Carroll J. Photoreceptor-Based Biomarkers in AOSLO Retinal Imaging. Invest Ophthalmol Vis Sci 2017; 58:BIO255-BIO267. [PMID: 28873135 PMCID: PMC5584616 DOI: 10.1167/iovs.17-21868] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
Improved understanding of the mechanisms underlying inherited retinal degenerations has created the possibility of developing much needed treatments for these relentless, blinding diseases. However, standard clinical indicators of retinal health (such as visual acuity and visual field sensitivity) are insensitive measures of photoreceptor survival. In many retinal degenerations, significant photoreceptor loss must occur before measurable differences in visual function are observed. Thus, there is a recognized need for more sensitive outcome measures to assess therapeutic efficacy as numerous clinical trials are getting underway. Adaptive optics (AO) retinal imaging techniques correct for the monochromatic aberrations of the eye and can be used to provide nearly diffraction-limited images of the retina. Many groups routinely are using AO imaging tools to obtain in vivo images of the rod and cone photoreceptor mosaic, and it now is possible to monitor photoreceptor structure over time with single cell resolution. Highlighting recent work using AO scanning light ophthalmoscopy (AOSLO) across a range of patient populations, we review the development of photoreceptor-based metrics (e.g., density/geometry, reflectivity, and size) as candidate biomarkers. Going forward, there is a need for further development of automated tools and normative databases, with the latter facilitating the comparison of data sets across research groups and devices. Ongoing and future clinical trials for inherited retinal diseases will benefit from the improved resolution and sensitivity that multimodal AO retinal imaging affords to evaluate safety and efficacy of emerging therapies.
Collapse
Affiliation(s)
- Katie M. Litts
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert F. Cooper
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
20
|
Salmon AE, Cooper RF, Langlo CS, Baghaie A, Dubra A, Carroll J. An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy. Transl Vis Sci Technol 2017; 6:9. [PMID: 28392976 PMCID: PMC5381332 DOI: 10.1167/tvst.6.2.9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2017] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To develop an automated reference frame selection (ARFS) algorithm to replace the subjective approach of manually selecting reference frames for processing adaptive optics scanning light ophthalmoscope (AOSLO) videos of cone photoreceptors. METHODS Relative distortion was measured within individual frames before conducting image-based motion tracking and sorting of frames into distinct spatial clusters. AOSLO images from nine healthy subjects were processed using ARFS and human-derived reference frames, then aligned to undistorted AO-flood images by nonlinear registration and the registration transformations were compared. The frequency at which humans selected reference frames that were rejected by ARFS was calculated in 35 datasets from healthy subjects, and subjects with achromatopsia, albinism, or retinitis pigmentosa. The level of distortion in this set of human-derived reference frames was assessed. RESULTS The average transformation vector magnitude required for registration of AOSLO images to AO-flood images was significantly reduced from 3.33 ± 1.61 pixels when using manual reference frame selection to 2.75 ± 1.60 pixels (mean ± SD) when using ARFS (P = 0.0016). Between 5.16% and 39.22% of human-derived frames were rejected by ARFS. Only 2.71% to 7.73% of human-derived frames were ranked in the top 5% of least distorted frames. CONCLUSION ARFS outperforms expert observers in selecting minimally distorted reference frames in AOSLO image sequences. The low success rate in human frame choice illustrates the difficulty in subjectively assessing image distortion. TRANSLATIONAL RELEVANCE Manual reference frame selection represented a significant barrier to a fully automated image-processing pipeline (including montaging, cone identification, and metric extraction). The approach presented here will aid in the clinical translation of AOSLO imaging.
Collapse
Affiliation(s)
- Alexander E Salmon
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert F Cooper
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA ; Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher S Langlo
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ahmadreza Baghaie
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Alfredo Dubra
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA ; Current affiliation: Department of Ophthalmology, Stanford University, 2452 Watson Court, Palo Alto, CA, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Toms M, Tracey-White D, Muhundhakumar D, Sprogyte L, Dubis AM, Moosajee M. Spectral Domain Optical Coherence Tomography: An In Vivo Imaging Protocol for Assessing Retinal Morphology in Adult Zebrafish. Zebrafish 2017; 14:118-125. [PMID: 28051361 DOI: 10.1089/zeb.2016.1376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study outlines a protocol for examining retinal structure in zebrafish, a popular model organism for ocular studies, using spectral domain optical coherence tomography (SD-OCT). We demonstrate how this live imaging modality can be used to obtain high quality images of several retinal features, including the optic nerve, retinal vasculature, and the cone photoreceptor mosaic. Retinal histology sections were obtained from imaged fish for comparison with SD-OCT cross-sectional B-scans. Voronoi domain analysis was used to assess cone photoreceptor packing regularity at 3, 6, and 12 months. SD-OCT is an effective in vivo technique for studying the adult zebrafish retina and can be applied to disease models for longitudinal serial monitoring.
Collapse
Affiliation(s)
- Maria Toms
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Dhani Tracey-White
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Dhakshi Muhundhakumar
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Lina Sprogyte
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Adam M Dubis
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom .,2 Moorfields Eye Hospital NHS Foundation Trust , London, United Kingdom
| | - Mariya Moosajee
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom .,2 Moorfields Eye Hospital NHS Foundation Trust , London, United Kingdom
| |
Collapse
|
22
|
Hasegawa T, Ooto S, Takayama K, Makiyama Y, Akagi T, Ikeda HO, Nakanishi H, Suda K, Yamada H, Uji A, Yoshimura N. Cone Integrity in Glaucoma: An Adaptive-Optics Scanning Laser Ophthalmoscopy Study. Am J Ophthalmol 2016; 171:53-66. [PMID: 27565227 DOI: 10.1016/j.ajo.2016.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate photoreceptor changes in eyes with glaucoma. DESIGN Cross-sectional study. METHODS The study included 35 eyes of 35 patients with primary open-angle glaucoma who had suffered parafoveal visual field loss at least 3 years previously, as well as 21 eyes of 21 normal subjects. Eyes with an axial length ≥26.0 mm were excluded. All subjects underwent a full ophthalmologic examination, including spectral-domain optical coherence tomography (SDOCT) and prototype adaptive-optics scanning laser ophthalmoscopy (AO-SLO) imaging. RESULTS As determined using AO-SLO, eyes with glaucoma did not differ significantly from normal eyes in terms of either cone density (26 468 ± 3392 cones/m2 vs 26 147 ± 2700 cones/m2, respectively; P = .77; measured 0.5 mm from the foveal center) or cone spatial organization (ratio of hexagonal Voronoi domain: 43.7% ± 4.4% vs 44.3% ± 4.9%; P = .76; measured 0.5 mm from the foveal center). Furthermore, SDOCT showed that the 2 groups did not differ significantly in terms of the photoreceptor-related layer thickness, and that the photoreceptor ellipsoid zone band was continuous in all normal and glaucoma eyes. In glaucoma eyes with vertically asymmetric severity, the more affected side did not significantly differ from the less affected side in terms of cone density, cone spatial organization, or photoreceptor-related layer thickness. In 8 eyes (22.9%) with glaucoma, dark, partition-like areas surrounded the cones on the AO-SLO. CONCLUSIONS Both AO-SLO and SDOCT showed cone integrity in eyes with glaucoma, even in areas with visual field and nerve fiber loss. In AO-SLO, microcystic lesions in the inner nuclear layer may influence images of the cone mosaic.
Collapse
|
23
|
Abstract
Ground squirrels are an increasingly important model for studying visual processing, retinal circuitry, and cone photoreceptor function. Here, we demonstrate that the photoreceptor mosaic can be longitudinally imaged noninvasively in the 13-lined ground squirrel (Ictidomys tridecemlineatus) using confocal and nonconfocal split-detection adaptive optics scanning ophthalmoscopy using 790 nm light. Photoreceptor density, spacing, and Voronoi analysis are consistent with that of the human cone mosaic. The high imaging success rate and consistent image quality in this study reinforce the ground squirrel as a practical model to aid drug discovery and testing through longitudinal imaging on the cellular scale.
Collapse
|
24
|
Davidoff C, Neitz M, Neitz J. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies. Transl Vis Sci Technol 2016; 5:2. [PMID: 27622081 PMCID: PMC5017313 DOI: 10.1167/tvst.5.5.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
Purpose The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. Methods We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Results Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red–green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. Conclusions The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. Translational Relevance The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects.
Collapse
Affiliation(s)
- Candice Davidoff
- Department of Ophthalmology University of Washington Seattle, WA, USA
| | - Maureen Neitz
- Department of Ophthalmology University of Washington Seattle, WA, USA
| | - Jay Neitz
- Department of Ophthalmology University of Washington Seattle, WA, USA
| |
Collapse
|
25
|
Sawides L, de Castro A, Burns SA. The organization of the cone photoreceptor mosaic measured in the living human retina. Vision Res 2016; 132:34-44. [PMID: 27353225 DOI: 10.1016/j.visres.2016.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Abstract
The cone photoreceptors represent the initial fundamental sampling step in the acquisition of visual information. While recent advances in adaptive optics have provided increasingly precise estimates of the packing density and spacing of the cone photoreceptors in the living human retina, little is known about the local cone geometric arrangement beyond a tendency towards hexagonal packing. We analyzed the cone mosaic in data from 10 normal subjects. A technique was applied to calculate the local average cone mosaic structure which allowed us to determine the hexagonality, spacing and orientation of local regions. Using cone spacing estimates, we find the expected decrease in cone density with retinal eccentricity and higher densities along the horizontal as opposed to the vertical meridians. Orientation analysis reveals an asymmetry in the local cone spacing of the hexagonal packing, with cones having a larger local spacing along the horizontal direction. This horizontal/vertical asymmetry is altered at eccentricities larger than 2 degrees in the superior meridian and 2.5 degrees in the inferior meridian. Analysis of hexagon orientations in the central 1.4° of the retina shows a tendency for orientation to be locally coherent, with orientation patches consisting of between 35 and 240 cones.
Collapse
Affiliation(s)
- Lucie Sawides
- School of Optometry, Indiana University, 800E. Atwater Av., Bloomington, IN 47405, United States.
| | - Alberto de Castro
- School of Optometry, Indiana University, 800E. Atwater Av., Bloomington, IN 47405, United States
| | - Stephen A Burns
- School of Optometry, Indiana University, 800E. Atwater Av., Bloomington, IN 47405, United States
| |
Collapse
|
26
|
Baraas RC, Gjelle JVB, Finstad EB, Jacobsen SB, Gilson SJ. The relationship between perifoveal achromatic, L- and M-cone acuity and retinal structure as assessed with multimodal high resolution imaging. Vision Res 2016; 132:45-52. [PMID: 27353223 DOI: 10.1016/j.visres.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/27/2022]
Abstract
The relationships between perifoveal measures of achromatic-, L- and M-cone acuity and retinal structure were investigated in healthy young males. Thirty-two males, aged 20-39years, with normal foveal logMAR letter acuity and no observed ocular abnormalities participated in the study. Achromatic and isolated L- and M-cone spatial acuity was measured in the dominant eye with a Sloan E letter of 90% achromatic decrement contrast or 23% increment cone contrast, respectively. Separately, the central part of the same eye was imaged with high-resolution spectral-domain optical coherence tomography (SD-OCT) and adaptive optics ophthalmoscopy (AOO). Thickness measures and cone density in the fovea and parafoveal region were not correlated with perifoveal structural measures. A significant correlation was observed between thicker retinal pigment epithelium (RPE) complex, higher cone density and better L-cone logMAR at 5deg eccentricity, but not for achromatic or M-cone logMAR. The results imply that single letter perifoveal L-cone acuity, rather than achromatic acuity, may provide a useful measure for assessing the structure-function relationship and detecting early changes in the perifoveal cone mosaic.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Department of Optometry and Visual Science, Faculty of Health Sciences, University College of Southeast Norway, Kongsberg, Norway.
| | - Jon V B Gjelle
- National Centre for Optics, Vision and Eye Care, Department of Optometry and Visual Science, Faculty of Health Sciences, University College of Southeast Norway, Kongsberg, Norway
| | - Elisabeth Bratlie Finstad
- National Centre for Optics, Vision and Eye Care, Department of Optometry and Visual Science, Faculty of Health Sciences, University College of Southeast Norway, Kongsberg, Norway
| | - Siri Bjørnetun Jacobsen
- National Centre for Optics, Vision and Eye Care, Department of Optometry and Visual Science, Faculty of Health Sciences, University College of Southeast Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Department of Optometry and Visual Science, Faculty of Health Sciences, University College of Southeast Norway, Kongsberg, Norway
| |
Collapse
|
27
|
Parafoveal cone abnormalities and recovery on adaptive optics in posterior uveitis. Am J Ophthalmol Case Rep 2016; 1:16-22. [PMID: 29503883 PMCID: PMC5757342 DOI: 10.1016/j.ajoc.2016.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 03/08/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine if adaptive optics (AO) flood illumination imaging can detect subclinical changes in 4 cases of posterior uveitis affecting the outer retina. Observations In all 4 cases, the affected eye showed altered areas in the photoreceptor mosaic on AO that corresponded to changes on other imaging modalities. Abnormalities not apparent on other imaging modalities were also noted. In one case of multifocal choroiditis with acute outer retinal atrophy, AO revealed decreased visualization of photoreceptors in the unaffected eye that was not noted on spectral domain-optical coherence tomography. In the patient with multiple evanescent white dot syndrome, focal photoreceptor abnormalities were more apparent on AO compared to other imaging modalities, and these areas normalized on AO during follow-up. Five weeks after initiation of high dose prednisone and azathioprine in a patient with serpiginous choroidopathy, AO images showed recovery in apparent parafoveal cone density. Conclusions and importance AO detects subclinical changes in the photoreceptor layer in posterior uveitis that can recover over time. AO may be useful in following outer retinal inflammatory conditions.
Collapse
|
28
|
Lombardo M, Parravano M, Serrao S, Ziccardi L, Giannini D, Lombardo G. Investigation of Adaptive Optics Imaging Biomarkers for Detecting Pathological Changes of the Cone Mosaic in Patients with Type 1 Diabetes Mellitus. PLoS One 2016; 11:e0151380. [PMID: 26963392 PMCID: PMC4786294 DOI: 10.1371/journal.pone.0151380] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/27/2016] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To investigate a set of adaptive optics (AO) imaging biomarkers for the assessment of changes of the cone mosaic spatial arrangement in patients with type 1 diabetes mellitus (DM1). METHODS 16 patients with ≥20/20 visual acuity and a diagnosis of DM1 in the past 8 years to 37 years and 20 age-matched healthy volunteers were recruited in this study. Cone density, cone spacing and Voronoi diagrams were calculated on 160x160 μm images of the cone mosaic acquired with an AO flood illumination retinal camera at 1.5 degrees eccentricity from the fovea along all retinal meridians. From the cone spacing measures and Voronoi diagrams, the linear dispersion index (LDi) and the heterogeneity packing index (HPi) were computed respectively. Logistic regression analysis was conducted to discriminate DM1 patients without diabetic retinopathy from controls using the cone metrics as predictors. RESULTS Of the 16 DM1 patients, eight had no signs of diabetic retinopathy (noDR) and eight had mild nonproliferative diabetic retinopathy (NPDR) on fundoscopy. On average, cone density, LDi and HPi values were significantly different (P<0.05) between noDR or NPDR eyes and controls, with these differences increasing with duration of diabetes. However, each cone metric alone was not sufficiently sensitive to discriminate entirely between membership of noDR cases and controls. The complementary use of all the three cone metrics in the logistic regression model gained 100% accuracy to identify noDR cases with respect to controls. CONCLUSION The present set of AO imaging biomarkers identified reliably abnormalities in the spatial arrangement of the parafoveal cones in DM1 patients, even when no signs of diabetic retinopathy were seen on fundoscopy.
Collapse
Affiliation(s)
- Marco Lombardo
- Fondazione G.B. Bietti IRCCS, Via Livenza 3, 00198, Rome, Italy
- * E-mail:
| | | | | | - Lucia Ziccardi
- Fondazione G.B. Bietti IRCCS, Via Livenza 3, 00198, Rome, Italy
| | | | - Giuseppe Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici (CNR-IPCF), Viale Stagno D’Alcontres 37, 98158, Messina, Italy
- Vision Engineering Italy srl, Via Adda 7, 00198, Rome, Italy
| |
Collapse
|
29
|
Shinomori K, Panorgias A, Werner JS. Discrimination thresholds of normal and anomalous trichromats: Model of senescent changes in ocular media density on the Cambridge Colour Test. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:A65-76. [PMID: 26974943 PMCID: PMC5316232 DOI: 10.1364/josaa.33.000a65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Age-related changes in chromatic discrimination along dichromatic confusion lines were measured with the Cambridge Colour Test (CCT). One hundred and sixty-two individuals (16 to 88 years old) with normal Rayleigh matches were the major focus of this paper. An additional 32 anomalous trichromats classified by their Rayleigh matches were also tested. All subjects were screened to rule out abnormalities of the anterior and posterior segments. Thresholds on all three chromatic vectors measured with the CCT showed age-related increases. Protan and deutan vector thresholds increased linearly with age while the tritan vector threshold was described with a bilinear model. Analysis and modeling demonstrated that the nominal vectors of the CCT are shifted by senescent changes in ocular media density, and a method for correcting the CCT vectors is demonstrated. A correction for these shifts indicates that classification among individuals of different ages is unaffected. New vector thresholds for elderly observers and for all age groups are suggested based on calculated tolerance limits.
Collapse
Affiliation(s)
- Keizo Shinomori
- School of Information, Kochi University of Technology, Tosayamada-Miyanokuchi, Kami, Kochi 782-8502, Japan
- Vision and Affective Science Integrated Research Laboratory, Research Institute, Kochi University of Technology, Kochi, Japan
- Corresponding author:
| | - Athanasios Panorgias
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California 95813, USA
- Department of Vision Science, New England College of Optometry, Boston, Massachusetts 02115, USA
| | - John S. Werner
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California 95813, USA
- Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Cooper RF, Sulai YN, Dubis AM, Chui TY, Rosen RB, Michaelides M, Dubra A, Carroll J. Effects of Intraframe Distortion on Measures of Cone Mosaic Geometry from Adaptive Optics Scanning Light Ophthalmoscopy. Transl Vis Sci Technol 2016; 5:10. [PMID: 26933523 PMCID: PMC4771077 DOI: 10.1167/tvst.5.1.10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize the effects of intraframe distortion due to involuntary eye motion on measures of cone mosaic geometry derived from adaptive optics scanning light ophthalmoscope (AOSLO) images. Methods We acquired AOSLO image sequences from 20 subjects at 1.0, 2.0, and 5.0° temporal from fixation. An expert grader manually selected 10 minimally distorted reference frames from each 150-frame sequence for subsequent registration. Cone mosaic geometry was measured in all registered images (n = 600) using multiple metrics, and the repeatability of these metrics was used to assess the impact of the distortions from each reference frame. In nine additional subjects, we compared AOSLO-derived measurements to those from adaptive optics (AO)-fundus images, which do not contain system-imposed intraframe distortions. Results We observed substantial variation across subjects in the repeatability of density (1.2%–8.7%), inter-cell distance (0.8%–4.6%), percentage of six-sided Voronoi cells (0.8%–10.6%), and Voronoi cell area regularity (VCAR) (1.2%–13.2%). The average of all metrics extracted from AOSLO images (with the exception of VCAR) was not significantly different than those derived from AO-fundus images, though there was variability between individual images. Conclusions Our data demonstrate that the intraframe distortion found in AOSLO images can affect the accuracy and repeatability of cone mosaic metrics. It may be possible to use multiple images from the same retinal area to approximate a “distortionless” image, though more work is needed to evaluate the feasibility of this approach. Translational Relevance Even in subjects with good fixation, images from AOSLOs contain intraframe distortions due to eye motion during scanning. The existence of these artifacts emphasizes the need for caution when interpreting results derived from scanning instruments.
Collapse
Affiliation(s)
- Robert F Cooper
- Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Yusufu N Sulai
- Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adam M Dubis
- Institute of Ophthalmology, University College London, London, UK ; Moorfields Eye Hospital, London, UK
| | - Toco Y Chui
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA ; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard B Rosen
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA ; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, UK ; Moorfields Eye Hospital, London, UK
| | - Alfredo Dubra
- Biomedical Engineering, Marquette University, Milwaukee, WI, USA ; Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA ; Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Biomedical Engineering, Marquette University, Milwaukee, WI, USA ; Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA ; Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
31
|
Cooper RF, Lombardo M, Carroll J, Sloan KR, Lombardo G. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images. Vis Neurosci 2016; 33:E005. [PMID: 27484961 PMCID: PMC5068353 DOI: 10.1017/s0952523816000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability to noninvasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm provides an accurate description of photoreceptor orientation. Despite high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where the cone coordinate reliability was excellent, the method previously described by Pum and colleagues performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology.
Collapse
Affiliation(s)
- Robert F. Cooper
- Department of Biomedical Engineering, Marquette University, 1250 W Wisconsin Ave, 53223 Milwaukee, WI, United States
| | - Marco Lombardo
- Fondazione G.B. Bietti IRCCS, Via Livenza 3, 00198 Rome, Italy
| | - Joseph Carroll
- Department of Ophthalmology, Medical College of Wisconsin, 8701 Watertown Plank Road, 53226 Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, 53226 Milwaukee, WI, United States
| | - Kenneth R. Sloan
- Department of Computer and Information Sciences, University of Alabama at Birmingham, 1300 University Boulevard, 35294 Birmingham, AL, United States
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, 700 S. 18th Street, 35294 Birmingham, AL, United States
| | - Giuseppe Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici (CNR-IPCF), Viale Stagno D’Alcontres 37, 98158 Messina, Italy
- Vision Engineering Italy srl, Via Adda 7, 00198 Rome, Italy
| |
Collapse
|
32
|
Evaluation of Photoreceptors in Bietti Crystalline Dystrophy with CYP4V2 Mutations Using Adaptive Optics Scanning Laser Ophthalmoscopy. Am J Ophthalmol 2016; 161:196-205.e1. [PMID: 26521715 DOI: 10.1016/j.ajo.2015.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE To evaluate photoreceptors in Bietti crystalline dystrophy patients with CYP4V2 mutations using high-resolution images of the macula obtained with adaptive optics scanning laser ophthalmoscopy (AO-SLO). DESIGN Prospective observational case series with comparison to healthy controls. METHODS Seven eyes of 7 Bietti crystalline dystrophy patients with CYP4V2 mutations and 12 normal eyes of 12 age- and axial length-matched healthy volunteers were studied. All participants underwent ophthalmologic examinations and AO-SLO assessments. All patients underwent spectral-domain optical coherence tomography, fundus autofluorescence, Humphrey field analysis, and electroretinography. AO-SLO images were analyzed 0.5 mm and 1.0 mm from the center of the fovea in the superior, inferior, nasal, and temporal quadrants. RESULTS Mean ± standard deviation cone density (cells/mm(2)) 0.5 mm from the center of the fovea was 17,209 ± 2276 in patients and 20 493 ± 2758 in controls, which was statistically different (P = .001); however, mean cone density 1.0 mm from the center of the fovea was 15 685 ± 2302 in patients and 15 705 ± 1848 in controls, which was not statistically different (P = .20). There was no correlation between cone density and mean deviation measured using a Humphrey field analysis or visual acuity in patients. CONCLUSIONS In Bietti crystalline dystrophy patients with CYP4V2 mutations, cone density remained for visual dysfunction by evaluation using high-resolution AO-SLO. These findings support the theory that disorder of the retinal pigment epithelium and the photoreceptors in the patients are the primary and secondary pathologic changes, respectively. This is consistent with results from previous basic studies.
Collapse
|
33
|
Abozaid MA, Langlo CS, Dubis AM, Michaelides M, Tarima S, Carroll J. Reliability and Repeatability of Cone Density Measurements in Patients with Congenital Achromatopsia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:277-83. [PMID: 26427422 PMCID: PMC4839591 DOI: 10.1007/978-3-319-17121-0_37] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows non-invasive assessment of the cone photoreceptor mosaic. Confocal AOSLO imaging of patients with achromatopsia (ACHM) reveals an altered reflectivity of the remaining cone structure, making identification of the cells more challenging than in normal retinas. Recently, a "split-detector" AOSLO imaging method was shown to enable direct visualization of cone inner segments in patients with ACHM. Several studies have demonstrated gene replacement therapy effective in restoring cone function in animal models of ACHM and human trials have on the horizon, making the ability to reliably assess cone structure increasingly important. Here we sought to examine whether absolute estimates of cone density obtained from split-detector and confocal AOSLO images differed from one another and whether the inter- and intra-observer reliability is significantly different between these modes. These findings provide an important foundation for evaluating the role of these images as tools to assess the efficacy of future gene therapy trials.
Collapse
Affiliation(s)
- Mortada A Abozaid
- Department of Ophthalmology, The Eye Institute, Medical College of Wisconsin, 925 N. 87th Street, 53226, Milwaukee, WI, USA.
- Department of Ophthalmology, Sohag University, Sohag, Egypt.
| | - Christopher S Langlo
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Adam M Dubis
- UCL Institute of Ophthalmology, University College London, London, UK.
- Moorfields Eye Hospital, London, UK.
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.
- Moorfields Eye Hospital, London, UK.
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Joseph Carroll
- Department of Ophthalmology, The Eye Institute, Medical College of Wisconsin, 925 N. 87th Street, 53226, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
34
|
Simunovic MP. Acquired color vision deficiency. Surv Ophthalmol 2015; 61:132-55. [PMID: 26656928 DOI: 10.1016/j.survophthal.2015.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 02/02/2023]
Abstract
Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.
Collapse
Affiliation(s)
- Matthew P Simunovic
- Nuffield Laboratory of Ophthalmology, University of Oxford & Oxford Eye Hospital, University of Oxford NHS Trust, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
35
|
Feng S, Gale MJ, Fay JD, Faridi A, Titus HE, Garg AK, Michaels KV, Erker LR, Peters D, Smith TB, Pennesi ME. Assessment of Different Sampling Methods for Measuring and Representing Macular Cone Density Using Flood-Illuminated Adaptive Optics. Invest Ophthalmol Vis Sci 2015; 56:5751-63. [PMID: 26325414 DOI: 10.1167/iovs.15-16954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To describe a standardized flood-illuminated adaptive optics (AO) imaging protocol suitable for the clinical setting and to assess sampling methods for measuring cone density. METHODS Cone density was calculated following three measurement protocols: 50 × 50-μm sampling window values every 0.5° along the horizontal and vertical meridians (fixed-interval method), the mean density of expanding 0.5°-wide arcuate areas in the nasal, temporal, superior, and inferior quadrants (arcuate mean method), and the peak cone density of a 50 × 50-μm sampling window within expanding arcuate areas near the meridian (peak density method). Repeated imaging was performed in nine subjects to determine intersession repeatability of cone density. RESULTS Cone density montages could be created for 67 of the 74 subjects. Image quality was determined to be adequate for automated cone counting for 35 (52%) of the 67 subjects. We found that cone density varied with different sampling methods and regions tested. In the nasal and temporal quadrants, peak density most closely resembled histological data, whereas the arcuate mean and fixed-interval methods tended to underestimate the density compared with histological data. However, in the inferior and superior quadrants, arcuate mean and fixed-interval methods most closely matched histological data, whereas the peak density method overestimated cone density compared with histological data. Intersession repeatability testing showed that repeatability was greatest when sampling by arcuate mean and lowest when sampling by fixed interval. CONCLUSIONS We show that different methods of sampling can significantly affect cone density measurements. Therefore, care must be taken when interpreting cone density results, even in a normal population.
Collapse
|
36
|
Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49:46-66. [PMID: 26187035 DOI: 10.1016/j.preteyeres.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023]
Abstract
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
37
|
Katagiri S, Hayashi T, Yoshitake K, Sergeev Y, Akahori M, Furuno M, Nishino J, Ikeo K, Tsunoda K, Tsuneoka H, Iwata T. Congenital Achromatopsia and Macular Atrophy Caused by a Novel Recessive PDE6C Mutation (p.E591K). Ophthalmic Genet 2015; 36:137-44. [PMID: 25605338 DOI: 10.3109/13816810.2014.991932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE We have previously reported clinical features of two siblings, a sister with complete achromatopsia (ACHM) and a brother with incomplete ACHM, in a consanguineous Japanese family. With the current study, we intended to identify a disease-causing mutation in the siblings and to investigate why the phenotypes of the siblings differed. METHODS We performed a comprehensive ophthalmic examination for each sibling and parent. Whole-exome and Sanger sequencing were performed on genomic DNA. Molecular modeling was analyzed in an in silico study. RESULTS The ophthalmic examination revealed severe macular atrophy in the older female sibling at 30 years of age and mild macular atrophy in the brother at 26 years of age. The genetic analysis identified a novel homozygous PDE6C mutation (p.E591K) as the disease-causing allele in the siblings. Each parent was heterozygous for the mutation. Molecular modeling showed that the mutation could cause a conformational change in the PDE6C protein and result in reduced phosphodiesterase activity. We also identified an OPN1SW mutation (p.G79R), which is associated with congenital tritan deficiencies, in the sister and the father but not in the brother. CONCLUSIONS A novel homozygous PDE6C mutation was identified as the cause of ACHM. In addition, we identified an OPN1SW mutation in the sibling with complete ACHM, which might explain the difference in phenotype (complete versus incomplete ACHM) between the siblings.
Collapse
Affiliation(s)
- Satoshi Katagiri
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center , Tokyo , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nakao S, Kaizu Y, Yoshida S, Iida T, Ishibashi T. Spontaneous remission of acute zonal occult outer retinopathy: follow-up using adaptive optics scanning laser ophthalmoscopy. Graefes Arch Clin Exp Ophthalmol 2014; 253:839-43. [PMID: 25081027 DOI: 10.1007/s00417-014-2760-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/15/2014] [Accepted: 07/22/2014] [Indexed: 12/01/2022] Open
Abstract
PURPOSE The purpose of this study was to report a case of acute zonal occult outer retinopathy (AZOOR) with spontaneous remission that was followed up using adaptive optics scanning laser ophthalmoscopy (AO-SLO). METHODS The right eye of a 31-year old myopic man diagnosed with AZOOR was followed up. The patient underwent a full ophthalmologic examination, spectral-domain optical coherence tomography (SD-OCT), multifocal electroretinography (mfERG) and imaging with prototype AO-SLO systems (Canon Inc) at the first visit, 1 month after, and 2 months after. Images focused on the photoreceptor layer were recorded in the area, and a montage of AO-SLO images was created. RESULTS The patient presented with acute onset of a blind spot and photopsia in his right eye. On AO-SLO, focal dark areas could be observed on the right eye but not on the left eye at the first examination (cone density 8,589/mm(2), mosaic regularity of cone photoreceptors 38.5 %, cone spacing 0.567). The dark areas on AO-SLO corresponded to areas of disrupted inner segments and outer segments (IS/OS) line or ellipsoid of the IS and abnormal area in mfERG. After 1 and 2 months, his symptoms tended to disappear gradually without any treatment. IS/OS line and mfERG could be nearly normalized. Furthermore, normal cone mosaic could be observed in areas where some focal dark spots could be observed at the first examination (cone density 10,112/mm(2), mosaic regularity of cone photoreceptors 39.9 %, cone spacing 0.606). CONCLUSION AO-SLO is a useful tool of diagnosis and follow-up of AZOOR. This study might suggest reversible cone damage could occur in some cases of AZOOR with spontaneous remission.
Collapse
Affiliation(s)
- Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan,
| | | | | | | | | |
Collapse
|
39
|
Akagi-Kurashige Y, Tsujikawa A, Ooto S, Makiyama Y, Muraoka Y, Kumagai K, Uji A, Arichika S, Murakami T, Miyamoto K, Yoshimura N. Retinal microstructural changes in eyes with resolved branch retinal vein occlusion: an adaptive optics scanning laser ophthalmoscopy study. Am J Ophthalmol 2014; 157:1239-1249.e3. [PMID: 24531026 DOI: 10.1016/j.ajo.2014.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To assess macular photoreceptor abnormalities in eyes with resolved branch retinal vein occlusion (BRVO) using adaptive optics scanning laser ophthalmoscopy (AO-SLO). DESIGN Prospective observational cross-sectional case series. METHODS After complete resolution of macular edema and retinal hemorrhage, 21 eyes (21 patients) with BRVO underwent full ophthalmologic examination and imaging with optical coherence tomography (OCT) and a prototype AO-SLO system. Cone density and spatial mosaic organization were assessed using AO-SLO images. RESULTS Regular parafoveal cone mosaic patterns were clearly visualized with the prototype AO-SLO imaging system in the BRVO-unaffected side. However, in the side of the retina previously affected by the BRVO, cone mosaic patterns were disorganized and dark regions missing wave-guiding cones were apparent. Additionally, retinal capillaries were dilated, no longer had a uniform caliber, and had less direct paths through the retina. In the affected side, parafoveal cone density was significantly decreased, compared with the corresponding retinal area on the unaffected side (P < .001). Furthermore, the hexagonal Voronoi domain ratio and the nearest-neighbor distances were significantly lower than in the unaffected side (P < .05). These parameters were also correlated with photoreceptor layer integrity in the parafovea. CONCLUSIONS After BRVO-associated retinal hemorrhage and macular edema resolved, affected parafoveal cone density decreases and the cone mosaic spatial arrangement is disrupted, becoming more irregular. These cone microstructural abnormalities may extend to parafovea in the BRVO-unaffected side.
Collapse
|
40
|
|
41
|
Rangel-Fonseca P, Gómez-Vieyra A, Malacara-Hernández D, Wilson MC, Williams DR, Rossi EA. Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2013; 30:2595-604. [PMID: 24323021 DOI: 10.1364/josaa.30.002595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Adaptive optics (AO) imaging methods allow the histological characteristics of retinal cell mosaics, such as photoreceptors and retinal pigment epithelium (RPE) cells, to be studied in vivo. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the cellular mosaics under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells; however, most of these methods are not well suited for characterizing the RPE mosaic. We have developed an algorithm for RPE cell segmentation and show its performance here on simulated and real fluorescence AO images of the RPE mosaic. Algorithm performance was compared to manual cell identification and yielded better than 91% correspondence. This method can be used to segment RPE cells for morphometric analysis of the RPE mosaic and speed the analysis of both healthy and diseased RPE mosaics.
Collapse
|
42
|
Milburn NJ, Neitz J, Chidester T, Lemelin M. New genetic technology may help pilots, aviation employees, and color vision researchers. AVIATION, SPACE, AND ENVIRONMENTAL MEDICINE 2013; 84:1218-20. [PMID: 24279239 DOI: 10.3357/asem.3860.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nelda J Milburn
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|
43
|
Park SP, Hong IH, Tsang SH, Lee W, Horowitz J, Yzer S, Allikmets R, Chang S. Disruption of the human cone photoreceptor mosaic from a defect in NR2E3 transcription factor function in young adults. Graefes Arch Clin Exp Ophthalmol 2013; 251:2299-309. [PMID: 23604511 PMCID: PMC4291322 DOI: 10.1007/s00417-013-2296-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Enhanced S-cone syndrome is an orphan disease caused by mutations in the NR2E3 gene which result in an increased number of S-cones overpopulating the retina. Although the characteristic onset of enhanced S-cone syndrome can be well-documented by current ophthalmic imaging modalities, techniques such as spectral-domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) fail to provide sufficient details regarding the microstructure of photoreceptors in retinal diseases. Adaptive optics (AO) provides a unique opportunity to analyze the effects of genetic mutations on photoreceptors by compensating aberrations of human eyes. METHODS Three eyes of three young adults with enhanced S-cone syndrome were studied by clinical examination, genetic screening, fundus autofluorescence (FAF) imaging, SD-OCT, and electroretinography (ERG). Cone mosaic imaging was accomplished by an AO-SLO equipped with a dual crystal on silicon spatial light modulator. Qualitative image analyses and genetic findings were investigated in each patient. RESULTS The diagnosis of patients was confirmed by ERG finding. Genetic screening confirmed the presence of two disease-causing mutations in the NR2E3 gene in each study patient, as well as identified a novel mutation (202 A > G, S68G). Fundus photograph, FAF, and SD-OCT found rosette-like lesion within the mid-periphery along the vascular arcades of the retina. In all AO-SLO images of patients, sparse distribution and asymmetric size of cone mosaic pattern were found within central retina. There were regions of dark space between groups of photoreceptors, distinguishable from shadowing and artifacts. CONCLUSIONS AO-SLO provided an in-depth window into the retina of live enhanced S-cone syndrome patients beyond the ability of other current imaging modalities. Dark lesions within the central retina in each patient contain structurally dysfunctional cones which account for retinal mosaic disorganization, and may predispose affected areas to other abnormalities such as rosette lesions. AO-SLO can be an efficient diagnostic tool in clinics for examining cellular-level pathologies in various retinal dystrophies.
Collapse
Affiliation(s)
- Sung Pyo Park
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Ophthalmology, Kangdong Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | - In Hwan Hong
- Department of Ophthalmology, Kangdong Sacred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
- Departments of Ophthalmology, Pathology and Cell Biology, Edward S. Harkness Eye Institute, Columbia University, 635 west 165th street, New York, NY 10032, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Jason Horowitz
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Stanley Chang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| |
Collapse
|
44
|
Abstract
AbstractS cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.
Collapse
|
45
|
Carroll J, Kay DB, Scoles D, Dubra A, Lombardo M. Adaptive optics retinal imaging--clinical opportunities and challenges. Curr Eye Res 2013; 38:709-21. [PMID: 23621343 PMCID: PMC4031042 DOI: 10.3109/02713683.2013.784792] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The array of therapeutic options available to clinicians for treating retinal disease is expanding. With these advances comes the need for better understanding of the etiology of these diseases on a cellular level as well as improved non-invasive tools for identifying the best candidates for given therapies and monitoring the efficacy of those therapies. While spectral domain optical coherence tomography offers a widely available tool for clinicians to assay the living retina, it suffers from poor lateral resolution due to the eye's monochromatic aberrations. Ophthalmic adaptive optics (AO) is a technique to compensate for the eye's aberrations and provide nearly diffraction-limited resolution. The result is the ability to visualize the living retina with cellular resolution. While AO is unquestionably a powerful research tool, many clinicians remain undecided on the clinical potential of AO imaging - putting many at a crossroads with respect to adoption of this technology. This review will briefly summarize the current state of AO retinal imaging, discuss current as well as future clinical applications of AO retinal imaging, and finally provide some discussion of research needs to facilitate more widespread clinical use.
Collapse
Affiliation(s)
- Joseph Carroll
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | | | | | |
Collapse
|
46
|
Chiu SJ, Lokhnygina Y, Dubis AM, Dubra A, Carroll J, Izatt JA, Farsiu S. Automatic cone photoreceptor segmentation using graph theory and dynamic programming. BIOMEDICAL OPTICS EXPRESS 2013; 4:924-37. [PMID: 23761854 PMCID: PMC3675871 DOI: 10.1364/boe.4.000924] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five.
Collapse
Affiliation(s)
- Stephanie J. Chiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Yuliya Lokhnygina
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Adam M. Dubis
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Joseph Carroll
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
47
|
Cooper RF, Langlo CS, Dubra A, Carroll J. Automatic detection of modal spacing (Yellott's ring) in adaptive optics scanning light ophthalmoscope images. Ophthalmic Physiol Opt 2013; 33:540-9. [PMID: 23668233 PMCID: PMC3690144 DOI: 10.1111/opo.12070] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/30/2013] [Indexed: 11/29/2022]
Abstract
Purpose An impediment for the clinical utilisation of ophthalmic adaptive optics imaging systems is the automated assessment of photoreceptor mosaic integrity. Here we propose a fully automated algorithm for estimating photoreceptor density based on the radius of Yellott's ring. Methods The discrete Fourier transform (DFT) was used to obtain the power spectrum for a series of images of the human photoreceptor mosaic. Cell spacing is estimated by least-square fitting an annular pattern with a Gaussian cross section to the power spectrum; the radius of the resulting annulus provides an estimate of the modal spacing of the photoreceptors in the retinal image. The intrasession repeatability of the cone density estimates from the algorithm was evaluated, and the accuracy of the algorithm was validated against direct count estimates from a previous study. Accuracy in the presence of multiple cell types and disruptions in the mosaic was examined using images from four patients with retinal pathology and perifoveal images from two subjects with normal vision. Results Intrasession repeatability of the power spectrum method was comparable to a fully automated direct counting algorithm, but worse than that for the manually adjusted direct count values. In images of the normal parafoveal cone mosaic, we find good agreement between the power-spectrum derived density and that from the direct counting algorithm. In diseased eyes, the power spectrum method is insensitive to photoreceptor loss, with cone density estimates overestimating the density determined with direct counting. The automated power spectrum method also produced unreliable estimates of rod and cone density in perifoveal images of the photoreceptor mosaic, though manual correction of the initial algorithm output results in density estimates in better agreement with direct count values. Conclusions We developed and validated an automated algorithm based on the power spectrum for extracting estimates of cone spacing, from which estimates of density can be derived. This approach may be used to estimate cone density in images where not every single cone is visible, though caution is needed, as this robustness becomes a weakness when dealing with images from patients with some retinal diseases. This study represents an important first step in carefully assessing the relative utility of metrics for analysing the photoreceptor mosaic, and similar analyses of other metrics/algorithms are needed.
Collapse
Affiliation(s)
- Robert F Cooper
- Department of Biomedical Engineering, Marquette University, Milwaukee, USA
| | | | | | | |
Collapse
|
48
|
Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision. Vis Neurosci 2013; 30:39-53. [PMID: 23286388 DOI: 10.1017/s0952523812000429] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.
Collapse
|
49
|
Scoles D, Sulai YN, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. BIOMEDICAL OPTICS EXPRESS 2013; 4:1710-23. [PMID: 24049692 PMCID: PMC3771842 DOI: 10.1364/boe.4.001710] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 05/18/2023]
Abstract
Non-invasive reflectance imaging of the human RPE cell mosaic is demonstrated using a modified confocal adaptive optics scanning light ophthalmoscope (AOSLO). The confocal circular aperture in front of the imaging detector was replaced with a combination of a circular aperture 4 to 16 Airy disks in diameter and an opaque filament, 1 or 3 Airy disks thick. This arrangement reveals the RPE cell mosaic by dramatically attenuating the light backscattered by the photoreceptors. The RPE cell mosaic was visualized in all 7 recruited subjects at multiple retinal locations with varying degrees of contrast and cross-talk from the photoreceptors. Various experimental settings were explored for improving the visualization of the RPE cell boundaries including: pinhole diameter, filament thickness, illumination and imaging pupil apodization, unmatched imaging and illumination focus, wavelength and polarization. None of these offered an obvious path for enhancing image contrast. The demonstrated implementation of dark-field AOSLO imaging using 790 nm light requires low light exposures relative to light safety standards and it is more comfortable for the subject than the traditional autofluorescence RPE imaging with visible light. Both these factors make RPE dark-field imaging appealing for studying mechanisms of eye disease, as well as a clinical tool for screening and monitoring disease progression.
Collapse
Affiliation(s)
- Drew Scoles
- Department of Biomedical Engineering, University of Rochester,
Rochester, NY, 14627, USA
| | - Yusufu N. Sulai
- The Institute of Optics, University of Rochester, Rochester, NY,
14627,USA
| | - Alfredo Dubra
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee,
WI, 53226, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee,
WI, 53226,USA
- Department of Biomedical Engineering, Marquette University,
Milwaukee, WI, 53233,USA
| |
Collapse
|
50
|
Makiyama Y, Ooto S, Hangai M, Takayama K, Uji A, Oishi A, Ogino K, Nakagawa S, Yoshimura N. Macular cone abnormalities in retinitis pigmentosa with preserved central vision using adaptive optics scanning laser ophthalmoscopy. PLoS One 2013; 8:e79447. [PMID: 24260224 PMCID: PMC3834127 DOI: 10.1371/journal.pone.0079447] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To assess macular photoreceptor abnormalities in eyes with retinitis pigmentosa (RP) with preserved central vision using adaptive optics scanning laser ophthalmoscopy (AO-SLO). METHODS Fourteen eyes of 14 patients with RP (best-corrected visual acuity 20/20 or better) and 12 eyes of 12 volunteers underwent a full ophthalmologic examination, fundus autofluorescence, spectral-domain optical coherence tomography (SD-OCT), and imaging with a prototype AO-SLO system. Cone density and spatial organization of the cone mosaic were assessed using AO-SLO images. RESULTS In 3 eyes with RP and preserved central vision, cones formed a mostly regular mosaic pattern with small patchy dark areas, and in 10 eyes, the cone mosaic patterns were less regular, and large dark regions with missing cones were apparent. Only one eye with RP demonstrated a normal, regular cone mosaic pattern. In eyes with RP, cone density was significantly lower at 0.5 mm and 1.0 mm from the center of the fovea compared to normal eyes (P<0.001 and 0.021, respectively). At 0.5 mm and 1.0 mm from the center of the fovea, a decreased number of cones had 6 neighbors in eyes with RP (P = 0.002 for both). Greater decrease in cone density was related to disruption of the photoreceptor inner segment (IS) ellipsoid band on SD-OCT images (P = 0.044); however, dark regions were seen on AO-SLO even in areas of continuous IS ellipsoid on SD-OCT. Decreased cone density correlated thinner outer nuclear layer (P = 0.029) and thinner inner segment and outer segment thickness (P = 0.011) on SD-OCT. CONCLUSIONS Cone density is decreased and the regularity of the cone mosaic spatial arrangement is disrupted in eyes with RP, even when visual acuity and foveal sensitivity are good. AO-SLO imaging is a sensitive quantitative tool for detecting photoreceptor abnormalities in eyes with RP.
Collapse
Affiliation(s)
- Yukiko Makiyama
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Sotaro Ooto
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- * E-mail:
| | - Masanori Hangai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Kohei Takayama
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Akihito Uji
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Ken Ogino
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Satoko Nakagawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|