1
|
Nikitin V, Wildenberg G, Mittone A, Shevchenko P, Deriy A, De Carlo F. Laminography as a tool for imaging large-size samples with high resolution. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:851-866. [PMID: 38771775 PMCID: PMC11226144 DOI: 10.1107/s1600577524002923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/03/2024] [Indexed: 05/23/2024]
Abstract
Despite the increased brilliance of the new generation synchrotron sources, there is still a challenge with high-resolution scanning of very thick and absorbing samples, such as a whole mouse brain stained with heavy elements, and, extending further, brains of primates. Samples are typically cut into smaller parts, to ensure a sufficient X-ray transmission, and scanned separately. Compared with the standard tomography setup where the sample would be cut into many pillars, the laminographic geometry operates with slab-shaped sections significantly reducing the number of sample parts to be prepared, the cutting damage and data stitching problems. In this work, a laminography pipeline for imaging large samples (>1 cm) at micrometre resolution is presented. The implementation includes a low-cost instrument setup installed at the 2-BM micro-CT beamline of the Advanced Photon Source. Additionally, sample mounting, scanning techniques, data stitching procedures, a fast reconstruction algorithm with low computational complexity, and accelerated reconstruction on multi-GPU systems for processing large-scale datasets are presented. The applicability of the whole laminography pipeline was demonstrated by imaging four sequential slabs throughout an entire mouse brain sample stained with osmium, in total generating approximately 12 TB of raw data for reconstruction.
Collapse
Affiliation(s)
- Viktor Nikitin
- Advanced Photon SourceArgonne National LaboratoryLemontIL60439USA
| | | | - Alberto Mittone
- Advanced Photon SourceArgonne National LaboratoryLemontIL60439USA
| | - Pavel Shevchenko
- Advanced Photon SourceArgonne National LaboratoryLemontIL60439USA
| | - Alex Deriy
- Advanced Photon SourceArgonne National LaboratoryLemontIL60439USA
| | | |
Collapse
|
2
|
Nava A, Mahoney P, Bondioli L, Coppa A, Cristiani E, Fattore L, McFarlane G, Dreossi D, Mancini L. Virtual histology of archaeological human deciduous prenatal enamel through synchrotron X-ray computed microtomography images. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:247-253. [PMID: 34985442 PMCID: PMC8733994 DOI: 10.1107/s160057752101208x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
Virtual histology is increasingly utilized to reconstruct the cell mechanisms underlying dental morphology for fragile fossils when physical thin sections are not permitted. Yet, the comparability of data derived from virtual and physical thin sections is rarely tested. Here, the results from archaeological human deciduous incisor physical sections are compared with virtual ones obtained by phase-contrast synchrotron radiation computed microtomography (SRµCT) of intact specimens using a multi-scale approach. Moreover, virtual prenatal daily enamel secretion rates are compared with those calculated from physical thin sections of the same tooth class from the same archaeological skeletal series. Results showed overall good visibility of the enamel microstructures in the virtual sections which are comparable to that of physical ones. The highest spatial resolution SRµCT setting (effective pixel size = 0.9 µm) produced daily secretion rates that matched those calculated from physical sections. Rates obtained using the lowest spatial resolution setup (effective pixel size = 2.0 µm) were higher than those obtained from physical sections. The results demonstrate that virtual histology can be applied to the investigated samples to obtain reliable and quantitative measurements of prenatal daily enamel secretion rates.
Collapse
Affiliation(s)
- Alessia Nava
- School of Anthropology and Conservation, University of Kent, Giles Lane, Canterbury CT2 7NZ, United Kingdom
- Department of Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, Rome 00161, Italy
| | - Patrick Mahoney
- School of Anthropology and Conservation, University of Kent, Giles Lane, Canterbury CT2 7NZ, United Kingdom
| | - Luca Bondioli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, Ravenna 48121, Italy
| | - Alfredo Coppa
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro 5, Rome 00185, Italy
| | - Emanuela Cristiani
- Department of Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, Rome 00161, Italy
| | - Luciano Fattore
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, Rome 00184, Italy
| | - Gina McFarlane
- School of Anthropology and Conservation, University of Kent, Giles Lane, Canterbury CT2 7NZ, United Kingdom
| | - Diego Dreossi
- Elettra Sincrotrone Trieste SCpA, SS 14 Area Science Park, Basovizza, Trieste 34149 Italy
| | - Lucia Mancini
- Elettra Sincrotrone Trieste SCpA, SS 14 Area Science Park, Basovizza, Trieste 34149 Italy
| |
Collapse
|
3
|
Unraveling Structural Details in Ga-Pd SCALMS Systems Using Correlative Nano-CT, 360° Electron Tomography and Analytical TEM. Catalysts 2021. [DOI: 10.3390/catal11070810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We present a comprehensive structural and analytical characterization of the highly promising supported catalytically active liquid metal solutions (SCALMS) system. This novel catalyst shows excellent performance for alkane dehydrogenation, especially in terms of resistance to coking. SCALMS consists of a porous support containing catalytically active low-melting alloy particles (e.g., Ga-Pd) featuring a complex structure, which are liquid at reaction temperature. High-resolution 3D characterization at various length scales is required to reveal the complex pore morphology and catalytically active sites’ location. Nano X-ray computed tomography (nano-CT) in combination with electron tomography (ET) enables nondestructive and scale-bridging 3D materials research. We developed and applied a correlative approach using nano-CT, 360°-ET and analytical transmission electron microscopy (TEM) to decipher the morphology, distribution and chemical composition of the Ga-Pd droplets of the SCALMS system over several length scales. Utilizing ET-based segmentations of nano-CT reconstructions, we are able to reliably reveal the homogenous porous support network with embedded Ga-Pd droplets featuring a nonhomogenous elemental distribution of Ga and Pd. In contrast, large Ga-Pd droplets with a high Ga/Pd ratio are located on the surface of SCALMS primary particles, whereas the droplet size and the Ga/Pd ratio decreases while advancing into the porous volume. Our studies reveal new findings about the complex structure of SCALMS which are required to understand its superior catalytic performance. Furthermore, advancements in lab-based nano-CT imaging are presented by extending the field of view (FOV) of a single experiment via a multiple region-of-interest (ROI) stitching approach.
Collapse
|
4
|
Du M, Di Z(W, Gürsoy D, Xian RP, Kozorovitskiy Y, Jacobsen C. Upscaling X-ray nanoimaging to macroscopic specimens. J Appl Crystallogr 2021; 54:386-401. [PMID: 33953650 PMCID: PMC8056767 DOI: 10.1107/s1600576721000194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
Upscaling X-ray nanoimaging to macroscopic specimens has the potential for providing insights across multiple length scales, but its feasibility has long been an open question. By combining the imaging requirements and existing proof-of-principle examples in large-specimen preparation, data acquisition and reconstruction algorithms, the authors provide imaging time estimates for howX-ray nanoimaging can be scaled to macroscopic specimens. To arrive at this estimate, a phase contrast imaging model that includes plural scattering effects is used to calculate the required exposure and corresponding radiation dose. The coherent X-ray flux anticipated from upcoming diffraction-limited light sources is then considered. This imaging time estimation is in particular applied to the case of the connectomes of whole mouse brains. To image the connectome of the whole mouse brain, electron microscopy connectomics might require years, whereas optimized X-ray microscopy connectomics could reduce this to one week. Furthermore, this analysis points to challenges that need to be overcome (such as increased X-ray detector frame rate) and opportunities that advances in artificial-intelligence-based 'smart' scanning might provide. While the technical advances required are daunting, it is shown that X-ray microscopy is indeed potentially applicable to nanoimaging of millimetre- or even centimetre-size specimens.
Collapse
Affiliation(s)
- Ming Du
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zichao (Wendy) Di
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Doǧa Gürsoy
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA
| | - R. Patrick Xian
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Micrometer-resolution X-ray tomographic full-volume reconstruction of an intact post-mortem juvenile rat lung. Histochem Cell Biol 2020; 155:215-226. [PMID: 32189111 PMCID: PMC7910225 DOI: 10.1007/s00418-020-01868-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 01/30/2023]
Abstract
In this article, we present an X-ray tomographic imaging method that is well suited for pulmonary disease studies in animal models to resolve the full pathway from gas intake to gas exchange. Current state-of-the-art synchrotron-based tomographic phase-contrast imaging methods allow for three-dimensional microscopic imaging data to be acquired non-destructively in scan times of the order of seconds with good soft tissue contrast. However, when studying multi-scale hierarchically structured objects, such as the mammalian lung, the overall sample size typically exceeds the field of view illuminated by the X-rays in a single scan and the necessity for achieving a high spatial resolution conflicts with the need to image the whole sample. Several image stitching and calibration techniques to achieve extended high-resolution fields of view have been reported, but those approaches tend to fail when imaging non-stable samples, thus precluding tomographic measurements of large biological samples, which are prone to degradation and motion during extended scan times. In this work, we demonstrate a full-volume three-dimensional reconstruction of an intact rat lung under immediate post-mortem conditions and at an isotropic voxel size of (2.75 µm)3. We present the methodology for collecting multiple local tomographies with 360° extended field of view scans followed by locally non-rigid volumetric stitching. Applied to the lung, it allows to resolve the entire pulmonary structure from the trachea down to the parenchyma in a single dataset. The complete dataset is available online (https://doi.org/10.16907/7eb141d3-11f1-47a6-9d0e-76f8832ed1b2).
Collapse
|
6
|
Liu Z, Bicer T, Kettimuthu R, Gursoy D, De Carlo F, Foster I. TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:422-434. [PMID: 32118926 DOI: 10.1364/josaa.375595] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Synchrotron-based x-ray tomography is a noninvasive imaging technique that allows for reconstructing the internal structure of materials at high spatial resolutions from tens of micrometers to a few nanometers. In order to resolve sample features at smaller length scales, however, a higher radiation dose is required. Therefore, the limitation on the achievable resolution is set primarily by noise at these length scales. We present TomoGAN, a denoising technique based on generative adversarial networks, for improving the quality of reconstructed images for low-dose imaging conditions. We evaluate our approach in two photon-budget-limited experimental conditions: (1) sufficient number of low-dose projections (based on Nyquist sampling), and (2) insufficient or limited number of high-dose projections. In both cases, the angular sampling is assumed to be isotropic, and the photon budget throughout the experiment is fixed based on the maximum allowable radiation dose on the sample. Evaluation with both simulated and experimental datasets shows that our approach can significantly reduce noise in reconstructed images, improving the structural similarity score of simulation and experimental data from 0.18 to 0.9 and from 0.18 to 0.41, respectively. Furthermore, the quality of the reconstructed images with filtered back projection followed by our denoising approach exceeds that of reconstructions with the simultaneous iterative reconstruction technique, showing the computational superiority of our approach.
Collapse
|