1
|
Zhou W, Wu T, Lew MD. Fundamental Limits in Measuring the Anisotropic Rotational Diffusion of Single Molecules. J Phys Chem A 2024; 128:5808-5815. [PMID: 38978460 PMCID: PMC11298152 DOI: 10.1021/acs.jpca.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Many biophysical techniques, such as single-molecule fluorescence correlation spectroscopy, Förster resonance energy transfer, and fluorescence anisotropy, measure the translation and rotation of biomolecules to quantify molecular processes at the nanoscale. These methods often simplify data analysis by assuming isotropic rotational diffusion, e.g., that molecules wobble within a circular cone. This simplification ignores the anisotropy present in many biological contexts that may cause molecules to exhibit different degrees of diffusion in different directions. Here, we loosen this assumption and establish a theoretical framework for describing and measuring anisotropic rotational diffusion using fluorescence imaging. We show that anisotropic wobble is directly quantified by the eigenvalues of a 3-by-3 positive-semidefinite Hermitian matrix M consisting of the second-order moments of a molecule's transition dipole μ. This formalism enables us to model the influence of unavoidable shot noise using a Hermitian perturbation matrix E; the eigenvalues of E directly bound errors in measurements of wobble via Weyl's inequality. Quantifying various perturbations E reveals that anisotropic wobble measurements are generally more sensitive to errors compared to quantifying isotropic wobble. Moreover, severe shot noise can induce negative eigenvalues in estimates of M, thereby causing the anisotropic wobble measurement to fail. Our analysis, using Fisher information, shows that techniques with worse orientation measurement sensitivity experience stronger perturbations E and require larger signal to background ratios to measure anisotropic rotational diffusion accurately. Our work provides deep insights for improving the state of the art in imaging the orientations and anisotropic rotational diffusion of single molecules.
Collapse
Affiliation(s)
- Weiyan Zhou
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tingting Wu
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Matthew D Lew
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Vishniakou I, Seelig JD. Differentiable optimization of the Debye-Wolf integral for light shaping and adaptive optics in two-photon microscopy. OPTICS EXPRESS 2023; 31:9526-9542. [PMID: 37157521 DOI: 10.1364/oe.482387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Control of light through a microscope objective with a high numerical aperture is a common requirement in applications such as optogenetics, adaptive optics, or laser processing. Light propagation, including polarization effects, can be described under these conditions using the Debye-Wolf diffraction integral. Here, we take advantage of differentiable optimization and machine learning for efficiently optimizing the Debye-Wolf integral for such applications. For light shaping we show that this optimization approach is suitable for engineering arbitrary three-dimensional point spread functions in a two-photon microscope. For differentiable model-based adaptive optics (DAO), the developed method can find aberration corrections with intrinsic image features, for example neurons labeled with genetically encoded calcium indicators, without requiring guide stars. Using computational modeling we further discuss the range of spatial frequencies and magnitudes of aberrations which can be corrected with this approach.
Collapse
|
3
|
Weiss LE, Love JF, Yoon J, Comerci CJ, Milenkovic L, Kanie T, Jackson PK, Stearns T, Gustavsson AK. Single-molecule imaging in the primary cilium. Methods Cell Biol 2023; 176:59-83. [PMID: 37164543 PMCID: PMC10509820 DOI: 10.1016/bs.mcb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The primary cilium is an important signaling organelle critical for normal development and tissue homeostasis. Its small dimensions and complexity necessitate advanced imaging approaches to uncover the molecular mechanisms behind its function. Here, we outline how single-molecule fluorescence microscopy can be used for tracking molecular dynamics and interactions and for super-resolution imaging of nanoscale structures in the primary cilium. Specifically, we describe in detail how to capture and quantify the 2D dynamics of individual transmembrane proteins PTCH1 and SMO and how to map the 3D nanoscale distributions of the inversin compartment proteins INVS, ANKS6, and NPHP3. This protocol can, with minor modifications, be adapted for studies of other proteins and cell lines to further elucidate the structure and function of the primary cilium at the molecular level.
Collapse
Affiliation(s)
- Lucien E Weiss
- Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, Canada.
| | - Julia F Love
- Department of Chemistry, Rice University, Houston, TX, United States
| | | | - Colin J Comerci
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | | | - Tomoharu Kanie
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States; Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA, United States; Rockefeller University, New York City, NY, United States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, United States; Department of BioSciences, Rice University, Houston, TX, United States; Institute of Biosciences and Bioengineering, Rice University, Houston, TX, United States; Smalley-Curl Institute, Rice University, Houston, TX, United States.
| |
Collapse
|
4
|
Zhang O, Guo Z, He Y, Wu T, Vahey MD, Lew MD. Six-Dimensional Single-Molecule Imaging with Isotropic Resolution using a Multi-View Reflector Microscope. NATURE PHOTONICS 2023; 17:179-186. [PMID: 36968242 PMCID: PMC10035538 DOI: 10.1038/s41566-022-01116-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 05/31/2023]
Abstract
Imaging both the positions and orientations of single fluorophores, termed single-molecule orientation-localisation microscopy, is a powerful tool to study biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here, we realise a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the 3D positions and 3D orientations of single molecules, with precision of 10.9 nm and 2.0° over a 1.5 μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red (NR) molecules transiently bound to lipid-coated spheres, accurately resolving their spherical morphology despite refractive-index mismatch. By observing the rotational dynamics of NR, raMVR images also resolve the infiltration of lipid membranes by amyloid-beta oligomers without covalent labelling. Finally, we demonstrate 6D imaging of cell membranes, where the orientations of specific fluorophores reveal heterogeneity in membrane fluidity. With its nearly isotropic 3D spatial resolution and orientation measurement precision, we expect the raMVR microscope to enable 6D imaging of molecular dynamics within biological and chemical systems with exceptional detail.
Collapse
Affiliation(s)
- Oumeng Zhang
- Department of Electrical and Systems Engineering
| | | | | | - Tingting Wu
- Department of Electrical and Systems Engineering
| | - Michael D. Vahey
- Department of Biomedical Engineering
- Center for Biomolecular Condensates
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering
- Center for Biomolecular Condensates
- Institute of Materials Science and Engineering, Washington University in St. Louis, Missouri 63130, USA
| |
Collapse
|
5
|
Wu T, Lu P, Rahman MA, Li X, Lew MD. Deep-SMOLM: deep learning resolves the 3D orientations and 2D positions of overlapping single molecules with optimal nanoscale resolution. OPTICS EXPRESS 2022; 30:36761-36773. [PMID: 36258598 PMCID: PMC9662599 DOI: 10.1364/oe.470146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Dipole-spread function (DSF) engineering reshapes the images of a microscope to maximize the sensitivity of measuring the 3D orientations of dipole-like emitters. However, severe Poisson shot noise, overlapping images, and simultaneously fitting high-dimensional information-both orientation and position-greatly complicates image analysis in single-molecule orientation-localization microscopy (SMOLM). Here, we report a deep-learning based estimator, termed Deep-SMOLM, that achieves superior 3D orientation and 2D position measurement precision within 3% of the theoretical limit (3.8° orientation, 0.32 sr wobble angle, and 8.5 nm lateral position using 1000 detected photons). Deep-SMOLM also demonstrates state-of-art estimation performance on overlapping images of emitters, e.g., a 0.95 Jaccard index for emitters separated by 139 nm, corresponding to a 43% image overlap. Deep-SMOLM accurately and precisely reconstructs 5D information of both simulated biological fibers and experimental amyloid fibrils from images containing highly overlapped DSFs at a speed ~10 times faster than iterative estimators.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Electrical and Systems Engineering,
Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems,
Washington University in St. Louis, Missouri 63130, USA
| | - Peng Lu
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri 63130, USA
- Department of Radiology, Washington University School of Medicine, Missouri 63110, USA
- These authors contributed equally to this work
| | - Md Ashequr Rahman
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri 63130, USA
- Department of Radiology, Washington University School of Medicine, Missouri 63110, USA
- These authors contributed equally to this work
| | - Xiao Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
- These authors contributed equally to this work
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering,
Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems,
Washington University in St. Louis, Missouri 63130, USA
- Institute of Materials Science and Engineering,
Washington University in St. Louis, Missouri 63130, USA
| |
Collapse
|
6
|
Zhan Z, Li C, Liu X, Sun X, He C, Kuang C, Liu X. Simultaneous super-resolution estimation of single-molecule position and orientation with minimal photon fluxes. OPTICS EXPRESS 2022; 30:22051-22065. [PMID: 36224912 DOI: 10.1364/oe.456557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/24/2022] [Indexed: 06/16/2023]
Abstract
The orientation of a single molecule provides valuable information on fundamental biological processes. We report a technique for the simultaneous estimation of single-molecule 2D position and 2D orientation with ultra-high localization precision (∼2-nm precision with ∼500 photons under a typical 100-nm diameter of excitation beam pattern), which is also compatible with tracking in living cells. In the proposed method, the theoretical precision limits are calculated, and the localization and orientation performance along with potential applications are explored using numerical simulations. Compared to other camera-based orientation measurement methods, it is confirmed that the proposed method can obtain reasonable estimates even under very weak signals (∼15 photons). Moreover, the maximum likelihood estimator (MLE) is found to converge to the theoretical limit when the total number of photons is less than 100.
Collapse
|
7
|
Wu T, Lu J, Lew MD. Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules. OPTICA 2022; 9:505-511. [PMID: 35601691 PMCID: PMC9122034 DOI: 10.1364/optica.451899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/03/2022] [Indexed: 06/01/2023]
Abstract
Interactions between biomolecules are characterized by both where they occur and how they are organized, e.g., the alignment of lipid molecules to form a membrane. However, spatial and angular information are mixed within the image of a fluorescent molecule-the microscope's dipole-spread function (DSF). We demonstrate the pixOL algorithm for simultaneously optimizing all pixels within a phase mask to produce an engineered Green's tensor-the dipole extension of point-spread function engineering. The pixOL DSF achieves optimal precision for measuring simultaneously the 3D orientation and 3D location of a single molecule, i.e., 4.1° orientation, 0.44 sr wobble angle, 23.2 nm lateral localization, and 19.5 nm axial localization precisions in simulations over a 700-nm depth range using 2500 detected photons. The pixOL microscope accurately and precisely resolves the 3D positions and 3D orientations of Nile red within a spherical supported lipid bilayer, resolving both membrane defects and differences in cholesterol concentration in 6 dimensions.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, Missouri 63130, USA
| | - Jin Lu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, Missouri 63130, USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Missouri 63130, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, Missouri 63130, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, Missouri 63130, USA
| |
Collapse
|
8
|
Zhang O, Zhou W, Lu J, Wu T, Lew MD. Resolving the Three-Dimensional Rotational and Translational Dynamics of Single Molecules Using Radially and Azimuthally Polarized Fluorescence. NANO LETTERS 2022; 22:1024-1031. [PMID: 35073487 PMCID: PMC8893020 DOI: 10.1021/acs.nanolett.1c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a radially and azimuthally polarized (raPol) microscope for high detection and estimation performance in single-molecule orientation-localization microscopy (SMOLM). With 5000 photons detected from Nile red (NR) transiently bound within supported lipid bilayers (SLBs), raPol SMOLM achieves 2.9 nm localization precision, 1.5° orientation precision, and 0.17 sr precision in estimating rotational wobble. Within DPPC SLBs, SMOLM imaging reveals the existence of randomly oriented binding pockets that prevent NR from freely exploring all orientations. Treating the SLBs with cholesterol-loaded methyl-β-cyclodextrin (MβCD-chol) causes NR's orientational diffusion to be dramatically reduced, but curiously NR's median lateral displacements drastically increase from 20.8 to 75.5 nm (200 ms time lag). These jump diffusion events overwhelmingly originate from cholesterol-rich nanodomains within the SLB. These detailed measurements of single-molecule rotational and translational dynamics are made possible by raPol's high measurement precision and are not detectable in standard SMLM.
Collapse
|
9
|
Ding T, Lew MD. Single-Molecule Localization Microscopy of 3D Orientation and Anisotropic Wobble Using a Polarized Vortex Point Spread Function. J Phys Chem B 2021; 125:12718-12729. [PMID: 34766758 PMCID: PMC8662813 DOI: 10.1021/acs.jpcb.1c08073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule's wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°-8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics of Nile red (NR) within supported lipid bilayers, and the distinct orientation signatures of NR in contact with amyloid-beta fibrils, oligomers, and tangles. The unparalleled sensitivity of the vortex PSF transforms single-molecule microscopes into nanoscale orientation imaging spectrometers, where the orientations and wobbles of individual probes reveal structures and organization of soft matter that are nearly impossible to perceive by using molecular positions alone.
Collapse
Affiliation(s)
- Tianben Ding
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
10
|
Beckwith JS, Yang H. Information bounds in determining the 3D orientation of a single emitter or scatterer using point-detector-based division-of-amplitude polarimetry. J Chem Phys 2021; 155:144110. [PMID: 34654316 DOI: 10.1063/5.0065034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining the 3D orientation of a single molecule or particle, encoded in its polar and azimuthal angles, is of interest for a variety of fields, being relevant to a range of questions in elementary chemical reactivity, biomolecular motors, and nanorheology. A popular experimental method, known as division-of-amplitude polarimetry, for determining the real-time orientation of a single particle is to split the emitted/scattered light into multiple polarizations and to measure the light intensity using point detectors at these polarizations during a time interval Δt. Here, we derive the Cramér-Rao lower bounds for this method from the perspective of information theory in the cases of utilizing a chromophore or a scattering particle as a 3D orientation probe. Such Cramér-Rao lower bounds are new for using this experimental method to measure the full 3D orientation in both the scattering case and the fluorescence case. These results show that, for a scatterer, the information content of one photon is 1.16 deg-2 in the polar and 58.71 deg-2 in the azimuthal angles, respectively. For a chromophore, the information content of one photon is 2.54 deg-2 in the polar and 80.29 deg-2 in the azimuthal angles. In addition, the Cramér-Rao lower bound scales with the square root of the total signal photons. To determine orientation to an uncertainty of one degree requires 7.40 × 104 and 2.34 × 103 photons for the polar and the azimuthal angles, respectively, for fluorescence, whereas it takes 1.62 × 105 and 3.20 × 103 photons for scattering. This work provides experimentalists new guidelines by which future experiments can be designed and interpreted.
Collapse
Affiliation(s)
- Joseph S Beckwith
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Zhang O, Lew MD. Single-molecule orientation localization microscopy II: a performance comparison. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:288-297. [PMID: 33690542 DOI: 10.1364/josaa.411983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Various techniques have been developed to measure the 2D and 3D positions and 2D and 3D orientations of fluorescent molecules with improved precision over standard epifluorescence microscopes. Due to the challenging signal-to-background ratio in typical single-molecule experiments, it is essential to choose an imaging system optimized for the specific target sample. In this work, we compare the performance of multiple state-of-the-art and commonly used methods for orientation localization microscopy against the fundamental limits of measurement precision. Our analysis reveals optimal imaging methods for various experiment conditions and sample geometries. Interestingly, simple modifications to the standard fluorescence microscope exhibit superior performance in many imaging scenarios.
Collapse
|