1
|
Bhatti HS, Khan S, Zahra M, Mustafa S, Ashraf S, Ahmad I. Characterization of radiofrequency ablated myocardium with optical coherence tomography. Photodiagnosis Photodyn Ther 2022; 40:103151. [PMID: 36228980 DOI: 10.1016/j.pdpdt.2022.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Certain types of cardiac arrhythmias are best treated with radiofrequency (RF) ablation, in which an electrode is inserted into the targeted area of the myocardium and then RF electrical current is applied to heat and destroy surrounding tissue. The resulting ablation lesion usually consists of a coagulative necrotic core surrounded by a rim region of mixed viable and non-viable cells. The characterization of the RF ablated lesion is of potential clinical importance. Here we aim to elaborate optical coherence tomography (OCT) imaging for the characterization of RF-ablated myocardial tissue. In particular, the underlying principles of OCT and its polarization-sensitive counterpart (PS-OCT) are presented, followed by the knowledge needed to interpret their optical images. Studies focused on real-time monitoring of RF lesion formation in the myocardium using OCT systems are summarized. The design and development of various hybrid probes incorporating both OCT guidance and RF ablation catheters are also discussed. Finally, the challenges related to the transmission of OCT imaging systems to cardiac clinics for real-time monitoring of RF lesions are outlined.
Collapse
Affiliation(s)
| | - Shamim Khan
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Madeeha Zahra
- Department of Physics, The Women University Multan, Pakistan
| | - Sonia Mustafa
- Department of Physics, The Women University Multan, Pakistan
| | - Sumara Ashraf
- Department of Physics, The Women University Multan, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
2
|
Park SY, Singh-Moon R, Yang H, Hendon C. Monitoring of irrigated lesion formation with single fiber based multispectral system using machine learning. JOURNAL OF BIOPHOTONICS 2022; 15:e202100374. [PMID: 35666015 PMCID: PMC9452461 DOI: 10.1002/jbio.202100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
In radiofrequency ablation (RFA) treatment of cardiac arrhythmias, intraprocedural assessment of treatment efficacy relies on indirect measures of adequate tissue destruction. Direct sensing of diffuse reflectance spectral changes at the ablation site using optically integrated RFA catheters has been shown to enable accurate prediction of lesion dimensions, ex vivo. Challenges of optical guidance can be due to obtaining reliable measurements under various catheter-tissue contact orientations. In this work, addressed this limitation by assessing the feasibility of monitoring lesion progression using single-fiber reflectance spectroscopy (SFRS). A total of 110 endocardial lesions of various sizes were generated in freshly excised swine right ventricular tissue using a custom-built, irrigated SFRS-RFA catheter. Models were developed for assessing catheter-tissue contact, the presence of nontransmural or transmural lesions and lesion depth percentage. These results support the use of SFRS-based catheters for irrigated lesion assessment and motivate further exploration of using multi-SFRS catheters for omnidirectionality.
Collapse
Affiliation(s)
- Soo Young Park
- Department of Electrical Engineering, Columbia University, 500 W. 120 St, New York, NY 10027
| | - Rajinder Singh-Moon
- Department of Electrical Engineering, Columbia University, 500 W. 120 St, New York, NY 10027
| | - Haiqiu Yang
- Department of Electrical Engineering, Columbia University, 500 W. 120 St, New York, NY 10027
| | - Christine Hendon
- Department of Electrical Engineering, Columbia University, 500 W. 120 St, New York, NY 10027
| |
Collapse
|
3
|
Bagha T, Kamal AM, Pal UM, Mohan Rao PS, Pandya HJ. Toward the development of a polarimetric tool to diagnose the fibrotic human ventricular myocardium. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:055001. [PMID: 35562842 PMCID: PMC9106211 DOI: 10.1117/1.jbo.27.5.055001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Optical polarimetry is an emerging modality that effectively quantifies the bulk optical properties that correlate with the anisotropic structural properties of cardiac tissues. We demonstrate the application of a polarimetric tool for characterizing healthy and fibrotic human myocardial tissues efficiently with a high degree of accuracy. AIM The study was aimed to characterize the myocardial tissues from the left ventricle and right ventricle of N = 7 control and N = 10 diseased subjects. The diseased subjects were composed of two groups: N = 7 with rheumatic heart disease (RHD) and N = 3 with myxomatous valve (MV) disease. APPROACH A portable, affordable, and accurate linear polarization-based diagnostic tool is developed to measure the degree of linear polarization (DOLP) of the myocardial tissues while working at a wavelength of 850 nm. RESULTS The sensitivity, specificity, and accuracy of the polarimetric tool in distinguishing the control group from the RHD group were found to be 73.33%, 76.92%, and 75%, respectively, and from the MV group were 91.6%, 62.5%, and 80%, respectively, which demonstrates the efficacy of the polarimetric tool to distinguish the healthy myocardial tissues from diseased tissues. CONCLUSIONS We have successfully developed a polarimetric tool that can aid cardiologists in characterizing the myocardial tissues in conjunction with endomyocardial biopsy. This work should be followed up with experiments on a large cohort of control and diseased subjects. We intend to create and develop a probe to quantify the DOLP of in vivo heart tissue during surgery.
Collapse
Affiliation(s)
- Twinkle Bagha
- Indian Institute of Science, Department of Electronic Systems Engineering, Bangalore, Karnataka, India
| | - Arif Mohd. Kamal
- Indian Institute of Science, Department of Electronic Systems Engineering, Bangalore, Karnataka, India
| | - Uttam M. Pal
- Indian Institute of Science, Department of Electronic Systems Engineering, Bangalore, Karnataka, India
- Indian Institute of Information Technology Design and Manufacturing, Kancheepuram, Tamil Nadu, India
| | | | - Hardik J. Pandya
- Indian Institute of Science, Department of Electronic Systems Engineering, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Park SY, Yang H, Marboe C, Ziv O, Laurita K, Rollins A, Saluja D, Hendon CP. Cardiac endocardial left atrial substrate and lesion depth mapping using near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1801-1819. [PMID: 35519253 PMCID: PMC9045901 DOI: 10.1364/boe.451547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Atrial fibrillation (AF) is a rapid irregular electrical activity in the upper chamber and the most common sustained cardiac arrhythmia. Many patients require radiofrequency ablation (RFA) therapy to restore sinus rhythm. Pulmonary vein isolation requires distinguishing normal atrial wall from the pulmonary vein tissue, and atrial substrate ablation requires differentiating scar tissue, fibrosis, and adipose tissue. However, current anatomical mapping methods for strategically locating ablation sites by identifying structural substrates in real-time are limited. An intraoperative tool that accurately provides detailed structural information and classifies endocardial substrates could help improve RF guidance during RF ablation therapy. In this work, we propose a 7F NIRS integrated ablation catheter and demonstrate endocardial mapping on ex vivo swine (n = 12) and human (n = 5) left atrium (LA). First, pulmonary vein (PV) sleeve, fibrosis and ablation lesions were identified with NIRS-derived contrast indices. Based on these key spectral features, classification algorithms identified endocardial substrates with high accuracy (<11% error). Then, a predictive model for lesion depth was evaluated on classified lesions. Model predictions correlated well with histological measurements of lesion dimensions (R = 0.984). Classified endocardial substrates and lesion depth were represented in 2D spatial maps. These results suggest NIRS integrated mapping catheters can serve as a complementary tool to the current electroanatomical mapping system to improve treatment efficacy.
Collapse
Affiliation(s)
- Soo Young Park
- Department of Electrical Engineering, Columbia University, New York, USA
| | - Haiqiu Yang
- Department of Electrical Engineering, Columbia University, New York, USA
| | - Charles Marboe
- Department of Cell Biology and Pathology, Columbia University Irving Medical Center, New York, USA
| | - Ohad Ziv
- Department of Medicine, Cardiology Division, MetroHealth Hospital, Ohio, USA
| | - Kenneth Laurita
- Department of Medicine, Cardiology Division, MetroHealth Hospital, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, USA
| | - Andrew Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, USA
| | - Deepak Saluja
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, USA
| | | |
Collapse
|
5
|
Krist D, Linz D, Schotten U, Zeemering S, Leenen D. A Novel Laser Energy Ablation Catheter for Endocardial Cavo-Tricuspid Isthmus Ablation and Epicardial Ventricular Lesion Formation: An in vivo Proof-of-Concept Study. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:834856. [PMID: 35387364 PMCID: PMC8979165 DOI: 10.3389/fmedt.2022.834856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Aim This proof-of-concept study aimed to investigate atrial and ventricular lesion formation by a 20-mm linear laser ablation catheter, regarding lesion depth and tissue damage. Methods In total, 6 female swines underwent standard femoral vein access to introduce a novel 20-mm linear laser ablation catheter in the right atrium to perform endocardial cavotricuspid isthmus (CTI) ablations. The navigation took place under fluoroscopy with additional visualization by intracardiac echocardiograph. Via a sternotomy, epicardial ablations were performed on the surface of the left ventricle (LV), right ventricle (RV), and right atrial appendage (RAA). Procedural safety was assessed by registration of intraprocedural adverse events and by macroscopic examination of the excised hearts for the presence of charring or tissue disruption at the lesion site. Results Altogether 39 lesions were created, including 8 endocardial CTI (mean lesion length 20.6 ± 1.65 mm), 26 epicardial ventricle (mean lesion length LV: 25.3 ± 1.35 mm, RV: 24.9 ± 2.40 mm), and 5 epicardial appendage ablations (mean lesion length RAA: 26.0 ± 3.16 mm). Transmurality was achieved in all CTI and atrial appendage ablations, in 62% of the RV ablations and in none of the LV ablations. No perforation or steam pop occurred, and no animal died during the procedure. Conclusion In this porcine study, the 20-mm linear laser ablation catheter has shown excellent results for endocardial cavotricuspid isthmus ablation, and it resulted in acceptable lesion depth during atrial and ventricular epicardial ablation. The absence of tissue charring, steam pops, or microbubbles under the experimental conditions suggests a high degree of procedural safety.
Collapse
Affiliation(s)
- Dennis Krist
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- *Correspondence: Dennis Krist
| | - Dominik Linz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Cardiology, Maastricht University Medical Centre +, Maastricht, Netherlands
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ulrich Schotten
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Stef Zeemering
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Dwayne Leenen
- Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Park SY, Singh-Moon R, Yang H, Saluja D, Hendon C. Quantification of irrigated lesion morphology using near-infrared spectroscopy. Sci Rep 2021; 11:20160. [PMID: 34635764 PMCID: PMC8505541 DOI: 10.1038/s41598-021-99725-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
There are currently limited means by which lesion formation can be confirmed during radiofrequency ablation procedures. The purpose of this study was to evaluate the use of NIRS-integrated RFA catheters for monitoring irrigated lesion progression, ex vivo and in vivo. Open-irrigated NIRS-ablation catheters with optical fibers were fabricated to sample tissue diffuse reflectance. Spectra from 44 irrigated lesions and 44 non-lesion sites from ex vivo swine hearts (n = 15) were used to train and evaluate a predictive model for lesion dimensions based on key spectral features. Additional studies were performed in diluted blood to assess NIRS signatures of catheter-tissue contact status. Finally, the potential of NIRS-RFA catheters for guiding lesion delivery was evaluated in a set of in vivo pilot studies conducted in healthy pigs (n = 4). Model predictions for lesion depth (R = 0.968), width (R = 0.971), and depth percentage (R = 0.924) correlated well with measured lesion dimensions. In vivo deployment in preliminary trials showed robust translational consistency of contact discrimination (P < 0.0001) and lesion depth parameters (< 3% error). NIRS empowered catheters are well suited for monitoring myocardial response to RF ablation and may provide useful intraprocedural feedback for optimizing treatment efficacy alongside current practices.
Collapse
Affiliation(s)
- Soo Young Park
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA
| | - Rajinder Singh-Moon
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA
| | - Haiqiu Yang
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA
| | - Deepak Saluja
- Department of Medicine (Cardiology), Columbia University College of Physicians and Surgeons, 630 W. 168th St, New York, NY, 10032, USA
| | - Christine Hendon
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA.
| |
Collapse
|
7
|
Özsoy Ç, Floryan M, Deán-Ben XL, Razansky D. Endocardial irrigated catheter for volumetric optoacoustic mapping of radio-frequency ablation lesion progression. OPTICS LETTERS 2019; 44:5808-5811. [PMID: 31774785 DOI: 10.1364/ol.44.005808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Radiofrequency (RF) catheter ablation is widely employed for various minimally invasive procedures, including treatment of tumors, cardiac arrhythmias and varicose veins. Accurate real-time monitoring of the ablation treatments remains challenging with the existing clinical imaging modalities due to the lack of spatial or temporal resolution or insufficient tissue contrast for differentiating thermal lesions. Optoacoustic (OA) imaging has been recently suggested for monitoring temperature field and lesion progression during RF interventions. However, strong light absorption by standard metallic catheters hindered practical implementations of this approach. Herein, we introduce a new RF ablation catheter concept for combined RF ablation and OA lesion monitoring. The catheter tip encapsulates a multimode fiber bundle for OA excitation with near-infrared (NIR) light, whereas the electric current is conducted through the irrigation solution, thus avoiding direct exposure of the metallic parts to the excitation light. We optimized the catheter diameter and the saline flow rate in order to attain uniform and deep lesions. The newly introduced hybrid catheter design was successfully tested by real-time monitoring of the ablation process in smooth ventricle and rough atrium walls of a blood-filled ex vivo porcine heart, mimicking in vivo conditions in the clinical setting.
Collapse
|
8
|
Park SY, Singh-Moon RP, Wan EY, Hendon CP. Towards real-time multispectral endoscopic imaging for cardiac lesion quality assessment. BIOMEDICAL OPTICS EXPRESS 2019; 10:2829-2846. [PMID: 31259054 PMCID: PMC6583339 DOI: 10.1364/boe.10.002829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 05/08/2023]
Abstract
Atrial fibrillation (Afib) can lead to life threatening conditions such as heart failure and stroke. During Afib treatment, clinicians aim to repress unusual electrical activity by electrically isolating the pulmonary veins (PV) from the left atrium (LA) using radiofrequency ablation. However, current clinical tools are limited in reliably assessing transmurality of the ablation lesions and detecting the presence of gaps within ablation lines, which can warrant repeat procedures. In this study, we developed an endoscopic multispectral reflectance imaging (eMSI) system for enhanced discrimination of tissue treatment at the PV junction. The system enables direct visualization of cardiac lesions through an endoscope at acquisition rates up to 25 Hz. Five narrowband, high-power LEDs were used to illuminate the sample (450, 530, 625, 810 and 940nm) and combinatory parameters were calculated based on their relative reflectance. A stitching algorithm was employed to generate large field-of-view, multispectral mosaics of the ablated PV junction from individual eMSI images. A total of 79 lesions from 15 swine hearts were imaged, ex vivo. Statistical analysis of the acquired five spectral data sets and ratiometric maps revealed significant differences between transmural lesions, non-transmural lesions around the venoatrial junctions, unablated posterior wall of left atrium tissue, and pulmonary vein (p < 0.0001). A pixel-based quadratic discriminant analysis classifier was applied to distinguish four tissue types: PV, untreated LA, non-transmural and transmural lesions. We demonstrate tissue type classification accuracies of 80.2% and 92.1% for non-transmural and transmural lesions, and 95.0% and 92.8% for PV and untreated LA sites, respectively. These findings showcase the potential of eMSI for lesion validation and may help to improve AFib treatment efficacy.
Collapse
Affiliation(s)
- Soo Young Park
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY, 10027, USA
| | - Rajinder P. Singh-Moon
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY, 10027, USA
| | - Elaine Y. Wan
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY, 10027, USA
| |
Collapse
|
9
|
Singh-Moon RP, Yao X, Iyer V, Marboe C, Whang W, Hendon CP. Real-time optical spectroscopic monitoring of nonirrigated lesion progression within atrial and ventricular tissues. JOURNAL OF BIOPHOTONICS 2019; 12:e201800144. [PMID: 30058239 PMCID: PMC6353711 DOI: 10.1002/jbio.201800144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 05/24/2023]
Abstract
Despite considerable advances in guidance of radiofrequency ablation (RFA) therapy for the treatment of cardiac arrhythmias, success rates have been hampered by a lack of tools for precise intraoperative evaluation of lesion extent. Near-infrared spectroscopic (NIRS) techniques are sensitive to tissue structural and biomolecular properties, characteristics that are directly altered by radiofrequency (RF) treatment. In this work, a combined NIRS-RFA catheter is developed for real-time monitoring of tissue reflectance during RF energy delivery. An algorithm is proposed for processing NIR spectra to approximate nonirrigated lesion depth in both atrial and ventricular tissues. The probe optical geometry was designed to bias measurement influence toward absorption enabling enhanced sensitivity to changes in tissue composition. A set of parameters termed "lesion optical indices" are defined encapsulating spectral differences between ablated and unablated tissue. Utilizing these features, a model for real-time tissue spectra classification and lesion size estimation is presented. Experimental validation conducted within freshly excised porcine cardiac specimens showed strong concordance between algorithm estimates and post-hoc tissue assessment.
Collapse
Affiliation(s)
- Rajinder P. Singh-Moon
- Department of Electrical Engineering, Columbia University, 500 W. 120 St, New York, NY 10027, USA
| | - Xinwen Yao
- Department of Electrical Engineering, Columbia University, 500 W. 120 St, New York, NY 10027, USA
| | - Vivek Iyer
- Department of Medicine, Cardiology Division, Columbia University Medical Center, 630 W. 168 St, New York, NY 10032, USA
| | - Charles Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168 St, New York, NY 10032, USA
| | - William Whang
- Department of Medicine, Cardiology Division, Columbia University Medical Center, 630 W. 168 St, New York, NY 10032, USA
- Currently with Department of Medicine, Cardiology Division, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, 500 W. 120 St, New York, NY 10027, USA
| |
Collapse
|
10
|
Niemeier RC, Etoz S, Gil DA, Skala MC, Brace CL, Rogers JD. Quantifying optical properties with visible and near-infrared optical coherence tomography to visualize esophageal microwave ablation zones. BIOMEDICAL OPTICS EXPRESS 2018; 9:1648-1663. [PMID: 29675308 PMCID: PMC5905912 DOI: 10.1364/boe.9.001648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/02/2023]
Abstract
Microwave ablation is a minimally invasive image guided thermal therapy for cancer that can be adapted to endoscope use in the gastrointestinal (GI) tract. Microwave ablation in the GI tract requires precise control over the ablation zone that could be guided by high resolution imaging with quantitative contrast. Optical coherence tomography (OCT) provides ideal imaging resolution and allows for the quantification of tissue scattering properties to characterize ablated tissue. Visible and near-infrared OCT image analysis demonstrated increased scattering coefficients (μs ) in ablated versus normal tissues (Vis: 347.8%, NIR: 415.0%) and shows the potential for both wavelength ranges to provide quantitative contrast. These data suggest OCT could provide quantitative image guidance and valuable information about antenna performance in vivo.
Collapse
Affiliation(s)
- Ryan C. Niemeier
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sevde Etoz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel A. Gil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christopher L. Brace
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy D. Rogers
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Swift LM, Asfour H, Muselimyan N, Larson C, Armstrong K, Sarvazyan NA. Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions. Heart Rhythm 2017; 15:564-575. [PMID: 29246829 DOI: 10.1016/j.hrthm.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Treatment of cardiac arrhythmias often involves ablating viable muscle tissue within or near islands of scarred myocardium. Yet, today there are limited means by which the boundaries of such scars can be visualized during surgery and distinguished from the sites of acute injury caused by radiofrequency (RF) ablation. OBJECTIVE We sought to explore a hyperspectral imaging (HSI) methodology to delineate and distinguish scar tissue from tissue injury caused by RF ablation. METHODS RF ablation of the ventricular surface of live rats that underwent thoracotomy was followed by a 2-month animal recovery period. During a second surgery, new RF lesions were placed next to the scarred tissue from the previous ablation procedure. The myocardial infarction model was used as an alternative way to create scar tissue. RESULTS Excitation-emission matrices acquired from the sites of RF lesions, scar region, and the surrounding unablated tissue revealed multiple spectral changes. These findings justified HSI of the heart surface using illumination with 365 nm UV light while acquiring spectral images within the visible range. Autofluorescence-based HSI enabled to distinguish sites of RF lesions from scar or unablated myocardium in open-chest rats. A pilot version of a percutaneous HSI catheter was used to demonstrate the feasibility of RF lesion visualization in atrial tissue of live pigs. CONCLUSION HSI based on changes in tissue autofluorescence is a highly effective tool for revealing-in vivo and with high spatial resolution-surface boundaries of myocardial scar and discriminating it from areas of acute necrosis caused by RF ablation.
Collapse
Affiliation(s)
- Luther M Swift
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Huda Asfour
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Narine Muselimyan
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | | | | | - Narine A Sarvazyan
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
| |
Collapse
|
12
|
Gil DA, Swift LM, Asfour H, Muselimyan N, Mercader MA, Sarvazyan NA. Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue. JOURNAL OF BIOPHOTONICS 2017; 10:1008-1017. [PMID: 27545317 PMCID: PMC5511096 DOI: 10.1002/jbio.201600071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/21/2016] [Accepted: 07/29/2016] [Indexed: 05/22/2023]
Abstract
Radiofrequency ablation (RFA) is a widely used treatment for atrial fibrillation, the most common cardiac arrhythmia. Here, we explore autofluorescence hyperspectral imaging (aHSI) as a method to visualize RFA lesions and interlesional gaps in the highly collagenous left atrium. RFA lesions made on the endocardial surface of freshly excised porcine left atrial tissue were illuminated by UV light (365 nm), and hyperspectral datacubes were acquired over the visible range (420-720 nm). Linear unmixing was used to delineate RFA lesions from surrounding tissue, and lesion diameters derived from unmixed component images were quantitatively compared to gross pathology. RFA caused two consistent changes in the autofluorescence emission profile: a decrease at wavelengths below 490 nm (ascribed to a loss of endogenous NADH) and an increase at wavelengths above 490 nm (ascribed to increased scattering). These spectral changes enabled high resolution, in situ delineation of RFA lesion boundaries without the need for additional staining or exogenous markers. Our results confirm the feasibility of using aHSI to visualize RFA lesions at clinically relevant locations. If integrated into a percutaneous visualization catheter, aHSI would enable widefield optical surgical guidance during RFA procedures and could improve patient outcome by reducing atrial fibrillation recurrence.
Collapse
Affiliation(s)
- Daniel A. Gil
- Department of Pharmacology & Physiology, George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC, USA
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, 2301 Vanderbilt Place, Nashville, TN, USA
| | - Luther M. Swift
- Department of Pharmacology & Physiology, George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC, USA
| | - Huda Asfour
- Department of Pharmacology & Physiology, George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC, USA
| | - Narine Muselimyan
- Department of Pharmacology & Physiology, George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC, USA
| | - Marco A. Mercader
- Division of Cardiology, George Washington University Medical Faculty Associates, 2150 Pennsylvania Avenue NW, Suite 4-417, Washington DC, USA
| | - Narine A. Sarvazyan
- Department of Pharmacology & Physiology, George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC, USA
| |
Collapse
|
13
|
Singh-Moon RP, Marboe CC, Hendon CP. Near-infrared spectroscopy integrated catheter for characterization of myocardial tissues: preliminary demonstrations to radiofrequency ablation therapy for atrial fibrillation. BIOMEDICAL OPTICS EXPRESS 2015; 6:2494-2511. [PMID: 26203376 PMCID: PMC4505704 DOI: 10.1364/boe.6.002494] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 05/18/2023]
Abstract
Effects of radiofrequency ablation (RFA) treatment of atrial fibrillation can be limited by the ability to characterize the tissue in contact. Parameters obtained by conventional catheters, such as impedance and temperature can be insufficient in providing physiological information pertaining to effective treatment. In this report, we present a near-infrared spectroscopy (NIRS)-integrated catheter capable of extracting tissue optical properties. Validation experiments were first performed in tissue phantoms with known optical properties. We then apply the technique for characterization of myocardial tissues in swine and human hearts, ex vivo. Additionally, we demonstrate the recovery of critical parameters relevant to RFA therapy including contact verification, and lesion transmurality. These findings support the application of NIRS for improved guidance in RFA therapeutic interventions.
Collapse
Affiliation(s)
- Rajinder P. Singh-Moon
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | - Charles C. Marboe
- Department of Pathology, Columbia University Medical Center, 630 W 168th Street, New York, NY 10032, USA
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| |
Collapse
|
14
|
Abushagur AAG, Arsad N, Reaz MI, Bakar AAA. Advances in bio-tactile sensors for minimally invasive surgery using the fibre Bragg grating force sensor technique: a survey. SENSORS 2014; 14:6633-65. [PMID: 24721774 PMCID: PMC4029712 DOI: 10.3390/s140406633] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022]
Abstract
The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients.
Collapse
Affiliation(s)
- Abdulfatah A G Abushagur
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor 43600, Malaysia.
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor 43600, Malaysia.
| | - Mamun Ibne Reaz
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor 43600, Malaysia.
| | - A Ashrif A Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor 43600, Malaysia
| |
Collapse
|
15
|
Mizuno H, Maccabelli G, Bella PD. Possibility of contact force monitoring during catheter ablation of ventricular tachycardia. Interv Cardiol 2012. [DOI: 10.2217/ica.12.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Mercader M, Swift L, Sood S, Asfour H, Kay M, Sarvazyan N. Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps. Am J Physiol Heart Circ Physiol 2012; 302:H2131-8. [PMID: 22408016 DOI: 10.1152/ajpheart.01141.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Radiofrequency ablation (RFA) aims to produce lesions that interrupt reentrant circuits or block the spread of electrical activation from sites of abnormal activity. Today, there are limited means for real-time visualization of cardiac muscle tissue injury during RFA procedures. We hypothesized that the fluorescence of endogenous NADH could be used as a marker of cardiac muscle injury during epicardial RFA procedures. Studies were conducted in blood-free and blood-perfused hearts from healthy adult Sprague-Dawley rats and New Zealand rabbits. Radiofrequency was applied to the epicardial surface of the heart using a 4-mm standard blazer ablation catheter. A dual camera optical mapping system was used to monitor NADH fluorescence upon ultraviolet illumination of the epicardial surface and to record optical action potentials using the voltage-sensitive probe RH237. Epicardial lesions were seen as areas of low NADH fluorescence. The lesions appeared immediately after ablation and remained stable for several hours. Real-time monitoring of NADH fluorescence allowed visualization of viable tissue between the RFA lesions. Dual recordings of NADH and epicardial electrical activity linked the gaps between lesions to postablation reentries. We found that the fluorescence of endogenous NADH aids the visualization of injured epicardial tissue caused by RFA. This was true for both blood-free and blood-perfused preparations. Gaps between NADH-negative regions revealed unablated tissue, which may promote postablation reentry or provide pathways for the conduction of abnormal electrical activity.
Collapse
Affiliation(s)
- Marco Mercader
- The George Washington University Medical Faculty Associates, Division of Cardiology, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ho SCM, Razavi M, Nazeri A, Song G. FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation. SENSORS 2012; 12:1002-13. [PMID: 22368507 PMCID: PMC3279251 DOI: 10.3390/s120101002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/03/2012] [Accepted: 01/14/2012] [Indexed: 11/16/2022]
Abstract
Atrial fibrillation (AF) is the most common type of arrhythmia, and is characterized by a disordered contractile activity of the atria (top chambers of the heart). A popular treatment for AF is radiofrequency (RF) ablation. In about 2.4% of cardiac RF ablation procedures, the catheter is accidently pushed through the heart wall due to the application of excessive force. Despite the various capabilities of currently available technology, there has yet to be any data establishing how cardiac perforation can be reliably predicted. Thus, two new FBG based sensor prototypes were developed to monitor contact levels and predict perforation. Two live sheep were utilized during the study. It was observed during operation that peaks appeared in rhythm with the heart rate whenever firm contact was made between the sensor and the endocardial wall. The magnitude of these peaks varied with pressure applied by the operator. Lastly, transmural perforation of the left atrial wall was characterized by a visible loading phase and a rapid signal drop-off correlating to perforation. A possible pre-perforation signal was observed for the epoxy-based sensor in the form of a slight signal reversal (12–26% of loading phase magnitude) prior to perforation (occurring over 8 s).
Collapse
Affiliation(s)
- Siu Chun Michael Ho
- Department of Mechanical Engineering, University of Houston, Houston, TX 77004, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-713-743-4498
| | - Mehdi Razavi
- Division of Cardiology, Department of Medicine, Texas Heart Institute, Houston, TX 77004, USA; E-Mails: (M.R.); (A.N.)
| | - Alireza Nazeri
- Division of Cardiology, Department of Medicine, Texas Heart Institute, Houston, TX 77004, USA; E-Mails: (M.R.); (A.N.)
| | - Gangbing Song
- Department of Mechanical Engineering, University of Houston, Houston, TX 77004, USA; E-Mail:
| |
Collapse
|