1
|
Li W, Miao Y, Fei C, Zhang H, Li B, Zhang K. Enhanced photothermal signal detection by graphene oxide integrated long period fiber grating for on-site quantification of sodium copper chlorophyllin. Analyst 2021; 146:3617-3622. [PMID: 33928968 DOI: 10.1039/d1an00444a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An enhanced photothermal signal detection method based on graphene oxide (GO) integrated long period fiber grating (LPFG) for on-site sodium copper chlorophyllin (SCC) quantification is proposed. SCC, as a porphyrin compound, can be photonically excited to induce a stronger photothermal effect. GO offers superior molecular adsorption and thermal conductivity properties; depositing it on the LPFG surface significantly improves the sensitivity and detection efficiency of the SCC photothermal signal, when irradiated with a 405 nm laser. The experimental results showed improved performance compared with those from uncoated LPFG, with a sensitivity of 0.0587 dB (mg L-1)-1 and a limit of detection (LOD) of 0.17 mg kg-1, which is also an order of magnitude lower than that of traditional high-performance liquid chromatography. The proposed method has potential applications in the fields of real-time food safety monitoring, environmental pollutant detection, and disease diagnosis.
Collapse
Affiliation(s)
- Wenjie Li
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yinping Miao
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chengwei Fei
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Hongmin Zhang
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Bin Li
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Kailiang Zhang
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
2
|
Qiao Q, Xia J, Lee C, Zhou G. Applications of Photonic Crystal Nanobeam Cavities for Sensing. MICROMACHINES 2018; 9:mi9110541. [PMID: 30715040 PMCID: PMC6267459 DOI: 10.3390/mi9110541] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/09/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
In recent years, there has been growing interest in optical sensors based on microcavities due to their advantages of size reduction and enhanced sensing capability. In this paper, we aim to give a comprehensive review of the field of photonic crystal nanobeam cavity-based sensors. The sensing principles and development of applications, such as refractive index sensing, nanoparticle sensing, optomechanical sensing, and temperature sensing, are summarized and highlighted. From the studies reported, it is demonstrated that photonic crystal nanobeam cavities, which provide excellent light confinement capability, ultra-small size, flexible on-chip design, and easy integration, offer promising platforms for a range of sensing applications.
Collapse
Affiliation(s)
- Qifeng Qiao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117579, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore.
| | - Ji Xia
- Department of Mechanical Engineering, National University of Singapore, Singapore 117579, Singapore.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore.
| | - Guangya Zhou
- Department of Mechanical Engineering, National University of Singapore, Singapore 117579, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore.
| |
Collapse
|
3
|
He F, MacDonald KF, Fang X. Coherent illumination spectroscopy of nanostructures and thin films on thick substrates. OPTICS EXPRESS 2018; 26:12415-12424. [PMID: 29801279 DOI: 10.1364/oe.26.012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Many nanophotonic and nanoelectronic devices contain nanostructures and ultrathin films on the surface of a thick, effectively semi-infinite, substrate. Here we consider a spectroscopic technique based upon coherent illumination, for characterising such samples. The method uses two counter-propagating light beams to generate specific field configurations at the substrate surface plane, which can be modulated, for example, to selectively excite and thereby discriminate between resonant modes of plasmonic nanostructures, or to measure thin films thickness with nanometre resolution. The technique offers a variety of practical applications for the coherent illumination in solid state physics, analytical chemistry, biochemistry, and nano-engineering.
Collapse
|
4
|
Wang R, Vasiliev A, Muneeb M, Malik A, Sprengel S, Boehm G, Amann MC, Šimonytė I, Vizbaras A, Vizbaras K, Baets R, Roelkens G. III-V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2-4 μm Wavelength Range. SENSORS 2017; 17:s17081788. [PMID: 28777291 PMCID: PMC5579498 DOI: 10.3390/s17081788] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022]
Abstract
The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.
Collapse
Affiliation(s)
- Ruijun Wang
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Anton Vasiliev
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Muhammad Muneeb
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Aditya Malik
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Stephan Sprengel
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.
| | - Gerhard Boehm
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.
| | - Markus-Christian Amann
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.
| | - Ieva Šimonytė
- Brolis Semiconductors UAB, Moletu pl. 73, Vilnius LT-14259, Lithuania.
| | | | | | - Roel Baets
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Gunther Roelkens
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
5
|
Cheng Z, Goda K. Design of waveguide-integrated graphene devices for photonic gas sensing. NANOTECHNOLOGY 2016; 27:505206. [PMID: 27855120 DOI: 10.1088/0957-4484/27/50/505206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present waveguide-integrated graphene devices for photonic gas sensing. In a gas environment, graphene's conductivity is changed by adsorbed gas molecules which serve as charge-carrier donors or acceptors. To accurately probe gas-induced variations in the graphene's conductivity, we optimize the graphene's Fermi level and spectral region. Then, we propose graphene-on-silicon and graphene-on-germanium suspended membrane slot waveguides in which propagating light in the waveguide has a strong interaction with the top graphene layer. The gas concentration can be calculated by measuring the spectrum of the optical reflection from the waveguide Bragg grating. The maximum sensitivity of the waveguide-integrated gas sensor can reach one part per million for sensing gaseous nitrogen dioxide. Its sensitivity is about 20 times higher than that of the graphene-covered microfiber sensor and is comparable with that of a graphene plasmonic sensor. The fabrication of the proposed graphene device is CMOS compatible. Our results pave a way for chip-integrated sensitive photonic gas sensors.
Collapse
Affiliation(s)
- Zhenzhou Cheng
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
6
|
Vasiliev A, Malik A, Muneeb M, Kuyken B, Baets R, Roelkens G. On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00428] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton Vasiliev
- Photonics
Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center
for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Aditya Malik
- Photonics
Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center
for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Muhammad Muneeb
- Photonics
Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center
for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Bart Kuyken
- Photonics
Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center
for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Roel Baets
- Photonics
Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center
for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Günther Roelkens
- Photonics
Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center
for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Conteduca D, Dell'Olio F, Ciminelli C, Armenise MN. New miniaturized exhaled nitric oxide sensor based on a high Q/V mid-infrared 1D photonic crystal cavity. APPLIED OPTICS 2015; 54:2208-2217. [PMID: 25968502 DOI: 10.1364/ao.54.002208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
A high Q/V mid-infrared 1D photonic crystal cavity in chalcogenide glass AMTIR-1 (Ge33As12Se55) resonating at λR=5.26 μm has been proposed as a key element of a sensor able to evaluate the nitric oxide (NO) concentration in the exhaled breath, namely fraction exhaled NO. The cavity design has been carried out through 3D finite-element method simulations. A Q-factor of 1.1×104 and a mode volume V=0.8 (λ/n)3, corresponding to a Q/V ratio of 1.4×104(λ/n)-3, have been obtained with a resonance transmission coefficient T=15%. A sensitivity of 10 ppb has been calculated with reference to the photothermal physical property of the material. Such a result is lower than the state-of-the-art of NO sensors proposed in literature, where hundreds of parts per trillion-level detection seem to have been achieved, but comparable with the performance obtained by commercial devices. The main advantages of the new device are in terms of footprint (=150 μm2), smaller at least 1 order of magnitude than those in literature, fast response time (only few seconds), and potential low cost. Such properties make possible in a handheld device the sensor integration in a multi-analysis system for detecting the presence of several trace gases, improving prevention, and reducing the duration of drug treatment for asthma and viral infections.
Collapse
|
8
|
Singh V, Lin PT, Patel N, Lin H, Li L, Zou Y, Deng F, Ni C, Hu J, Giammarco J, Soliani AP, Zdyrko B, Luzinov I, Novak S, Novak J, Wachtel P, Danto S, Musgraves JD, Richardson K, Kimerling LC, Agarwal AM. Mid-infrared materials and devices on a Si platform for optical sensing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:014603. [PMID: 27877641 PMCID: PMC5090602 DOI: 10.1088/1468-6996/15/1/014603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 01/30/2014] [Accepted: 12/01/2013] [Indexed: 05/14/2023]
Abstract
In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiN x waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors.
Collapse
Affiliation(s)
- Vivek Singh
- Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pao Tai Lin
- Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil Patel
- Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hongtao Lin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lan Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yi Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Fei Deng
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Juejun Hu
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - James Giammarco
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Anna Paola Soliani
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Bogdan Zdyrko
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Igor Luzinov
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Spencer Novak
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Jackie Novak
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Peter Wachtel
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Sylvain Danto
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - J David Musgraves
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Kathleen Richardson
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
- College of Optics and Photonics, CREOL, University of Central Florida, Orlando, FL 32816, USA
| | - Lionel C Kimerling
- Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anuradha M Agarwal
- Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Lin H, Li L, Deng F, Ni C, Danto S, Musgraves JD, Richardson K, Hu J. Demonstration of mid-infrared waveguide photonic crystal cavities. OPTICS LETTERS 2013; 38:2779-2782. [PMID: 23903140 DOI: 10.1364/ol.38.002779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have demonstrated what we believe to be the first waveguide photonic crystal cavity operating in the mid-infrared. The devices were fabricated from Ge23Sb7S70 chalcogenide glass (ChG) on CaF2 substrates by combing photolithographic patterning and focused ion beam milling. The waveguide-coupled cavities were characterized using a fiber end fire coupling method at 5.2 μm wavelength, and a loaded quality factor of ~2000 was measured near the critical coupling regime.
Collapse
Affiliation(s)
- Hongtao Lin
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lin H, Li L, Zou Y, Danto S, Musgraves JD, Richardson K, Kozacik S, Murakowski M, Prather D, Lin PT, Singh V, Agarwal A, Kimerling LC, Hu J. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. OPTICS LETTERS 2013; 38:1470-1472. [PMID: 23632521 DOI: 10.1364/ol.38.001470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon fabricated using optical lithography and a lift-off process. The resonators exhibited a high intrinsic quality factor of 2×10(5) at 5.2 μm wavelength, which is among the highest values reported in on-chip mid-infrared (mid-IR) photonic devices. The resonator can serve as a key building block for mid-IR planar photonic circuits.
Collapse
Affiliation(s)
- Hongtao Lin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lin H, Yi Z, Hu J. Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design. OPTICS LETTERS 2012; 37:1304-1306. [PMID: 22513667 DOI: 10.1364/ol.37.001304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We propose and theoretically examine a novel mid-infrared (mid-IR) photothermal spectroscopic sensing technique capable of detecting a single small molecule. Our conceptual design attains such high sensitivity by leveraging dramatically amplified photothermal effects in an optical nanocavity doubly resonant at both mid-IR pump and near-IR probe wavelengths. Unlike conventional mid-IR spectroscopy, the technique eliminates the need for cryogenically cooled mid-IR photodetectors, as optical detection is performed solely at the near-IR probe wavelength. A device design based on nested one-dimensional nanobeam photonic crystal cavities is numerically analyzed to demonstrate the technique's potential for single small gas molecule detection.
Collapse
Affiliation(s)
- Hongtao Lin
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
12
|
Carlie N, Musgraves JD, Zdyrko B, Luzinov I, Hu J, Singh V, Agarwal A, Kimerling LC, Canciamilla A, Morichetti F, Melloni A, Richardson K. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges. OPTICS EXPRESS 2010; 18:26728-26743. [PMID: 21165023 DOI: 10.1364/oe.18.026728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, attributes of chalcogenide glass (ChG) based integrated devices are discussed in detail, including origins of optical loss and processing steps used to reduce their contributions to optical component performance. Specifically, efforts to reduce loss and tailor optical characteristics of planar devices utilizing solution-based glass processing and thermal reflow techniques are presented and their results quantified. Post-fabrication trimming techniques based on the intrinsic photosensitivity of the chalcogenide glass are exploited to compensate for fabrication imperfections of ring resonators. Process parameters and implications on enhancement of device fabrication flexibility are presented.
Collapse
Affiliation(s)
- Nathan Carlie
- School of Materials Science and Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|