1
|
Hekrdla M, Roesel D, Hansen N, Frederick S, Umar K, Petráková V. Optimized molecule detection in localization microscopy with selected false positive probability. Nat Commun 2025; 16:601. [PMID: 39799127 PMCID: PMC11724879 DOI: 10.1038/s41467-025-55952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Single-molecule localization microscopy (SMLM) allows imaging beyond the diffraction limit. Detection of molecules is a crucial initial step in SMLM. False positive detections, which are not quantitatively controlled in current methods, are a source of artifacts that affect the entire SMLM analysis pipeline. Furthermore, current methods lack standardization, which hinders reproducibility. Here, we present an optimized molecule detection method which combines probabilistic thresholding with theoretically optimal filtering. The probabilistic thresholding enables control over false positive detections while optimal filtering minimizes false negatives. A theoretically optimal Poisson matched filter is used as a performance benchmark to evaluate existing filtering methods. Overall, our approach allows the detection of molecules in a robust, single-parameter and user-unbiased manner. This will minimize artifacts and enable data reproducibility in SMLM.
Collapse
Affiliation(s)
- Miroslav Hekrdla
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia.
| | - David Roesel
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Niklas Hansen
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Soumya Frederick
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Khalilullah Umar
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czechia
| | - Vladimíra Petráková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
2
|
Yu W, Rush C, Tingey M, Junod S, Yang W. Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:356-371. [PMID: 37501792 PMCID: PMC10369678 DOI: 10.1021/cbmi.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coby Rush
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Samuel Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
3
|
Li M, Vultorius C, Bethi M, Yu Y. Spatial Organization of Dectin-1 and TLR2 during Synergistic Crosstalk Revealed by Super-resolution Imaging. J Phys Chem B 2022; 126:5781-5792. [PMID: 35913832 PMCID: PMC10636754 DOI: 10.1021/acs.jpcb.2c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Innate immune cells recognize and elicit responses against pathogens by integrating signals from different types of cell-surface receptors. How the receptors interact in the membrane to enable their signaling crosstalk is poorly understood. Here, we reveal the nanoscale organization of TLR2 and Dectin-1, a receptor pair known to cooperate in regulating antifungal immunity, through their synergistic signaling crosstalk at macrophage cell membranes. Using super-resolution single-molecule localization microscopy, we show that discrete noncolocalized nanoclusters of Dectin-1 and TLR2 are partially overlapped during their synergistic crosstalk. Compared to when one type of receptor is activated alone, the simultaneous activation of Dectin-1 and TLR2 leads to a higher percentage of both receptors being activated by their specific ligands and consequently an increased level of tyrosine phosphorylation. Our results depict, in nanoscale detail, how Dectin-1 and TLR2 achieve synergistic signaling through the spatial organization of their receptor nanoclusters.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christopher Vultorius
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Manisha Bethi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Chung J, Jeong U, Jeong D, Go S, Kim D. Development of a New Approach for Low-Laser-Power Super-Resolution Fluorescence Imaging. Anal Chem 2021; 94:618-627. [PMID: 34752081 DOI: 10.1021/acs.analchem.1c01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of super-resolution fluorescence microscopy over the past decade has drastically improved the resolution of light microscopy to ∼10 nm. Stochastic optical reconstruction microscopy (STORM) can be used to achieve subdiffraction-limit resolution by sequentially imaging and localizing individual fluorophores. In principle, the super-resolution of STORM can be obtained by high-accuracy localization of photoswitchable fluorophores, which require fast photoswitching and bright fluorescence intensity from a single emitter. It is known that the switching rate of photoswitchable fluorophores depends on the laser power─a high laser power being required for the enhancement of imaging resolution. However, high laser power is usually harmful to biological specimens and limits the imaging time because of its photobleaching effects and high phototoxicity. In this study, we attempted to overcome this problem by improving the STORM resolution at a lower laser power. Through the quantitative analysis of the photoswitching behavior of single fluorophores under different laser power conditions, we developed a new approach to achieve super-resolution fluorescence images at a laser power 10 times lower than had previously been reported. This approach is expected to play an increasingly significant role in super-resolution imaging of power-sensitive samples.
Collapse
Affiliation(s)
- Jinkyoung Chung
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Uidon Jeong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Dokyung Jeong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Seokran Go
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.,Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Balagopalan L, Raychaudhuri K, Samelson LE. Microclusters as T Cell Signaling Hubs: Structure, Kinetics, and Regulation. Front Cell Dev Biol 2021; 8:608530. [PMID: 33575254 PMCID: PMC7870797 DOI: 10.3389/fcell.2020.608530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
When T cell receptors (TCRs) engage with stimulatory ligands, one of the first microscopically visible events is the formation of microclusters at the site of T cell activation. Since the discovery of these structures almost 20 years ago, they have been studied extensively in live cells using confocal and total internal reflection fluorescence (TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the spatial relationships of signaling components within microclusters, the kinetics of their assembly and disassembly, and the role of vesicular trafficking in microcluster formation and maintenance were not finely characterized. In this review, we will summarize how new microscopy techniques have revealed novel insights into the assembly of these structures. The sub-diffraction organization of microclusters as well as the finely dissected kinetics of recruitment and disassociation of molecules from microclusters will be discussed. The role of cell surface molecules in microcluster formation and the kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is described. Finally, the role of post-translational modifications such as ubiquitination in the downregulation of cell surface signaling molecules is also discussed. These results will be related to the role of these structures and processes in T cell activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kumarkrishna Raychaudhuri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
de Albuquerque CDL, Schultz ZD. Super-resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells. Anal Chem 2020; 92:9389-9398. [PMID: 32484329 PMCID: PMC7364441 DOI: 10.1021/acs.analchem.0c01864] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to locate and identify molecular interactions in cells has significant importance for understanding protein function and molecular biology. Functionalized metallic nanoparticles have been used as probes for protein tracking and drug delivery because of their ability to carry therapeutic agents and readily functionalized surfaces. In this work, we present a super-resolution surface-enhanced Raman scattering (SERS) approach for imaging and tracking membrane receptors interacting with peptide-functionalized gold nanostars (AuNS). The αvβ3 integrin receptors in colon cancer cells are successfully targeted and imaged using AuNS with the high-affinity amino acid sequence arginine-glycine-aspartic acid-phenylalanine-cysteine (RGDFC) attached. The RGDFC peptide interaction with the integrin receptor provides a bright and fluctuating SERS signal that can be analyzed with localization microscopy algorithms. Additionally, the observed SERS spectrum is used to confirm protein-peptide interaction. Experiments with functionalized and bare AuNS illustrate specific and nonspecific binding events. Specific binding is monitored with a localization precision of ∼6 nm. The observed spatial resolution is associated with tight binding, which was confirmed by the slower diffusion coefficient measured from 4.4 × 10-11 cm2/s for the AuNS-RGDFC compared to 7.8 × 10-10 cm2/s for the bare AuNS. Super-resolution SERS images at different focal planes show evidence of internalized particles and suggest insights into protein orientation on the surface of cells. Our work demonstrates super-resolution SERS imaging to probe membrane receptor interactions in cells, providing chemical information and spatial resolution with potential for diverse applications in life science and biomedicine.
Collapse
Affiliation(s)
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
Ma H, Liu Y. Super-resolution localization microscopy: Toward high throughput, high quality, and low cost. APL PHOTONICS 2020; 5:060902. [PMID: 34350342 PMCID: PMC8330581 DOI: 10.1063/5.0011731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
After nearly 15 years since its initial debut, super-resolution localization microscopy that surpasses the diffraction-limited resolution barrier of optical microscopy has rapidly gotten out of the ivory tower and entered a new phase to address various challenging biomedical questions. Recent advances in this technology greatly increased the imaging throughput, improved the imaging quality, simplified the sample preparation, and reduced the system cost, making this technology suitable for routine biomedical research. We will provide our perspective on the recent technical advances and their implications in serving the community of biomedical research.
Collapse
Affiliation(s)
- Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
8
|
Karanastasis AA, Kenath GS, Sundararaman R, Ullal CK. Quantification of functional crosslinker reaction kinetics via super-resolution microscopy of swollen microgels. SOFT MATTER 2019; 15:9336-9342. [PMID: 31687735 DOI: 10.1039/c9sm01618j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Super resolution microscopy (SRM) brings the advantages of optical microscopy to the imaging of nanostructured soft matter, and in colloidal microgels, promises to quantify variations of crosslink densities at unprecedented length scales. However, the distribution of all crosslinks does not coincide with that of dye-tagged crosslinks, and density quantification in SRM is not guaranteed due to over/under-counting dye molecules. Here we demonstrate that SRM images of microgels encode reaction rate constants of functional cross linkers, which hold the key to correlating these distributions. Combined with evolution of microgel particle radii, the functional cross linker distributions predict consumption versus time with high fidelity. Using a Bayesian regression approach, we extract reaction rate constants for homo and cross propagation of the functional crosslinker, which should be widely useful for predicting spatial variations in crosslink density of gels.
Collapse
Affiliation(s)
- Apostolos A Karanastasis
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA.
| | - Gopal S Kenath
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA.
| | - Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA.
| | - Chaitanya K Ullal
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA.
| |
Collapse
|
9
|
MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chem Biol 2019; 26:600-614.e7. [PMID: 30745238 DOI: 10.1016/j.chembiol.2019.01.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
The proper staining of the plasma membrane (PM) is critical in bioimaging as it delimits the cell. Herein, we developed MemBright, a family of six cyanine-based fluorescent turn-on PM probes that emit from orange to near infrared when reaching the PM, and enable homogeneous and selective PM staining with excellent contrast in mono- and two-photon microscopy. These probes are compatible with long-term live-cell imaging and immunostaining. Moreover, MemBright label neurons in a brighter manner than surrounding cells, allowing identification of neurons in acute brain tissue sections and neuromuscular junctions without any use of transfection or transgenic animals. In addition, MemBright probes were used in super-resolution imaging to unravel the neck of dendritic spines. 3D multicolor dSTORM in combination with immunostaining revealed en-passant synapse displaying endogenous glutamate receptors clustered at the axonal-dendritic contact site. MemBright probes thus constitute a universal toolkit for cell biology and neuroscience biomembrane imaging with a variety of microscopy techniques. VIDEO ABSTRACT.
Collapse
|
10
|
Lukeš T, Pospíšil J, Fliegel K, Lasser T, Hagen GM. Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors. Gigascience 2018; 7:1-10. [PMID: 29361123 PMCID: PMC5841371 DOI: 10.1093/gigascience/giy002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/10/2018] [Indexed: 01/22/2023] Open
Abstract
Background Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusions This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.
Collapse
Affiliation(s)
- Tomáš Lukeš
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland
| | - Jakub Pospíšil
- Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague 6, Czech Republic
| | - Karel Fliegel
- Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague 6, Czech Republic
| | - Theo Lasser
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland
| | - Guy M Hagen
- UCCS center for the Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado, 80918, USA
| |
Collapse
|
11
|
Diamantis K, Greenaway AH, Anderson T, Jensen JA, Dalgarno PA, Sboros V. Super-Resolution Axial Localization of Ultrasound Scatter Using Multi-Focal Imaging. IEEE Trans Biomed Eng 2018; 65:1840-1851. [DOI: 10.1109/tbme.2017.2769164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
A High-Efficiency Super-Resolution Reconstruction Method for Ultrasound Microvascular Imaging. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The emergence of super-resolution imaging makes it possible to display the microvasculatures clearly using ultrasound imaging, which is of great importance in the early diagnosis of cancer. At present, the super-resolution performance can only be achieved when the sampling signal is long enough (usually more than 10,000 frames). Thus, the imaging time resolution is not suitable for clinical use. In this paper, we proposed a novel super-resolution reconstruction method, which is proved to have a satisfactory resolution using shorter sampling signal sequences. In the microbubble localization step, the integrated form of the 2D Gaussian function is innovatively adopted for image deconvolution in our method, which enhances the accuracy of microbubble positioning. In the trajectory tracking step, for the first time the averaged shifted histogram technique is presented for the visualization, which greatly improves the precision of reconstruction. In vivo experiments on rabbits were conducted to verify the effectiveness of the proposed method. Compared to the conventional reconstruction method, our method significantly reduces the Full-Width-at-Half-Maximum (FWHM) by 50% using only 400-frame signals. Besides, there is no significant increase in the running time using the proposed method. Considering its imaging performance and used frame number, the conclusion can be drawn that the proposed method advances the application of super-resolution imaging to the clinical use with a much higher time resolution.
Collapse
|
13
|
Lee A, Tsekouras K, Calderon C, Bustamante C, Pressé S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem Rev 2017; 117:7276-7330. [PMID: 28414216 PMCID: PMC5487374 DOI: 10.1021/acs.chemrev.6b00729] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light's diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we've termed the interpretation problem.
Collapse
Affiliation(s)
- Antony Lee
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Konstantinos Tsekouras
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California at Berkeley, Berkeley, California 94720, United States
| | - Steve Pressé
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Cell and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
14
|
Barr VA, Yi J, Samelson LE. Super-resolution Analysis of TCR-Dependent Signaling: Single-Molecule Localization Microscopy. Methods Mol Biol 2017; 1584:183-206. [PMID: 28255704 PMCID: PMC6676910 DOI: 10.1007/978-1-4939-6881-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-molecule localization microscopy (SMLM) comprises methods that produce super-resolution images from molecular locations of single molecules. These techniques mathematically determine the center of a diffraction-limited spot produced by a fluorescent molecule, which represents the most likely location of the molecule. Only a small cohort of well-separated molecules is visualized in a single image, and then many images are obtained from a single sample. The localizations from all the images are combined to produce a super-resolution picture of the sample. Here we describe the application of two methods, photoactivation localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM), to the study of signaling microclusters in T cells.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4256, USA
| | - Jason Yi
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4256, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4256, USA.
| |
Collapse
|
15
|
Ilovitsh T, Jalali B, Asghari MH, Zalevsky Z. Phase stretch transform for super-resolution localization microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:4198-4209. [PMID: 27867725 PMCID: PMC5102550 DOI: 10.1364/boe.7.004198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Super-resolution localization microscopy has revolutionized the observation of living structures at the cellular scale, by achieving a spatial resolution that is improved by more than an order of magnitude compared to the diffraction limit. These methods localize single events from isolated sources in repeated cycles in order to achieve super-resolution. The requirement for sparse distribution of simultaneously activated sources in the field of view dictates the acquisition of thousands of frames in order to construct the full super-resolution image. As a result, these methods have slow temporal resolution which is a major limitation when investigating live-cell dynamics. In this paper we present the use of a phase stretch transform for high-density super-resolution localization microscopy. This is a nonlinear frequency dependent transform that emulates the propagation of light through a physical medium with a specific warped diffractive property and applies a 2D phase function to the image in the frequency domain. By choosing properly the transform parameters and the phase kernel profile, the point spread function of each emitter can be sharpened and narrowed. This enables the localization of overlapping emitters, thus allowing a higher density of activated emitters as well as shorter data collection acquisition rates. The method is validated by numerical simulations and by experimental data obtained using a microtubule sample.
Collapse
Affiliation(s)
- Tali Ilovitsh
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Bahram Jalali
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mohammad H. Asghari
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
16
|
Kwakwa K, Savell A, Davies T, Munro I, Parrinello S, Purbhoo MA, Dunsby C, Neil MAA, French PMW. easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy. JOURNAL OF BIOPHOTONICS 2016; 9:948-957. [PMID: 27592533 DOI: 10.1002/jbio.201500324] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 06/06/2023]
Abstract
TIRF and STORM microscopy are super-resolving fluorescence imaging modalities for which current implementations on standard microscopes can present significant complexity and cost. We present a straightforward and low-cost approach to implement STORM and TIRF taking advantage of multimode optical fibres and multimode diode lasers to provide the required excitation light. Combined with open source software and relatively simple protocols to prepare samples for STORM, including the use of Vectashield for non-TIRF imaging, this approach enables TIRF and STORM imaging of cells labelled with appropriate dyes or expressing suitable fluorescent proteins to become widely accessible at low cost.
Collapse
Affiliation(s)
- Kwasi Kwakwa
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ.
| | - Alexander Savell
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
- Institute of Chemical Biology, Imperial College London, London, SW7 2AZ
| | - Timothy Davies
- MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN
| | - Ian Munro
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
| | - Simona Parrinello
- MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN
| | - Marco A Purbhoo
- Section of Hepatology, QEQM Hospital, Imperial College London, London, W2 1PG, UK
| | - Chris Dunsby
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
- Centre for Pathology, Imperial College London, London, W12 0NN
| | - Mark A A Neil
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
| | - Paul M W French
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
| |
Collapse
|
17
|
Ovesný M, Křížek P, Švindrych Z, Hagen GM. High density 3D localization microscopy using sparse support recovery. OPTICS EXPRESS 2014; 22:31263-76. [PMID: 25607074 DOI: 10.1364/oe.22.031263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-molecule localization microscopy methods offer high spatial resolution, but they are not always suitable for live cell imaging due to limited temporal resolution. One strategy is to increase the density of photoactivated molecules present in each image, however suitable analysis algorithms for such data are still lacking. We present 3denseSTORM, a new algorithm for localization microscopy which is able to recover 2D or 3D super-resolution images from a sequence of diffraction limited images with high densities of photoactivated molecules. The algorithm is based on sparse support recovery and uses a Poisson noise model, which becomes critical in low-light conditions. For 3D data reconstruction we use the astigmatism and biplane imaging methods. We derive the theoretical resolution limits of the method and show examples of image reconstructions in simulations and in real 2D and 3D biological samples. The method is suitable for fast image acquisition in densely labeled samples and helps facilitate live cell studies with single molecule localization microscopy.
Collapse
|
18
|
Smirnov E, Borkovec J, Kováčik L, Svidenská S, Schröfel A, Skalníková M, Švindrych Z, Křížek P, Ovesný M, Hagen GM, Juda P, Michalová K, Cardoso MC, Cmarko D, Raška I. Separation of replication and transcription domains in nucleoli. J Struct Biol 2014; 188:259-66. [PMID: 25450594 DOI: 10.1016/j.jsb.2014.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 01/07/2023]
Abstract
In mammalian cells, active ribosomal genes produce the 18S, 5.8S and 28S RNAs of ribosomal particles. Transcription levels of these genes are very high throughout interphase, and the cell needs a special strategy to avoid collision of the DNA polymerase and RNA polymerase machineries. To investigate this problem, we measured the correlation of various replication and transcription signals in the nucleoli of HeLa, HT-1080 and NIH 3T3 cells using a specially devised software for analysis of confocal images. Additionally, to follow the relationship between nucleolar replication and transcription in living cells, we produced a stable cell line expressing GFP-RPA43 (subunit of RNA polymerase I, pol I) and RFP-PCNA (the sliding clamp protein) based on human fibrosarcoma HT-1080 cells. We found that replication and transcription signals are more efficiently separated in nucleoli than in the nucleoplasm. In the course of S phase, separation of PCNA and pol I signals gradually increased. During the same period, separation of pol I and incorporated Cy5-dUTP signals decreased. Analysis of single molecule localization microscopy (SMLM) images indicated that transcriptionally active FC/DFC units (i.e. fibrillar centers with adjacent dense fibrillar components) did not incorporate DNA nucleotides. Taken together, our data show that replication of the ribosomal genes is spatially separated from their transcription, and FC/DFC units may provide a structural basis for that separation.
Collapse
Affiliation(s)
- E Smirnov
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - J Borkovec
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - L Kováčik
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - S Svidenská
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - A Schröfel
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - M Skalníková
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Z Švindrych
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - P Křížek
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - M Ovesný
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - G M Hagen
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - P Juda
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - K Michalová
- Centre of Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnosis, General University Hospital and First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - M C Cardoso
- Department of Biology, Technische Universitat Darmstadt, Darmstadt, Germany
| | - D Cmarko
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - I Raška
- Institute of Cell Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
19
|
Ovesný M, Křížek P, Borkovec J, Svindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 2014; 30:2389-90. [PMID: 24771516 PMCID: PMC4207427 DOI: 10.1093/bioinformatics/btu202] [Citation(s) in RCA: 915] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Summary: ThunderSTORM is an open-source, interactive and modular plug-in for ImageJ designed for automated processing, analysis and visualization of data acquired by single-molecule localization microscopy methods such as photo-activated localization microscopy and stochastic optical reconstruction microscopy. ThunderSTORM offers an extensive collection of processing and post-processing methods so that users can easily adapt the process of analysis to their data. ThunderSTORM also offers a set of tools for creation of simulated data and quantitative performance evaluation of localization algorithms using Monte Carlo simulations. Availability and implementation: ThunderSTORM and the online documentation are both freely accessible at https://code.google.com/p/thunder-storm/ Contact:guy.hagen@lf1.cuni.cz Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Martin Ovesný
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Pavel Křížek
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Josef Borkovec
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Zdeněk Svindrych
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| | - Guy M Hagen
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic
| |
Collapse
|
20
|
Köthe U, Herrmannsdörfer F, Kats I, Hamprecht FA. SimpleSTORM: a fast, self-calibrating reconstruction algorithm for localization microscopy. Histochem Cell Biol 2014; 141:613-27. [PMID: 24722686 DOI: 10.1007/s00418-014-1211-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 11/28/2022]
Abstract
Although there are many reconstruction algorithms for localization microscopy, their use is hampered by the difficulty to adjust a possibly large number of parameters correctly. We propose SimpleSTORM, an algorithm that determines appropriate parameter settings directly from the data in an initial self-calibration phase. The algorithm is based on a carefully designed yet simple model of the image acquisition process which allows us to standardize each image such that the background has zero mean and unit variance. This standardization makes it possible to detect spots by a true statistical test (instead of hand-tuned thresholds) and to de-noise the images with an efficient matched filter. By reducing the strength of the matched filter, SimpleSTORM also performs reasonably on data with high-spot density, trading off localization accuracy for improved detection performance. Extensive validation experiments on the ISBI Localization Challenge Dataset, as well as real image reconstructions, demonstrate the good performance of our algorithm.
Collapse
Affiliation(s)
- Ullrich Köthe
- Multi-Dimensional Image Processing Group, University of Heidelberg, Speyerer Strasse 6, 69115, Heidelberg, Germany,
| | | | | | | |
Collapse
|
21
|
Abstract
Superresolution localization microscopy methods produce nanoscale images via a combination of intermittently active fluorescent probes and algorithms that can precisely determine the positions of these probes from single-molecule or few-molecule images. These algorithms vary widely in their underlying principles, complexity, and accuracy. In this review, we begin by surveying the principles of localization microscopy and describing the fundamental limits to localization precision. We then examine several different families of fluorophore localization algorithms, comparing their complexity, performance, and range of applicability (e.g., whether they require particular types of experimental information, are optimized for specific situations, or are more general). Whereas our focus is on the localization of single isotropic emitters in two dimensions, we also consider oriented dipoles, three-dimensional localization, and algorithms that can handle overlapping images of several nearby fluorophores. Throughout the review, we try to highlight practical advice for users of fluorophore localization algorithms, as well as open questions.
Collapse
Affiliation(s)
- Alexander R Small
- Department of Physics and Astronomy, California State Polytechnic University, Pomona, California 91768
| | | |
Collapse
|
22
|
Li Y, Ishitsuka Y, Hedde PN, Nienhaus GU. Fast and efficient molecule detection in localization-based super-resolution microscopy by parallel adaptive histogram equalization. ACS NANO 2013; 7:5207-14. [PMID: 23647371 DOI: 10.1021/nn4009388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In localization-based super-resolution microscopy, individual fluorescent markers are stochastically photoactivated and subsequently localized within a series of camera frames, yielding a final image with a resolution far beyond the diffraction limit. Yet, before localization can be performed, the subregions within the frames where the individual molecules are present have to be identified-oftentimes in the presence of high background. In this work, we address the importance of reliable molecule identification for the quality of the final reconstructed super-resolution image. We present a fast and robust algorithm (a-livePALM) that vastly improves the molecule detection efficiency while minimizing false assignments that can lead to image artifacts.
Collapse
Affiliation(s)
- Yiming Li
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | | | | | | |
Collapse
|
23
|
Fluorescence nanoscopy. Methods and applications. J Chem Biol 2013; 6:97-120. [PMID: 24432127 DOI: 10.1007/s12154-013-0096-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022] Open
Abstract
Fluorescence nanoscopy refers to the experimental techniques and analytical methods used for fluorescence imaging at a resolution higher than conventional, diffraction-limited, microscopy. This review explains the concepts behind fluorescence nanoscopy and focuses on the latest and promising developments in acquisition techniques, labelling strategies to obtain highly detailed super-resolved images and in the quantitative methods to extract meaningful information from them.
Collapse
|
24
|
Abstract
Recent advances in far-field microscopy have demonstrated that fluorescence imaging is possible at resolutions well below the long-standing diffraction limit. By exploiting photophysical properties of fluorescent probe molecules, this new class of methods yields a resolving power that is fundamentally diffraction unlimited. Although these methods are becoming more widely used in biological imaging, they must be complemented by suitable data analysis approaches if their potential is to be fully realized. Here we review the basic principles of diffraction-unlimited microscopy and how these principles influence the selection of available algorithms for data analysis. Furthermore, we provide an overview of existing analysis strategies and discuss their application.
Collapse
Affiliation(s)
- Travis J Gould
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
25
|
Izeddin I, Boulanger J, Racine V, Specht CG, Kechkar A, Nair D, Triller A, Choquet D, Dahan M, Sibarita JB. Wavelet analysis for single molecule localization microscopy. OPTICS EXPRESS 2012; 20:2081-95. [PMID: 22330449 DOI: 10.1364/oe.20.002081] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Localization of single molecules in microscopy images is a key step in quantitative single particle data analysis. Among them, single molecule based super-resolution optical microscopy techniques require high localization accuracy as well as computation of large data sets in the order of 10(5) single molecule detections to reconstruct a single image. We hereby present an algorithm based on image wavelet segmentation and single particle centroid determination, and compare its performance with the commonly used gaussian fitting of the point spread function. We performed realistic simulations at different signal-to-noise ratios and particle densities and show that the calculation time using the wavelet approach can be more than one order of magnitude faster than that of gaussian fitting without a significant degradation of the localization accuracy, from 1 nm to 4 nm in our range of study. We propose a simulation-based estimate of the resolution of an experimental single molecule acquisition.
Collapse
Affiliation(s)
- I Izeddin
- Laboratoire Kastler Brossel, CNRS UMR 8552, Département de Physique et Institut de Biologie de l’Ecole Normale Supérieure, Université Pierre et Marie Curie-Paris 6, 46 rue d’Ulm 75005 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|