1
|
Qu H, Tan L, Wu FC, Huang W, Li K, Chen X, Xu YW, Hu X. NY-ESO-1 antigen-antibody interaction process based on an TFBG plasmonic sensor. BIOMEDICAL OPTICS EXPRESS 2023; 14:5921-5931. [PMID: 38021116 PMCID: PMC10659779 DOI: 10.1364/boe.504401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Autoantibodies against New York esophageal squamous cell cancer 1 (NY-ESO-1) play a crucial role in the diagnosis of esophageal cancer. In this work, a surface plasmonic tilted fiber Bragg grating (TFBG) biosensor is proposed for the detection of NY-ESO-1 antibody, as well as the investigation of the hook effect (which refers to the false negative result in some immunoassays when the concentration of antibodies in the sample is very high) during biomolecular binding between NY-ESO-1 antigen and antibody. The biosensor is made by an 18° TFBG coated with a 50-nm-thick gold film over the fiber surface together with NY-ESO-1 antigens attached to the metallic surface serving as bio-receptors. This biosensor can provide a limit of detection at a concentration of 2 × 10-7 µg/ml with a good linearity in the range from 2 × 10-7 to 2 × 10-5 µg/ml. For a concentration higher than 2 × 10-3 µg/ml, the performance of the sensor probe is reduced owing to the hook effect. Furthermore, experimental results have also demonstrated the repeatability of the proposed biosensor. This proposed biosensor features label-free, compactness, and fast response, which could be potentially applied in the diagnosis of esophageal cancer.
Collapse
Affiliation(s)
- Hang Qu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Linyao Tan
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Fang-Cai Wu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Weiyuan Huang
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Kaiwei Li
- Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Xiaoyong Chen
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xuehao Hu
- Department of Electromagnetism and Telecommunication, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| |
Collapse
|
2
|
Shi X, Zhao W, Zhu Y, Shen C, Zeng X. Polarization-independent tilted fiber Bragg grating surface plasmon resonance sensor based on spectrum optimization. OPTICS LETTERS 2023; 48:3375-3378. [PMID: 37390134 DOI: 10.1364/ol.493937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
We experimentally demonstrated polarization multiplexing schemes in a tilted fiber grating (TFBG) to achieve polarization-independent fiber-optic surface plasmon resonance (SPR) sensors. The first used two orthogonal polarized lights separated by a polarization beam splitter (PBS) that are p-polarized in polarization-maintaining fiber (PMF) and precisely aligned with the tilted grating plane, so as to achieve the transmission of p-polarized light in two opposite directions of the Au-coated TFBG to excite SPR. Alternatively, polarization multiplexing was also achieved by exploring two polarization components to achieve the SPR effect through a Faraday rotator mirror (FRM). The SPR reflection spectra are polarization-independent of the light source and any perturbations to fibers, which are explained by the superposition of p- and s-polarized transmission spectra in equal proportions. The spectrum optimization is presented to reduce the proportion of the s-polarization component. A polarization-independent TFBG-based SPR refractive index (RI) sensor with a wavelength sensitivity of 555.14 nm/RIU and an amplitude sensitivity of 1724.92 dB/RIU for small changes is obtained, exhibiting unique advantages of minimizing the polarization alterations by mechanical perturbations.
Collapse
|
3
|
Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR. SENSORS 2022; 22:s22083032. [PMID: 35459016 PMCID: PMC9032900 DOI: 10.3390/s22083032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
In the paper based on surface plasmon resonance (SPR) in a tilted fiber Bragg grating (TFBG), a novel algorithm is proposed, which facilitates demodulation of surrounding refractive index (SRI) via cladding mode interrogation and accelerates calibration and measurement of SRI. Refractive indices with a tiny index step of 2.2 × 10−5 are prepared by the dilution of glucose aqueous solution for the test and the calibration of this fiber sensor probe. To accelerate the calibration process, automatic selection of the most sensitive cladding mode is demonstrated. First, peaks of transmitted spectrum are identified and numbered. Then, sensitivities of several potentially sensitive cladding modes in amplitude adjacent to the left of the SPR area are calculated and compared. After that, we focus on the amplitudes of the cladding modes as a function of a SRI, and the highest sensitivity of −6887 dB/RIU (refractive index unit) is obtained with a scanning time of 15.77 s in the range from 1520 nm to 1620 nm. To accelerate the scanning speed of the optical spectrum analyzer (OSA), the wavelength resolution is reduced from 0.028 nm to 0.07 nm, 0.14 nm, and 0.28 nm, and consequently the scanning time is shortened to 6.31 s, 3.15 s, and 1.58 s, respectively. However, compared to 0.028 nm, the SRI sensitivity for 0.07 nm, 0.14 nm, and 0.28 nm is reduced to −5685 dB/RIU (17.5% less), −5415 dB/RIU (21.4% less), and −4359 dB/RIU (36.7% less), respectively. Thanks to the calculation of parabolic equation and weighted Gauss fitting based on the original data, the sensitivity is improved to −6332 dB/RIU and −6721 dB/RIU, respectively, for 0.07 nm, and the sensitivity is increased to −5850 dB/RIU and −6228 dB/RIU, respectively, for 0.14 nm.
Collapse
|
4
|
Vidal M, Soares MS, Loyez M, Costa FM, Caucheteur C, Marques C, Pereira SO, Leitão C. Relevance of the Spectral Analysis Method of Tilted Fiber Bragg Grating-Based Biosensors: A Case-Study for Heart Failure Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:2141. [PMID: 35336312 PMCID: PMC8954114 DOI: 10.3390/s22062141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 01/16/2023]
Abstract
Optical fiber technology has rapidly progressed over the years, providing valuable benefits for biosensing purposes such as sensor miniaturization and the possibility for remote and real-time monitoring. In particular, tilted fiber Bragg gratings (TFBGs) are extremely sensitive to refractive index variations taking place on their surface. The present work comprises a case-study on the impact of different methods of analysis applied to decode spectral variations of bare and plasmonic TFBGs during the detection of N-terminal B-type natriuretic peptide (NT-proBNP), a heart failure biomarker, namely by following the most sensitive mode, peaks of the spectral envelopes, and the envelopes' crossing point and area. Tracking the lower envelope resulted in the lowest limits of detection (LOD) for bare and plasmonic TFBGs, namely, 0.75 ng/mL and 0.19 ng/mL, respectively. This work demonstrates the importance of the analysis method on the outcome results, which is crucial to attain the most reliable and sensitive method with lower LOD sensors. Furthermore, it makes the scientific community aware to take careful attention when comparing the performance of different biosensors in which different analysis methods were used.
Collapse
Affiliation(s)
- Miguel Vidal
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Maria Simone Soares
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Florinda M. Costa
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Carlos Marques
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Sónia O. Pereira
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Cátia Leitão
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| |
Collapse
|
5
|
Zhu C, Gerald RE, Huang J. Micromachined Optical Fiber Sensors for Biomedical Applications. Methods Mol Biol 2022; 2393:367-414. [PMID: 34837190 DOI: 10.1007/978-1-0716-1803-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optical fibers revolutionized the rate of information reception and transmission in telecommunications. The revolution has now extended to the field of physicochemical sensing. Optical fiber sensors (OFSs) have found a multitude of applications, spanning from structural health monitoring to biomedical and clinical measurements due to their unique physical and functional advantages, such as small dimensions, light weight, immunity to electromagnetic interference, high sensitivity and resolution, multiplexing, and remote operation. OFSs generally rely on the detection of measurand-induced changes in the optical properties of the light propagating in the fiber, where the OFS essentially functions as the conduit and physical link between the probing light waves and the physicochemical parameters under investigation. Several advanced micromachining techniques have been developed to optimize the structure of OFSs, thus improving their sensing performance. These techniques include fusion splicing, tapering, polishing, and more complicated femtosecond laser micromachining methods. This chapter discusses and reviews the most recent developments in micromachined OFSs specifically for biomedical applications. Step-by-step procedures for several optical fiber micromachining techniques are detailed.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Rex E Gerald
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
| |
Collapse
|
6
|
Hu X, Yue X, Cheng X, Gao S, Min R, Wang H, Qu H, Tam HY. Large refractive index modulation based on a BDK-doped step-index PMMA optical fiber for highly reflective Bragg grating inscription. OPTICS LETTERS 2021; 46:2864-2867. [PMID: 34129560 DOI: 10.1364/ol.427042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/16/2021] [Indexed: 05/22/2023]
Abstract
We experimentally report high reflectivity on the poly(methyl methacrylate) (PMMA)-based polymer optical fiber Bragg gratings by means of a 266 nm pulsed laser and phase mask technique. In the first recipe, fiber Bragg gratings (FBGs) were manufactured with a single pulse up to 3.7 mJ. After post-annealing, a stable refractive index change up to 4.2×10-4 was obtained. In the second recipe, FBGs were inscribed by 22 pulses with a lower pulse energy of 1.4 mJ, showing a stable refractive index change of 6.2×10-4. Both behaviors may mainly be attributed to the movement of initiating radicals arising from benzyl dimethyl ketal (BDK) under UV irradiation. The high refractive index change in step-index fibers paves the way to tilted FBG manufacturing with large tilt angles potentially for biomedical applications.
Collapse
|
7
|
Wang F, Duan Y, Lu M, Zhang Y, Jing Z, Sun C, Peng W. Linear-response and simple hot-wire fiber-optic anemometer using high-order cladding mode. OPTICS EXPRESS 2020; 28:27028-27036. [PMID: 32906964 DOI: 10.1364/oe.399774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
We present a single walled carbon nanotubes (SWCNTs)-coated tilted fiber Bragg grating (TFBG) hot-wire anemometer (HWA) with simple configuration, linear response, and high sensitivity. TFBG is utilized to effectively couple a pumping laser at 1550 nm to the cladding mode that is absorbed by the SWCNTs film immobilized on the fiber surface with good light-heat conversion efficiency. As a result, the TFBG is converted to a "hot wire", and the wind speed can be deduced from the output power of the laser, which is a function of both the wind-induced temperature change and the spectral profile of the cladding mode. The most significant aspect of the HWA system is that we use the Gaussian shape of the high-order TFBG cladding mode to compensate for the inherent nonlinear relationship between the heat loss and the wind speed that is an undesirable characteristic of existing HWA systems. The validity of this novel operating principle was verified theoretically and experimentally. Via careful control of the parameters, a good linear response of the HWA system was achieved, especially for the low wind speed range where nonlinearity was more conspicuous. It was demonstrated that, with a low input power of only 29.3 mW of the pump laser, an R2 value of 0.9927 was obtained in this fiber-optic HWA system with high sensitivity 7.425 dBm / (m/s) and resolution 0.0027 m/s in a small wind speed range (0-2m/s) considering the intensity resolution of OSA and the noise of the pump laser. Furthermore, the system also exhibits a simple and low-cost design with only one laser source and one low-cost power measurement component.
Collapse
|
8
|
Guo T, González-Vila Á, Loyez M, Caucheteur C. Plasmonic Optical Fiber-Grating Immunosensing: A Review. SENSORS 2017; 17:s17122732. [PMID: 29186871 PMCID: PMC5751598 DOI: 10.3390/s17122732] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Abstract
Plasmonic immunosensors are usually made of a noble metal (in the form of a film or nanoparticles) on which bioreceptors are grafted to sense analytes based on the antibody/antigen or other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon (SP), the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations reported to this end. Among the different architectures able to bring light in contact with the surrounding medium, a great quantity of research is today being conducted on metal-coated fiber gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation at any wavelength, especially in the telecommunication window. They are perfectly suited for use with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit of detection to be reached in immunosensing. This paper will review recent progress made in this field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in very small volumes of analytes and even possibly applied to in vivo diagnosis.
Collapse
Affiliation(s)
- Tuan Guo
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.
| | - Álvaro González-Vila
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| |
Collapse
|
9
|
Zhang Y, Wang F, Liu Z, Duan Z, Cui W, Han J, Gu Y, Wu Z, Jing Z, Sun C, Peng W. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating. OPTICS EXPRESS 2017; 25:24521-24530. [PMID: 29041396 DOI: 10.1364/oe.25.024521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
In this work, a novel and simple optical fiber hot-wire anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is proposed and demonstrated. For the hot-wire wind speed sensor design, TFBG is an ideal in-fiber sensing structure due to its unique features. It is utilized as both light coupling and temperature sensing element without using any geometry-modified or uncommon fiber, which simplifies the sensor structure. To further enhance the thermal conversion capability, SWCNTs are coated on the surface of the TFBG instead of traditional metallic materials, which have excellent thermal characteristics. When a laser light is pumped into the sensor, the pump light propagating in the core will be easily coupled into cladding of the fiber via the TFBG and strongly absorbed by the SWCNTs thin film. This absorption acts like a hot-wire raising the local temperature of the fiber, which is accurately detected by the TFBG resonance shift. In the experiments, the sensor's performances were investigated and controlled by adjusting the inherent angle of the TFBG, the thickness of SWCNTs film, and the input power of the pump laser. It was demonstrated that the developed anemometer exhibited significant light absorption efficiency up to 93%, and the maximum temperature of the local area on the fiber was heated up to 146.1°C under the relatively low pump power of 97.76 mW. The sensitivity of -0.3667 nm/(m/s) at wind speed of 1.0 m/s was measured with the selected 12° TFBG and 1.6 μm film.
Collapse
|
10
|
Ribaut C, Loyez M, Larrieu JC, Chevineau S, Lambert P, Remmelink M, Wattiez R, Caucheteur C. Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis. Biosens Bioelectron 2017; 92:449-456. [DOI: 10.1016/j.bios.2016.10.081] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
|
11
|
Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings. Methods Mol Biol 2017. [PMID: 28281249 DOI: 10.1007/978-1-4939-6848-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.
Collapse
|
12
|
Feng D, Zhou W, Qiao X, Albert J. High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings. OPTICS EXPRESS 2016; 24:16456-16464. [PMID: 27464098 DOI: 10.1364/oe.24.016456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The surface plasmon resonance (SPR) performance of gold coated tilted fiber Bragg gratings (TFBG) at near infrared wavelengths is evaluated as a function of the angle between the tilt plane orientation and the direction of single- and double-sided, nominally 50 nm-thick gold metal depositions. Scanning electron microscope images show that the coating are highly non-uniform around the fiber circumference, varying between near zero and 50 nm. In spite of these variations, the experimental results show that the spectral signature of the TFBG-SPR sensors is similar to that of simulations based on perfectly uniform coatings, provided that the depositions are suitably oriented along the tilt plane direction. Furthermore, it is shown that even a (properly oriented) single-sided coating (over only half of the fiber circumference) is sufficient to provide a theoretically perfect SPR response with a bandwidth under 5 nm, and 90% attenuation. Finally, using a pair of adjacent TFBG resonances within the SPR response envelope, a power detection scheme is used to demonstrate a limit of detection of 3 × 10-6 refractive index units.
Collapse
|
13
|
Yuan Y, Guo T, Qiu X, Tang J, Huang Y, Zhuang L, Zhou S, Li Z, Guan BO, Zhang X, Albert J. Electrochemical Surface Plasmon Resonance Fiber-Optic Sensor: In Situ Detection of Electroactive Biofilms. Anal Chem 2016; 88:7609-16. [DOI: 10.1021/acs.analchem.6b01314] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yong Yuan
- Guangdong
Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Tuan Guo
- Guangdong
Key Laboratory of Optical Fiber Sensing and Communications, Institute
of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Xuhui Qiu
- Guangdong
Key Laboratory of Optical Fiber Sensing and Communications, Institute
of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Jiahuan Tang
- Guangdong
Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Yunyun Huang
- Guangdong
Key Laboratory of Optical Fiber Sensing and Communications, Institute
of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- Guangdong
Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Shungui Zhou
- Guangdong
Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Zhaohui Li
- Guangdong
Key Laboratory of Optical Fiber Sensing and Communications, Institute
of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Ou Guan
- Guangdong
Key Laboratory of Optical Fiber Sensing and Communications, Institute
of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Xuming Zhang
- Department
of Applied Physics, Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - Jacques Albert
- Department
of Electronics, Carleton University, Ottawa K1S5B6, Canada
| |
Collapse
|
14
|
Guo T, Liu F, Liang X, Qiu X, Huang Y, Xie C, Xu P, Mao W, Guan BO, Albert J. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens Bioelectron 2016; 78:221-228. [DOI: 10.1016/j.bios.2015.11.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/14/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
15
|
Ribaut C, Voisin V, Malachovská V, Dubois V, Mégret P, Wattiez R, Caucheteur C. Small biomolecule immunosensing with plasmonic optical fiber grating sensor. Biosens Bioelectron 2016; 77:315-22. [DOI: 10.1016/j.bios.2015.09.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 11/28/2022]
|
16
|
Malachovská V, Ribaut C, Voisin V, Surin M, Leclère P, Wattiez R, Caucheteur C. Fiber-Optic SPR Immunosensors Tailored To Target Epithelial Cells through Membrane Receptors. Anal Chem 2015; 87:5957-65. [DOI: 10.1021/acs.analchem.5b00159] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Viera Malachovská
- Research
Institute for Bioscience, Proteomics and Microbiology Laboratory, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium
- Faculty
of Engineering, Electromagnetism and Telecommunication Department, University of Mons (UMONS), Boulevard Dolez 31, 7000 Mons, Belgium
| | - Clotilde Ribaut
- Research
Institute for Bioscience, Proteomics and Microbiology Laboratory, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium
- Faculty
of Engineering, Electromagnetism and Telecommunication Department, University of Mons (UMONS), Boulevard Dolez 31, 7000 Mons, Belgium
| | - Valérie Voisin
- Faculty
of Engineering, Electromagnetism and Telecommunication Department, University of Mons (UMONS), Boulevard Dolez 31, 7000 Mons, Belgium
| | - Mathieu Surin
- Research
Institute for Materials Science and Engineering, Laboratory for Chemistry
of Novel Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Philippe Leclère
- Research
Institute for Materials Science and Engineering, Laboratory for Chemistry
of Novel Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Research
Institute for Bioscience, Proteomics and Microbiology Laboratory, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Christophe Caucheteur
- Faculty
of Engineering, Electromagnetism and Telecommunication Department, University of Mons (UMONS), Boulevard Dolez 31, 7000 Mons, Belgium
| |
Collapse
|
17
|
Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 2015; 407:3883-97. [PMID: 25616701 PMCID: PMC7080100 DOI: 10.1007/s00216-014-8411-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/02/2014] [Accepted: 12/12/2014] [Indexed: 11/28/2022]
Abstract
This paper presents a brief overview of the technologies used to implement surface plasmon resonance (SPR) effects into fiber-optic sensors for chemical and biochemical applications and a survey of results reported over the last ten years. The performance indicators that are relevant for such systems, such as refractometric sensitivity, operating wavelength, and figure of merit (FOM), are discussed and listed in table form. A list of experimental results with reported limits of detection (LOD) for proteins, toxins, viruses, DNA, bacteria, glucose, and various chemicals is also provided for the same time period. Configurations discussed include fiber-optic analogues of the Kretschmann-Raether prism SPR platforms, made from geometry-modified multimode and single-mode optical fibers (unclad, side-polished, tapered, and U-shaped), long period fiber gratings (LPFG), tilted fiber Bragg gratings (TFBG), and specialty fibers (plastic or polymer, microstructured, and photonic crystal fibers). Configurations involving the excitation of surface plasmon polaritons (SPP) on continuous thin metal layers as well as those involving localized SPR (LSPR) phenomena in nanoparticle metal coatings of gold, silver, and other metals at visible and near-infrared wavelengths are described and compared quantitatively.
Collapse
Affiliation(s)
- Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Tuan Guo
- Institute of Photonics Technology, Jinan University, 601 Huangpu Road West, Guangzhou, 510632 China
| | - Jacques Albert
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 Canada
| |
Collapse
|
18
|
Caucheteur C, Voisin V, Albert J. Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity. OPTICS EXPRESS 2015; 23:2918-32. [PMID: 25836153 DOI: 10.1364/oe.23.002918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plasmonic optical fiber sensors are continuously developed for (bio)chemical sensing purposes. Recently, surface plasmon resonance (SPR) generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute a unique configuration to probe all the fiber cladding modes individually. We use them to analyze the modal distribution of gold-coated telecommunication-grade optical fibers immersed in aqueous solutions. Theoretical investigations with a finite-difference complex mode solver are confirmed by experimental data obtained on TFBGs. We show that the refractometric sensitivity varies with the mode order and that the global SPR envelope shift in response to surrounding refractive index (SRI) changes higher than 1e-2 RIU (refractive index unit) can be ~25% bigger than the local SPR mode shift arising from SRI changes limited to 1e-4 RIU. We bring clear evidence that the optimum gold thickness for SPR generation lies in the range between 50 and 70 nm while a cladding diameter decrease from 125 µm to 80 µm enhances the refractometric sensitivity by ~20%. Finally, we demonstrate that the ultimate refractometric sensitivity of cladding modes is ~550 nm/RIU when they are probed by gold-coated TFBGs.
Collapse
|
19
|
Baiad MD, Kashyap R. Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings. OPTICS LETTERS 2015; 40:115-118. [PMID: 25531623 DOI: 10.1364/ol.40.000115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An inline multichannel surface plasmon resonance (SPR) sensor scheme excited with tilted fiber Bragg gratings (TFBG) in a chromium- and gold-coated fiber is demonstrated. The channels have different operating wavelengths, different TFBG tilt angles, and hence different refractive index operating ranges. The polarization state of each channel based on the TFBG orientation can be used to switch each SPR sensor on or off as required. This system provides an operating range of 1.40-1.44 RIU and a sensitivity of around 500 nm/RIU. The multiplexing in a single optical fiber of a number of TFBG-SPR sensors is demonstrated for the first time.
Collapse
|
20
|
Chah K, Voisin V, Kinet D, Caucheteur C. Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings. OPTICS LETTERS 2014; 39:6887-6890. [PMID: 25503022 DOI: 10.1364/ol.39.006887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Highly localized refractive index modulations are photo-written in the core of pure silica fiber using point-by-point focused UV femtosecond pulses. These specific gratings exhibit a comb-like transmitted amplitude spectrum, with polarization-dependent narrowband cladding mode resonances. In this work, eccentric gratings are surrounded by a gold sheath, allowing the excitation of surface plasmon polaritons (SPP) for radially-polarized light modes. The spectral response is studied as a function of the surrounding refractive index and a maximum sensitivity of 50 nm/RIU (refractive index unit) is reported for a well-defined cladding-mode resonance among the spectral comb. This novel kind of plasmonic fiber grating sensor offers rapidity of production, design flexibility, and high temperature stability.
Collapse
|
21
|
Shevchenko Y, Camci-Unal G, Cuttica DF, Dokmeci MR, Albert J, Khademhosseini A. Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosens Bioelectron 2014; 56:359-67. [PMID: 24549115 PMCID: PMC3977152 DOI: 10.1016/j.bios.2014.01.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/03/2023]
Abstract
This paper reports on the application of an optical fiber biosensor for real-time analysis of cellular behavior. Our findings illustrate that a fiber sensor fabricated from a traditional telecommunication fiber can be integrated into conventional cell culture equipment and used for real-time and label-free monitoring of cellular responses to chemical stimuli. The sensing mechanism used for the measurement of cellular responses is based on the excitation of surface plasmon resonance (SPR) on the surface of the optical fiber. In this proof of concept study, the sensor was utilized to investigate the influence of a number of different stimuli on cells-we tested the effects of trypsin, serum and sodium azide. These stimuli induced detachment of cells from the sensor surface, uptake of serum and inhibition of cellular metabolism, accordingly. The effects of different stimuli were confirmed with alamar blue assay, phase contrast and fluorescence microscopy. The results indicated that the fiber biosensor can be successfully utilized for real-time and label-free monitoring of cellular response in the first 30 min following the introduction of a stimulus. Furthermore, we demonstrated that the optical fiber biosensors can be easily regenerated for repeated use, proving this platform as a versatile and cost-effective sensing tool.
Collapse
Affiliation(s)
- Yanina Shevchenko
- Department of Electronics, Carleton University, Ottawa, Canada. Fax: +1-613-5205708; Tel: +1-613-5202600 x5578;
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gulden Camci-Unal
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Davide F. Cuttica
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mehmet R. Dokmeci
- Department of Electronics, Carleton University, Ottawa, Canada. Fax: +1-613-5205708; Tel: +1-613-5202600 x5578;
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jacques Albert
- Department of Electronics, Carleton University, Ottawa, Canada. Fax: +1-613-5205708; Tel: +1-613-5202600 x5578;
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Guo T, Liu F, Liu Y, Chen NK, Guan BO, Albert J. In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors. Biosens Bioelectron 2014; 55:452-8. [DOI: 10.1016/j.bios.2013.12.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
|
23
|
Warren-Smith SC, Monro TM. Exposed core microstructured optical fiber Bragg gratings: refractive index sensing. OPTICS EXPRESS 2014; 22:1480-1489. [PMID: 24515155 DOI: 10.1364/oe.22.001480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bragg gratings have been written in exposed-core microstructured optical fibers for the first time using a femtosecond laser. Second and third order gratings have been written and both show strong reflectivity at 1550 nm, with bandwidths as narrow as 60 pm. Due to the penetration of the guided field outside the fiber the Bragg reflections are sensitive to the external refractive index. As different modes have different sensitivities to refractive index but the same temperature sensitivity the sensor can provide temperature-compensated refractive index measurements. Since these Bragg gratings have been formed by physical ablation, these devices can also be used for high temperature sensing, demonstrated here up to 800°C. The fibers have been spliced to single mode fiber for improved handling and integration with commercial interrogation units.
Collapse
|
24
|
Voisin V, Pilate J, Damman P, Mégret P, Caucheteur C. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors. Biosens Bioelectron 2014; 51:249-54. [DOI: 10.1016/j.bios.2013.07.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/13/2013] [Indexed: 11/30/2022]
|
25
|
Liu BH, Jiang YX, Zhu XS, Tang XL, Shi YW. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. OPTICS EXPRESS 2013; 21:32349-32357. [PMID: 24514827 DOI: 10.1364/oe.21.032349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new kind of surface plasmon resonance (SPR) sensor based on silver-coated hollow fiber (HF) structure for the detection of liquids with high refractive index (RI) is presented. Liquid sensed medium with high RI is filled in the hollow core of the HF and its RI can be detected by measuring the transmission spectra of the HF SPR sensor. The designed sensors with different silver thicknesses are fabricated and the transmission spectra for filled liquids with different RI are measured to investigate the performances of the sensors. Theoretical analysis is also carried out to evaluate the performance. The simulation results agree well with the experimental results. Factors that might affect sensitivity and detection accuracy of the sensor are discussed. The highest sensitivity achieved is 6,607 nm/RIU, which is comparable to the sensitivities of the other reported fiber SPR sensors.
Collapse
|
26
|
Renoirt JM, Zhang C, Debliquy M, Olivier MG, Mégret P, Caucheteur C. High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity. OPTICS EXPRESS 2013; 21:29073-29082. [PMID: 24514423 DOI: 10.1364/oe.21.029073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The high order cladding modes of standard single mode optical fiber appear in quasi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. In this work, we demonstrate that, in the presence of a high-refractive-index coating surrounding the fiber outer surface, the wavelength spacing between the orthogonally polarized cladding modes families can be drastically enhanced. This behavior can be advantageously exploited for refractometric sensing purposes. For this, we make use of tilted fiber Bragg gratings (TFBGs) as spectral combs to excite the orthogonally polarized cladding modes families separately. TFBGs were coated with a nanometer-scale transparent thin film characterized by a refractive index value close to 1.9, well higher than the one of pure silica. This coating brings two important assets: an ~8-fold increase in refractometric sensitivity is obtained in comparison to bare TFBGs while the sensitivity is extended to surrounding refractive index (SRI) values above 1.45.
Collapse
|
27
|
Baiad MD, Gagné M, Madore WJ, De Montigny E, Godbout N, Boudoux C, Kashyap R. Surface plasmon resonance sensor interrogation with a double-clad fiber coupler and cladding modes excited by a tilted fiber Bragg grating. OPTICS LETTERS 2013; 38:4911-4914. [PMID: 24322164 DOI: 10.1364/ol.38.004911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a novel optical fiber surface plasmon resonance (SPR) sensor scheme using reflected guided cladding modes captured by a double-clad fiber coupler and excited in a gold-coated fiber with a tilted Bragg grating. This new interrogation approach, based on the reflection spectrum, provides an improvement in the operating range of the device over previous techniques. The device allows detection of SPR in the reflected guided cladding modes and also in the transmitted spectrum, allowing comparison with standard techniques. The sensor has a large operating range from 1.335 to 1.432 RIU, and a sensitivity of 510.5 nm/RIU. The device shows strong dependence on the polarization state of the guided core mode which can be used to turn the SPR on or off.
Collapse
|
28
|
Albert J, Lepinay S, Caucheteur C, DeRosa MC. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor. Methods 2013; 63:239-54. [DOI: 10.1016/j.ymeth.2013.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/07/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
|