1
|
Slenders E, Bové H, Urbain M, Mugnier Y, Sonay AY, Pantazis P, Bonacina L, Vanden Berghe P, vandeVen M, Ameloot M. Image Correlation Spectroscopy with Second Harmonic Generating Nanoparticles in Suspension and in Cells. J Phys Chem Lett 2018; 9:6112-6118. [PMID: 30273489 DOI: 10.1021/acs.jpclett.8b02686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The absence of photobleaching, blinking, and saturation combined with a high contrast provides unique advantages of higher-harmonic generating nanoparticles over fluorescent probes, allowing for prolonged correlation spectroscopy studies. We apply the coherent intensity fluctuation model to study the mobility of second harmonic generating nanoparticles. A concise protocol is presented for quantifying the diffusion coefficient from a single spectroscopy measurement without the need for separate point-spread-function calibrations. The technique's applicability is illustrated on nominally 56 nm LiNbO3 nanoparticles. We perform label-free raster image correlation spectroscopy imaging in aqueous suspension and spatiotemporal image correlation spectroscopy in A549 human lung carcinoma cells. In good agreement with the expected theoretical result, the measured diffusion coefficient in water at room temperature is (7.5 ± 0.3) μm2/s. The diffusion coefficient in the cells is more than 103 times lower and heterogeneous, with an average of (3.7 ± 1.5) × 10-3 μm2/s.
Collapse
Affiliation(s)
- Eli Slenders
- Biomedical Research Institute (BIOMED) , Hasselt University , Agoralaan Bldg. C , 3590 Diepenbeek , Belgium
| | - Hannelore Bové
- Biomedical Research Institute (BIOMED) , Hasselt University , Agoralaan Bldg. C , 3590 Diepenbeek , Belgium
| | - Mathias Urbain
- Univ. Savoie Mont Blanc, SYMME , F-74000 Annecy , France
| | | | - Ali Yasin Sonay
- Department of Biosystems Science and Engineering , ETH Zürich , Mattenstrasse 26 , 4058 Basel , Switzerland
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering , ETH Zürich , Mattenstrasse 26 , 4058 Basel , Switzerland
- Department of Bioengineering , Imperial College London , South Kensington Campus , London SW7 2AZ , U.K
| | - Luigi Bonacina
- Department of Applied Physics , Université de Genève , Chemin de Pinchat 22 , 1211 Geneva , Switzerland
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), TARGID , University of Leuven , Herestraat 49 , 3000 Leuven , Belgium
| | - Martin vandeVen
- Biomedical Research Institute (BIOMED) , Hasselt University , Agoralaan Bldg. C , 3590 Diepenbeek , Belgium
| | - Marcel Ameloot
- Biomedical Research Institute (BIOMED) , Hasselt University , Agoralaan Bldg. C , 3590 Diepenbeek , Belgium
| |
Collapse
|
2
|
Li P, Yang S, Ding Z, Li P. Photon ensemble correlation spectroscopy enables decorrelation-rate-limited ultrafast measurement of diffusive particle dynamics. OPTICS LETTERS 2017; 42:4525-4528. [PMID: 29088204 DOI: 10.1364/ol.42.004525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 05/18/2023]
Abstract
In contrast to conventional dynamic light scattering (DLS) measurement via a single sampling volume (SV) observation over a long time span, we propose a novel technique named "photon ensemble correlation spectroscopy" for ultrafast characterization of diffusive particle dynamics through decorrelation analysis of complex-valued DLS scattering signals from an ensemble of independent SVs. We confirm that the ensemble analysis provides a decorrelation-rate-limited ultrafast measurement and demonstrates the feasibility of imaging spatially resolved particle dynamics. Moreover, the use of complex-valued signals gives additional superiority in terms of reliability.
Collapse
|
3
|
3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics. Sci Rep 2017; 7:43275. [PMID: 28230188 PMCID: PMC5322395 DOI: 10.1038/srep43275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/19/2017] [Indexed: 02/01/2023] Open
Abstract
We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume.
Collapse
|
4
|
Rabasovic MD, Sisamakis E, Wennmalm S, Widengren J. Label-Free Fluctuation Spectroscopy Based on Coherent Anti-Stokes Raman Scattering from Bulk Water Molecules. Chemphyschem 2016; 17:1025-33. [PMID: 26819085 PMCID: PMC5067721 DOI: 10.1002/cphc.201501129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/10/2022]
Abstract
Nanoparticles (NPs) and molecules can be analyzed by inverse fluorescence correlation spectroscopy (iFCS) as they pass through an open detection volume, displacing fractions of the fluorescence-emitting solution in which they are dissolved. iFCS does not require the NPs or molecules to be labeled. However, fluorophores in μm-mm concentrations are needed for the solution signal. Here, we instead use coherent anti-Stokes Raman scattering (CARS) from plain water molecules as the signal from the solution. By this fully label-free approach, termed inverse CARS-based correlation spectroscopy (iCARS-CS), NPs that are a few tenths of nm in diameter and at pM concentrations can be analyzed, and their absolute volumes/concentrations can be determined. Likewise, lipid vesicles can be analyzed as they diffuse/flow through the detection volume by using CARS fluctuations from the surrounding water molecules. iCARS-CS could likely offer a broadly applicable, label-free characterization technique of, for example, NPs, small lipid exosomes, or microparticles in biomolecular diagnostics and screening, and can also utilize CARS signals from biologically relevant media other than water.
Collapse
Affiliation(s)
- M D Rabasovic
- Dept. Exp. Biomolecular Physics/Applied Physics, Royal Institute of Technology-KTH, Albanova University Center, 10691, Stockholm, Sweden.,Institute of Physics, University of Belgrade, Pregrevica 118, 11080, Belgrade-Zemun, Serbia
| | - E Sisamakis
- Dept. Exp. Biomolecular Physics/Applied Physics, Royal Institute of Technology-KTH, Albanova University Center, 10691, Stockholm, Sweden.,PicoQuant GmbH, RudowerChaussee 29, 12489, Berlin, Germany
| | - S Wennmalm
- Dept. Exp. Biomolecular Physics/Applied Physics, Royal Institute of Technology-KTH, Science for Life Laboratory, 17165, Solna, Sweden.
| | - J Widengren
- Dept. Exp. Biomolecular Physics/Applied Physics, Royal Institute of Technology-KTH, Albanova University Center, 10691, Stockholm, Sweden.
| |
Collapse
|
5
|
Huang BK, Gamm UA, Bhandari V, Khokha MK, Choma MA. Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:3515-38. [PMID: 26417520 PMCID: PMC4574676 DOI: 10.1364/boe.6.003515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/02/2015] [Accepted: 08/07/2015] [Indexed: 05/21/2023]
Abstract
Microscale quantification of cilia-driven fluid flow is an emerging area in medical physiology, including pulmonary and central nervous system physiology. Cilia-driven fluid flow is most completely described by a three-dimensional, three-component (3D3C) vector field. Here, we generate 3D3C velocimetry measurements by synthesizing higher dimensional data from lower dimensional measurements obtained using two separate optical coherence tomography (OCT)-based approaches: digital particle image velocimetry (DPIV) and dynamic light scattering (DLS)-OCT. Building on previous work, we first demonstrate directional DLS-OCT for 1D2C velocimetry measurements in the sub-1 mm/s regime (sub-2.5 inch/minute regime) of cilia-driven fluid flow in Xenopus epithelium, an important animal model of the ciliated respiratory tract. We then extend our analysis toward 3D3C measurements in Xenopus using both DLS-OCT and DPIV. We demonstrate the use of DPIV-based approaches towards flow imaging of Xenopus cerebrospinal fluid and mouse trachea, two other important ciliary systems. Both of these flows typically fall in the sub-100 μm/s regime (sub-0.25 inch/minute regime). Lastly, we develop a framework for optimizing the signal-to-noise ratio of 3D3C flow velocity measurements synthesized from 2D2C measures in non-orthogonal planes. In all, 3D3C OCT-based velocimetry has the potential to comprehensively characterize the flow performance of biological ciliated surfaces.
Collapse
Affiliation(s)
- Brendan K. Huang
- Department of Biomedical Engineering, Yale University, 55 Prospect St., New Haven, Connecticut 06520,
USA
| | - Ute A. Gamm
- Department of Diagnostic Radiology, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
| | - Vineet Bhandari
- Department of Pediatrics, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
- Current affiliations: Drexel University College of Medicine, Philadelphia, PA, 19129,
USA
- St. Christopher’s Hospital for Children, Philadelphia, PA, 19134,
USA
| | - Mustafa K. Khokha
- Department of Pediatrics, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
- Department of Genetics, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
| | - Michael A. Choma
- Department of Biomedical Engineering, Yale University, 55 Prospect St., New Haven, Connecticut 06520,
USA
- Department of Diagnostic Radiology, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
- Department of Pediatrics, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
- Department of Applied Physics, PO Box 208267, Yale University, New Haven, Connecticut 06520,
USA
| |
Collapse
|
6
|
Slenders E, vandeVen M, Hooyberghs J, Ameloot M. Coherent intensity fluctuation model for autocorrelation imaging spectroscopy with higher harmonic generating point scatterers-a comprehensive theoretical study. Phys Chem Chem Phys 2015; 17:18937-43. [PMID: 26130478 DOI: 10.1039/c5cp02567b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a general analytical model for the intensity fluctuation autocorrelation function for second and third harmonic generating point scatterers. Expressions are derived for a stationary laser beam and for scanning beam configurations for specific correlation methodologies. We discuss free translational diffusion in both three and two dimensions. At low particle concentrations, the expressions for fluorescence are retrieved, while at high particle concentrations a rescaling of the function parameters is required for a stationary illumination beam, provided that the phase shift per unit length of the beam equals zero.
Collapse
Affiliation(s)
- Eli Slenders
- Biomed, Hasselt University, Agoralaan, Bldg C, B-3590 Diepenbeek, Belgium.
| | | | | | | |
Collapse
|
7
|
Huang BK, Choma MA. Microscale imaging of cilia-driven fluid flow. Cell Mol Life Sci 2015; 72:1095-113. [PMID: 25417211 PMCID: PMC4605231 DOI: 10.1007/s00018-014-1784-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Cilia-driven fluid flow is important for multiple processes in the body, including respiratory mucus clearance, gamete transport in the oviduct, right-left patterning in the embryonic node, and cerebrospinal fluid circulation. Multiple imaging techniques have been applied toward quantifying ciliary flow. Here, we review common velocimetry methods of quantifying fluid flow. We then discuss four important optical modalities, including light microscopy, epifluorescence, confocal microscopy, and optical coherence tomography, that have been used to investigate cilia-driven flow.
Collapse
Affiliation(s)
- Brendan K Huang
- Department of Biomedical Engineering, Yale University, New Haven, USA,
| | | |
Collapse
|
8
|
Broillet S, Szlag D, Bouwens A, Maurizi L, Hofmann H, Lasser T, Leutenegger M. Visible light optical coherence correlation spectroscopy. OPTICS EXPRESS 2014; 22:21944-57. [PMID: 25321570 DOI: 10.1364/oe.22.021944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscattered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle species. We applied these improvements by measuring protein adsorption and formation of a protein monolayer on superparamagnetic iron oxide nanoparticles under physiological conditions.
Collapse
|