1
|
Picazo-Bueno JÁ, Ketelhut S, Schnekenburger J, Micó V, Kemper B. Off-axis digital lensless holographic microscopy based on spatially multiplexed interferometry. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22715. [PMID: 39161785 PMCID: PMC11331263 DOI: 10.1117/1.jbo.29.s2.s22715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Significance Digital holographic microscopy (DHM) is a label-free microscopy technique that provides time-resolved quantitative phase imaging (QPI) by measuring the optical path delay of light induced by transparent biological samples. DHM has been utilized for various biomedical applications, such as cancer research and sperm cell assessment, as well as for in vitro drug or toxicity testing. Its lensless version, digital lensless holographic microscopy (DLHM), is an emerging technology that offers size-reduced, lightweight, and cost-effective imaging systems. These features make DLHM applicable, for example, in limited resource laboratories, remote areas, and point-of-care applications. Aim In addition to the abovementioned advantages, in-line arrangements for DLHM also include the limitation of the twin-image presence, which can restrict accurate QPI. We therefore propose a compact lensless common-path interferometric off-axis approach that is capable of quantitative imaging of fast-moving biological specimens, such as living cells in flow. Approach We suggest lensless spatially multiplexed interferometric microscopy (LESSMIM) as a lens-free variant of the previously reported spatially multiplexed interferometric microscopy (SMIM) concept. LESSMIM comprises a common-path interferometric architecture that is based on a single diffraction grating to achieve digital off-axis holography. From a series of single-shot off-axis holograms, twin-image free and time-resolved QPI is achieved by commonly used methods for Fourier filtering-based reconstruction, aberration compensation, and numerical propagation. Results Initially, the LESSMIM concept is experimentally demonstrated by results from a resolution test chart and investigations on temporal stability. Then, the accuracy of QPI and capabilities for imaging of living adherent cell cultures is characterized. Finally, utilizing a microfluidic channel, the cytometry of suspended cells in flow is evaluated. Conclusions LESSMIM overcomes several limitations of in-line DLHM and provides fast time-resolved QPI in a compact optical arrangement. In summary, LESSMIM represents a promising technique with potential biomedical applications for fast imaging such as in imaging flow cytometry or sperm cell analysis.
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- University of Muenster, Biomedical Technology Center, Muenster, Germany
- University of Valencia, Department of Optics, Optometry and Vision Science, Burjassot, Spain
| | - Steffi Ketelhut
- University of Muenster, Biomedical Technology Center, Muenster, Germany
| | | | - Vicente Micó
- University of Valencia, Department of Optics, Optometry and Vision Science, Burjassot, Spain
| | - Björn Kemper
- University of Muenster, Biomedical Technology Center, Muenster, Germany
| |
Collapse
|
2
|
S Barroso V, Geelmuyden A, Ajithkumar SC, Kent AJ, Weinfurtner S. Multiplexed digital holography for fluid surface profilometry. APPLIED OPTICS 2023; 62:7175-7184. [PMID: 37855573 DOI: 10.1364/ao.496937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023]
Abstract
Digital holography (DH) has been widely used for imaging and characterization of microstructures and nanostructures in materials science and biology and also has the potential to provide high-resolution, nondestructive measurement of fluid surfaces. DH setups capture the complex wavefronts of light scattered by an object or reflected from a surface, allowing the quantitative measurements of their shape and deformation. However, their use in fluid profilometry is scarce and has not been explored in much depth to the best of our knowledge. We present an alternative use for a DH setup that can measure and monitor the surface of fluid samples. Based on DH reflectometry, our modeling shows that multiple reflections from the sample and the reference interfere and generate multiple holograms of the sample, resulting in a multiplexed image of the wavefront. The individual interferograms can be isolated in the spatial frequency domain, and the fluid surface can be digitally reconstructed from them. We further show that this setup can be used to track changes in the surface of a fluid over time, such as during the formation and propagation of waves or the evaporation of surface layers.
Collapse
|
3
|
Picazo-Bueno JÁ, Barroso Á, Ketelhut S, Schnekenburger J, Micó V, Kemper B. Single capture bright field and off-axis digital holographic microscopy. OPTICS LETTERS 2023; 48:876-879. [PMID: 36790964 DOI: 10.1364/ol.478674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We report on a single capture approach for simultaneous incoherent bright field (BF) and laser-based quantitative phase imaging (QPI). Common-path digital holographic microscopy (DHM) is implemented in parallel with BF imaging within the optical path of a commercial optical microscope to achieve spatially multiplexed recording of white light images and digital off-axis holograms, which are subsequently numerically demultiplexed. The performance of the proposed multimodal concept is firstly determined by investigations on microspheres. Then, the application for label-free dual-mode QPI and BF imaging of living pancreatic tumor cells is demonstrated.
Collapse
|
4
|
Mirecki B, Rogalski M, Arcab P, Rogujski P, Stanaszek L, Józwik M, Trusiak M. Low-intensity illumination for lensless digital holographic microscopy with minimized sample interaction. BIOMEDICAL OPTICS EXPRESS 2022; 13:5667-5682. [PMID: 36733749 PMCID: PMC9872902 DOI: 10.1364/boe.464367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/18/2023]
Abstract
Exposure to laser light alters cell culture examination via optical microscopic imaging techniques based on label-free coherent digital holography. To mitigate this detrimental feature, researchers tend to use a broader spectrum and lower intensity of illumination, which can decrease the quality of holographic imaging due to lower resolution and higher noise. We study the lensless digital holographic microscopy (LDHM) ability to operate in the low photon budget (LPB) regime to enable imaging of unimpaired live cells with minimized sample interaction. Low-cost off-the-shelf components are used, promoting the usability of such a straightforward approach. We show that recording data in the LPB regime (down to 7 µW of illumination power) does not limit the contrast or resolution of the hologram phase and amplitude reconstruction compared to regular illumination. The LPB generates hardware camera shot noise, however, to be effectively minimized via numerical denoising. The ability to obtain high-quality, high-resolution optical complex field reconstruction was confirmed using the USAF 1951 amplitude sample, phase resolution test target, and finally, live glial restricted progenitor cells (as a challenging strongly absorbing and scattering biomedical sample). The proposed approach based on severely limiting the photon budget in lensless holographic microscopy method can open new avenues in high-throughout (optimal resolution, large field-of-view, and high signal-to-noise-ratio single-hologram reconstruction) cell culture imaging with minimized sample interaction.
Collapse
Affiliation(s)
- Bartosz Mirecki
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
- Authors contributed equally to this work
| | - Mikołaj Rogalski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
- Authors contributed equally to this work
| | - Piotr Arcab
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
- Authors contributed equally to this work
| | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Adolfa Pawinskiego St., 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Adolfa Pawinskiego St., 02-106 Warsaw, Poland
| | - Michał Józwik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| |
Collapse
|
5
|
Zdańkowski P, Winnik J, Patorski K, Gocłowski P, Ziemczonok M, Józwik M, Kujawińska M, Trusiak M. Common-path intrinsically achromatic optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:4219-4234. [PMID: 34457410 PMCID: PMC8367224 DOI: 10.1364/boe.428828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In this work we propose an open-top like common-path intrinsically achromatic optical diffraction tomography system. It operates as a total-shear interferometer and employs Ronchi-type amplitude diffraction grating, positioned in between the camera and the tube lens without an additional 4f system, generating three-beam interferograms with achromatic second harmonic. Such configuration makes the proposed system low cost, compact and immune to vibrations. We present the results of the measurements of 3D-printed cell phantom using laser diode (coherent) and superluminescent diode (partially coherent) light sources. Broadband light sources can be naturally employed without the need for any cumbersome compensation because of the intrinsic achromaticity of the interferometric recording (holograms generated by -1st and +1st conjugated diffraction orders are not affected by the illumination wavelength). The results show that the decreased coherence offers much reduced coherent noise and higher fidelity tomographic reconstruction especially when applied nonnegativity constraint regularization procedure.
Collapse
Affiliation(s)
- Piotr Zdańkowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
- These authors contributed equally to this work
| | - Julianna Winnik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
- These authors contributed equally to this work
| | - Krzysztof Patorski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Paweł Gocłowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Michał Ziemczonok
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Michał Józwik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Małgorzata Kujawińska
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| |
Collapse
|
6
|
Trusiak M, Cywińska M, Micó V, Picazo-Bueno JÁ, Zuo C, Zdańkowski P, Patorski K. Variational Hilbert Quantitative Phase Imaging. Sci Rep 2020; 10:13955. [PMID: 32811839 PMCID: PMC7435195 DOI: 10.1038/s41598-020-69717-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
Utilizing the refractive index as the endogenous contrast agent to noninvasively study transparent cells is a working principle of emerging quantitative phase imaging (QPI). In this contribution, we propose the Variational Hilbert Quantitative Phase Imaging (VHQPI)-end-to-end purely computational add-on module able to improve performance of a QPI-unit without hardware modifications. The VHQPI, deploying unique merger of tailored variational image decomposition and enhanced Hilbert spiral transform, adaptively provides high quality map of sample-induced phase delay, accepting particularly wide range of input single-shot interferograms (from off-axis to quasi on-axis configurations). It especially promotes high space-bandwidth-product QPI configurations alleviating the spectral overlapping problem. The VHQPI is tailored to deal with cumbersome interference patterns related to detailed locally varying biological objects with possibly high dynamic range of phase and relatively low carrier. In post-processing, the slowly varying phase-term associated with the instrumental optical aberrations is eliminated upon variational analysis to further boost the phase-imaging capabilities. The VHQPI is thoroughly studied employing numerical simulations and successfully validated using static and dynamic cells phase-analysis. It compares favorably with other single-shot phase reconstruction techniques based on the Fourier and Hilbert-Huang transforms, both in terms of visual inspection and quantitative evaluation, potentially opening up new possibilities in QPI.
Collapse
Affiliation(s)
- Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland.
| | - Maria Cywińska
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland.
| | - Vicente Micó
- Departamento de Óptica y de Optometría y Ciencias de la Visión, Facultad de Física, Universitat de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain
| | - José Ángel Picazo-Bueno
- Departamento de Óptica y de Optometría y Ciencias de la Visión, Facultad de Física, Universitat de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain
| | - Chao Zuo
- Jiangsu Key Laboratory of Spectral Imaging and Intelligence Sense, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Piotr Zdańkowski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland
| | - Krzysztof Patorski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland
| |
Collapse
|
7
|
O’Connor T, Anand A, Andemariam B, Javidi B. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4491-4508. [PMID: 32923059 PMCID: PMC7449709 DOI: 10.1364/boe.399020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 05/14/2023]
Abstract
We demonstrate a successful deep learning strategy for cell identification and disease diagnosis using spatio-temporal cell information recorded by a digital holographic microscopy system. Shearing digital holographic microscopy is employed using a low-cost, compact, field-portable and 3D-printed microscopy system to record video-rate data of live biological cells with nanometer sensitivity in terms of axial membrane fluctuations, then features are extracted from the reconstructed phase profiles of segmented cells at each time instance for classification. The time-varying data of each extracted feature is input into a recurrent bi-directional long short-term memory (Bi-LSTM) network which learns to classify cells based on their time-varying behavior. Our approach is presented for cell identification between the morphologically similar cases of cow and horse red blood cells. Furthermore, the proposed deep learning strategy is demonstrated as having improved performance over conventional machine learning approaches on a clinically relevant dataset of human red blood cells from healthy individuals and those with sickle cell disease. The results are presented at both the cell and patient levels. To the best of our knowledge, this is the first report of deep learning for spatio-temporal-based cell identification and disease detection using a digital holographic microscopy system.
Collapse
Affiliation(s)
- Timothy O’Connor
- Biomedical Engineering Department, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Arun Anand
- Applied Physics Department, Faculty of Tech. & Engineering, M.S. University of Baroda, Vadodara 390001, India
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Farmington, Connecticut 06030, USA
| | - Bahram Javidi
- Electrical and Computer Engineering Department, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
8
|
Yang Y, Huang HY, Guo CS. Polarization holographic microscope slide for birefringence imaging of anisotropic samples in microfluidics. OPTICS EXPRESS 2020; 28:14762-14773. [PMID: 32403511 DOI: 10.1364/oe.389973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/11/2020] [Indexed: 05/27/2023]
Abstract
Birefringence is an important optical property of anisotropic materials arising from anisotropies of tissue microstructures. Birefringence parameters have been found to be important to understand optical anisotropic architecture of many materials and polarization imaging has been applied in many researches in the field of biology and medicine. Here, we propose a scheme to miniaturize a double-channel polarization holographic interferometer optics to create a polarization holographic microscope slide (P-HMS) suitable for integrating with microfluidic lab-on-a-chip (LoC) systems. Based on the P-HMS combined with a simple reconstruction algorithm described in the paper, we can not only simultaneously realize holographic imaging of two orthogonal polarization components of dynamic samples in a microfluidic channel but also quantitative measurement of 2D birefringence information, both including the birefringence phase retardation and optic-axis orientation. This chip interferometer allows for off-axis double-channel polarization digital holographic recording using only a single illumination beam without need of any beam splitter or mirror. Its quasi-common path configuration and self-aligned design also make it tolerant to vibrations and misalignment. This work about the P-HMS could play a positive role in promoting the application of birefringence imaging in microfluidic LoC technology.
Collapse
|
9
|
Patorski K, Zdańkowski P, Trusiak M. Grating deployed total-shear 3-beam interference microscopy with reduced temporal coherence. OPTICS EXPRESS 2020; 28:6893-6908. [PMID: 32225927 DOI: 10.1364/oe.383201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Interference microscopy is a powerful optical imaging technique providing quantitative phase distribution information to characterize various type technical and biomedical objects. Static and dynamic objects and processes can be investigated. In this paper we propose very compact, common-path and partially coherent diffraction grating-based interference microscopy system for studying small objects like single cells with low densities being sparsely distributed in the field of view. Simple binary amplitude diffraction grating is the only additional element to be introduced into a conventional microscope optical system. By placing it at a proper distance in front of the microscope image plane the total-shear operation mode is deployed resulting in interferograms of the object-reference beam type. Depending on the grating to image plane separation distance two or three-beam interferograms are generated. The latter ones are advantageous since they contain achromatic second harmonics in the interferogram intensity distributions. This feature enables to use reduced temporal coherence light sources for the microscope to reduce coherent noise and parasitic interference patterns. For this purpose we employ the laser diode with driving current below the threshold one. Results of conducted experiments including automatic computer processing of interferograms fully corroborate analytical description of the proposed method and illustrate its capabilities for studying static and dynamic phase objects.
Collapse
|
10
|
Trusiak M, Picazo-Bueno JA, Patorski K, Zdańkowski P, Mico V. Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31522487 PMCID: PMC6997581 DOI: 10.1117/1.jbo.24.9.096004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Single-shot, two-frame, π-shifted spatially multiplexed interference microscopy (π-SMIM) is presented as an improvement to previous SMIM implementations, introducing a versatile, robust, fast, and accurate method for cumbersome, noisy, and low-contrast phase object analysis. The proposed π-SMIM equips a commercially available nonholographic microscope with a high-speed (video frame rate) enhanced quantitative phase imaging (QPI) capability by properly placing a beam-splitter in the microscope embodiment to simultaneously (in a single shot) record two holograms mutually phase shifted by π radians at the expense of reducing the field of view. Upon subsequent subtractive superimposition of holograms, a π-hologram is generated with reduced background and improved modulation of interference fringes. These features determine superior phase retrieval quality, obtained by employing the Hilbert spiral transform on the π-hologram, as compared with a single low-quality (low signal-to-noise ratio) hologram analysis. In addition, π-SMIM enables accurate in-vivo analysis of high dynamic range phase objects, otherwise measurable only in static regime using time-consuming phase-shifting. The technique has been validated utilizing a 20 × / 0.46 NA objective in a regular Olympus BX-60 upright microscope for QPI of different lines of prostate cancer cells and flowing microbeads.
Collapse
Affiliation(s)
- Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
- Address all correspondence to Maciej Trusiak, E-mail: ; Vicente Mico, E-mail:
| | - Jose-Angel Picazo-Bueno
- Universitat de Valencia, Departamento de Óptica y Optometría y Ciencias de la Visión, Burjassot, Spain
| | - Krzysztof Patorski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
| | - Piotr Zdańkowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
| | - Vicente Mico
- Universitat de Valencia, Departamento de Óptica y Optometría y Ciencias de la Visión, Burjassot, Spain
- Address all correspondence to Maciej Trusiak, E-mail: ; Vicente Mico, E-mail:
| |
Collapse
|
11
|
Picazo-Bueno JA, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube. OPTICS EXPRESS 2019; 27:5655-5669. [PMID: 30876163 DOI: 10.1364/oe.27.005655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 05/21/2023]
Abstract
Slightly off-axis digital holographic microscopy (SO-DHM) has recently emerged as a novel experimental arrangement for quantitative phase imaging (QPI). It offers improved capabilities in conventional on-axis and off-axis interferometric configurations. In this contribution, we report on a single-shot SO-DHM approach based on an add-on module adapted to the exit port of a regular microscope. The module employs a beamsplitter (BS) cube interferometer and includes, in addition, a Stokes lens (SL) for astigmatism compensation. Each recorded frame contains two fields of view (FOVs) of the sample, where each FOV is a hologram which is phase shifted by π rads with respect to the other. These two simultaneously recorded holograms are numerically processed, in order to retrieve complex amplitude distribution with enhanced quality. The tradeoff is done in the FOV which becomes penalized as a consequence of the simultaneous recording of the two holograms in a single snapshot. Experimental validation is presented for a wide variety of samples using a regular Olympus BX-60 upright microscope. The proposed approach provides an optimized use of the imaging system, in terms of the space-bandwidth product, in comparison with off-axis configuration; allows the analysis of fast-dynamic events, owing to its single-shot capability when compared with on-axis arrangement; and becomes easily implementable in conventional white-light microscopes for upgrading them into holographic microscopes for QPI.
Collapse
|
12
|
Picazo-Bueno JÁ, Trusiak M, García J, Patorski K, Micó V. Hilbert-Huang single-shot spatially multiplexed interferometric microscopy. OPTICS LETTERS 2018; 43:1007-1010. [PMID: 29489765 DOI: 10.1364/ol.43.001007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/18/2018] [Indexed: 05/21/2023]
Abstract
Hilbert-Huang single-shot spatially multiplexed interferometric microscopy (H2S2MIM) is presented as the implementation of a robust, fast, and accurate single-shot phase estimation algorithm with an extremely simple, low-cost, and highly stable way to convert a bright field microscope into a holographic one using partially coherent illumination. Altogether, H2S2MIM adds high-speed (video frame rate) quantitative phase imaging capability to a commercially available nonholographic microscope with improved phase reconstruction (coherence noise reduction). The technique has been validated using a 20×/0.46 NA objective in a regular Olympus BX-60 upright microscope for static, as well as dynamic, samples showing perfect agreement with the results retrieved from a temporal phase-shifting algorithm.
Collapse
|
13
|
Picazo-Bueno JÁ, Cojoc D, Iseppon F, Torre V, Micó V. Single-shot, dual-mode, water-immersion microscopy platform for biological applications. APPLIED OPTICS 2018; 57:A242-A249. [PMID: 29328152 DOI: 10.1364/ao.57.00a242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use of water-immersion imaging lenses maximizes the achievable resolution limit. This dual-mode microscope platform is first calibrated using microbeads, then applied to the characterization of fixed cells (neuroblastoma, breast cancer, and hippocampal neuronal cells) and, finally, validated for visualization of dynamic living cells (hippocampal neurons).
Collapse
|
14
|
Vora P, Trivedi V, Mahajan S, Patel N, Joglekar M, Chhaniwal V, Moradi AR, Javidi B, Anand A. Wide field of view common-path lateral-shearing digital holographic interference microscope. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-11. [PMID: 29235271 DOI: 10.1117/1.jbo.22.12.126001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/16/2017] [Indexed: 05/12/2023]
Abstract
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.
Collapse
Affiliation(s)
- Priyanka Vora
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
- Uka Tarsadia University, Department of Physics, Bardoli, Gujarat, India
| | - Vismay Trivedi
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Swapnil Mahajan
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Nimit Patel
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Mugdha Joglekar
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Vani Chhaniwal
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Ali-Reza Moradi
- Institute for Research in Fundamental Sciences, School of Nano Science, Tehran, Iran
- Institute for Advanced Studies in Basic Sciences, Optics Research Center, Zanjan, Iran
| | - Bahram Javidi
- University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut, United States
| | - Arun Anand
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| |
Collapse
|
15
|
Han L, Cheng ZJ, Yang Y, Wang BY, Yue QY, Guo CS. Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration. OPTICS EXPRESS 2017; 25:21877-21886. [PMID: 29041479 DOI: 10.1364/oe.25.021877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
We propose a double-channel angular-multiplexing polarization holographic imaging system with common-path and off-axis configurations. In the system, its input plane is spatially divided into three windows: an object window and two reference windows, and two orthogonal linear polarizers are attached, respectively, on the two reference windows; a two-dimensional cross grating is inserted between the input and output planes of the system. Thus the object beam passing through the object window and the two orthogonal polarized reference beams passing through the two reference windows can overlap each other at the output plane of the system and form a double-channel angular-multiplexing polarization hologram (DC-AM-PH). Using this system, the complex amplitude distributions of two orthogonal polarized components from an object can be recorded and reconstructed by one single-shot DC-AM-PH at the same time. Theoretical analysis and experimental results demonstrated that the system can be used to measure the Jones matrix parameters of polarization-sensitive or birefringent materials.
Collapse
|
16
|
Zheng C, Zhou R, Kuang C, Zhao G, Yaqoob Z, So PTC. Digital micromirror device-based common-path quantitative phase imaging. OPTICS LETTERS 2017; 42:1448-1451. [PMID: 28362789 PMCID: PMC5730056 DOI: 10.1364/ol.42.001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the "off" state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption.
Collapse
Affiliation(s)
- Cheng Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Renjie Zhou
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangyuan Zhao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peter T. C. So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
Picazo-Bueno JÁ, Zalevsky Z, García J, Micó V. Superresolved spatially multiplexed interferometric microscopy. OPTICS LETTERS 2017; 42:927-930. [PMID: 28248333 DOI: 10.1364/ol.42.000927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Superresolution capability by angular and time multiplexing is implemented onto a regular microscope. The technique, named superresolved spatially multiplexed interferometric microscopy (S2MIM), follows our previously reported SMIM technique [Opt. Express22, 14929 (2014)OPEXFF1094-408710.1364/OE.22.014929, J. Biomed. Opt.21, 106007 (2016)JBOPFO1083-366810.1117/1.JBO.21.10.106007] improved with superresolved imaging. All together, S2MIM updates a commercially available non-holographic microscope into a superresolved holographic one. Validation is presented for an Olympus BX-60 upright microscope with resolution test targets.
Collapse
|
18
|
Picazo-Bueno JÁ, Zalevsky Z, García J, Ferreira C, Micó V. Spatially multiplexed interferometric microscopy with partially coherent illumination. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:106007. [PMID: 27786343 DOI: 10.1117/1.jbo.21.10.106007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/06/2016] [Indexed: 05/21/2023]
Abstract
We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample’s phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- Universitat de Valencia, Departamento de Óptica, C/Doctor Moliner 50, Burjassot 46100, Spain
| | - Zeev Zalevsky
- Bar-Ilan University, Faculty of Engineering, Ramat-Gan 52900, Israel
| | - Javier García
- Universitat de Valencia, Departamento de Óptica, C/Doctor Moliner 50, Burjassot 46100, Spain
| | - Carlos Ferreira
- Universitat de Valencia, Departamento de Óptica, C/Doctor Moliner 50, Burjassot 46100, Spain
| | - Vicente Micó
- Universitat de Valencia, Departamento de Óptica, C/Doctor Moliner 50, Burjassot 46100, Spain
| |
Collapse
|
19
|
Roitshtain D, Turko NA, Javidi B, Shaked NT. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel. OPTICS LETTERS 2016; 41:2354-7. [PMID: 27177001 DOI: 10.1364/ol.41.002354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.
Collapse
|
20
|
Nadeau JL, Cho YB, Kühn J, Liewer K. Improved Tracking and Resolution of Bacteria in Holographic Microscopy Using Dye and Fluorescent Protein Labeling. Front Chem 2016; 4:17. [PMID: 27242995 PMCID: PMC4874365 DOI: 10.3389/fchem.2016.00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 11/15/2022] Open
Abstract
Digital holographic microscopy (DHM) is an emerging imaging technique that permits instantaneous capture of a relatively large sample volume. However, large volumes usually come at the expense of lower spatial resolution, and the technique has rarely been used with prokaryotic cells due to their small size and low contrast. In this paper we demonstrate the use of a Mach-Zehnder dual-beam instrument for imaging of labeled and unlabeled bacteria and microalgae. Spatial resolution of 0.3 μm is achieved, providing a sampling of several pixels across a typical prokaryotic cell. Both cellular motility and morphology are readily recorded. The use of dyes provides both amplitude and phase contrast improvement and is of use to identify cells in dense samples.
Collapse
Affiliation(s)
- Jay L Nadeau
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Department of Biomedical Engineering, McGill UniversityMontreal, QC, Canada
| | - Yong Bin Cho
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Department of Biomedical Engineering, McGill UniversityMontreal, QC, Canada
| | - Jonas Kühn
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Institute for Astronomy, ETH ZürichZürich, Switzerland
| | - Kurt Liewer
- Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
21
|
Di Caprio G, Ferrara MA, Miccio L, Merola F, Memmolo P, Ferraro P, Coppola G. Holographic imaging of unlabelled sperm cells for semen analysis: a review. JOURNAL OF BIOPHOTONICS 2015; 8:779-789. [PMID: 25491593 DOI: 10.1002/jbio.201400093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/16/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Male reproductive health in both humans and animals is an important research field in biological study. In order to characterize the morphology, the motility and the concentration of the sperm cells, which are the most important parameters to feature them, digital holography demonstrated to be an attractive technique. Indeed, it is a label-free, non-invasive and high-resolution method that enables the characterization of live specimen. The review is intended both for summarizing the state-of-art on the semen analysis and recent achievement obtained by means of digital holography and for exploring new possible applications of digital holography in this field. Quantitative phase maps of living swimming spermatozoa.
Collapse
Affiliation(s)
- Giuseppe Di Caprio
- Institute for Microelectronics and Microsystems, Unit of Naples - National Research Council, Naples, 80121, Italy.
- Rowland Institute at Harvard, Harvard University, Cambridge, MA, 02142, USA.
| | - Maria Antonietta Ferrara
- Institute for Microelectronics and Microsystems, Unit of Naples - National Research Council, Naples, 80121, Italy
| | - Lisa Miccio
- Institute "E. Caianiello" - National Research Council, Pozzuoli, 80078, Italy
| | - Francesco Merola
- Institute "E. Caianiello" - National Research Council, Pozzuoli, 80078, Italy
| | - Pasquale Memmolo
- Institute "E. Caianiello" - National Research Council, Pozzuoli, 80078, Italy
| | - Pietro Ferraro
- Institute "E. Caianiello" - National Research Council, Pozzuoli, 80078, Italy
| | - Giuseppe Coppola
- Institute for Microelectronics and Microsystems, Unit of Naples - National Research Council, Naples, 80121, Italy
| |
Collapse
|